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Abstract

This paper deals with supersonic air-breathing missile system. A supersonic 

air-breathing missile system has very complicated and incoherent thrust 

characteristics with respect to outer and inner environment during operation. For this 

reason, the missile system has many maneuver constraints and  is allowed to operate 

within narrow flight envelope.

In this paper, trajectory optimization of the missile is accomplished. The 

trajectory optimization problem is formulated as a discrete parameter optimization 

problem. For this formulation, Legendre Pseudo-Spectral method is introduced. This 

method is based on calculating the state and control variables on 

Legendre-Gauss-Lobatto (LGL) points. This approach helps to find approximated 

derivative and integration quantities simply.

It is shown that, for this trajectory optimization, trend analysis is performed 

from thrust characteristics on various conditions so that the trajectory optimization is 

accomplished with fine initial guess with these results.

Key Word :  Air-breathing missile system, Trajectory Optimization, Legendre 
Pseudo-Spectral Method

Introduction

There are many studies and contribution to supersonic air-breathing propulsion system 

from its first appearance at 1900s. In present, guidance weapon is developed with a trend of 

concept of “fast” and “efficient” to improve survival probability and long distance flight. A 

supersonic air-breathing missile is one of the fastest vehicles and has good efficiency to 

consuming fuel. For this reason, this kind of missile system has been one of main issues on 

aerospace field till today.

For a supersonic air-breathing missile trajectory optimization problem, we have to consider 

the missile engine characteristics exactly. In this study, it is shown that what the engine 

properties are and how to consider the characteristics on trajectory optimization problem.
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Over the past decades, there are abundant researches (materials and papers) for this kind of 

engine characteristics but there are few researches for trajectory optimization which are 

considerable. Most of researches are concern with the internal combustion mechanisms of 

combustion chamber and investigation of inlet and nozzle structure [1~4]. However, from these 

studies we can know the thrust feature of air-breathing engine and the tendency of it so that the 

results from trajectory optimization can be verified to be matched as expected.

Due to the complex characteristics of thrust, direct optimization method will be adopted. Out 

of various direct methods, Legendre Pseudo-Spectral method is applied to transform the 

continuous optimal problem to the discrete parameter optimization. This method is one of 

collocation methods. The states and the control variables at each node are dealt with as 

parameters to be optimized.

After the optimization is completed, the results from the optimization are verified whether 

they track the trend or not.

Missile Specification

Aerodynamic Characteristics

From the missile geometry, aerodynamic data base can be extracted. Non-dimensional lift 

and drag coefficient are obtained from the geometry. The aerodynamic coefficients are generally 

given as functions of Mach number and angle of attack for drag and lift.

                                         (1)

                                         (2)

Since air-breathing missile does not maneuver agilely due to the risk of flame out, the angle 

of attack (or side slip) is limited below3 6 degree. This allowance is due to model thrust 

characteristics. Over the 6 degree for angle of attack, thrust is dropped dramatically with same 

condition. This reason help the limit of missile maneuver and it is automatically assumed that the 

missile given in this paper does not exceed the angle of attack of 6 degree.

Thrust Characteristics

In this paper, we consider an air-breathing missile which has no air compressor, just 

compresses air by its own intake shape. As taking air through shocks (oblique shocks and final 

normal shock) at the intake region, air flow which is slew down can be achieved. Due to this 

characteristic, airflow injected cannot be sustainable. Generally, airflow rate at the intake depends 

on the conditions of altitude, Mach number, and angle of attack. When altitude changes air density 

changes, when Mach number changes airspeed changed, and when angle of attack changes shock 

locations and the area of intake changes. This air flow rate definitely affects to thrust. Thrust 

characteristics for Mach, angle of attack, and altitude are shown fig. 1. The graphs for thrust deal 

with whole data and are projected drown for each parameter.

On the other hand, thrust through the engine combustor is affected by fuel injection rate 

and the nozzle throat area change. It is related to internal dynamics of the engine. Therefore 

thrust is defined as a function of 5 different conditions(Mach, angle of attack, altitude, fuel 

injection rate, and nozzle throat area).

It is important to find the physical meaning of missile thrust with respect to each parameter 

or condition since this consideration gives the relation between missile flight dynamics and engine 

combustion mechanism so that finally it helps the optimization problem to obtain a solution.

                                    (3)
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               (a) Mach vs Thrust                                    (b) AoA vs Thrust

(c) Altitude vs Thrust

Fig. 1. Thrust Characteristics w.r.t Mach, AOA, and Altitude

From these results with flight conditions, the tendency of engine or thrust characteristics 

can be denoted. Generally when Mach number increases, high thrust is obtained. However after 

passed through a threshold thrust decreases. This is due to the reduction of total pressure 

recovery ratio after through the intake [5]. The engine which is used in this study is designed to 

output the best performance at Mach 3. Therefore the reduction with Mach number does not 

appear. When angle of attack increases, the leak of airflow occurs and the total pressure 

recovery ratio decreases with improper shock position. It makes thrust decrease with high angle 

of attack. And for the altitude change, as expected, higher altitude, lower thrust due to the low 

air flow rate from low air density. It is expected that, with not abundant air, no more thrust 

increase.

On the whole results with flight conditions, altitude and Mach number have particularly 

influence on the value of thrust. Under high dynamic pressure, plenty of air flow is guaranteed 

and the total pressure recovery is attained with adequate amount of fuel flow. Therefore if 

missile needs high thrust level, it is proper to fly at low altitude with high velocity. But it is 

considerable that, in such a case, the missile faces with high drag. We come to terms with this 

thing.

Flight Mechanism

With the aerodynamic data base and the thrust results with respect to flight and operational 

conditions, flight mechanism can be displayed. Fig. 2 shows the mechanism. From internal 

dynamics and environmental conditions, the data on the look-up table for aerodynamic coefficients 

and the thrust are called. 
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Fig. 2. Data Acquisition Logic and Flight Mechanism

Scheme for Trajectory Optimization

Optimization Method

Generally there are two types of methods for optimization, indirect and direct method. 

Indirect methods (dynamic optimization) find a trajectory satisfying the necessary conditions 

(the Euler-Lagrange equations or the Pontryagin’s minimum principle), which pose a TPBVP. 

Lagrange multiplier (co-states or adjoint variables) is introduced to augment the system 

governing equation, and explicitly employ the necessary conditions for optimality. 

On the other hand, direct methods (static optimization) update the control variables 

(including design parameters) and the trajectory minimizes (or maximizes) the value of cost 

function while satisfying the boundary conditions and the other state and control constraints.

Supersonic air-breathing missile has lots of complex inequality constraints for control, and 

it is hard to be applied to the indirect methods. As described before, the missile considered in this 

paper is very passive system with respect to flight and engine operational environments and there 

are restricted maneuvers. For instance, to prevent the flame out at combustion chamber, airflow 

rate is kept over a certain level so that angle of attack or side slip angle, altitude, Mach number 

should be under designated boundaries every moment. This fact makes the missile system has 

more narrow and arbitrary flight envelope than other aero-vehicle. Therefore to solve the 

trajectory optimization problem, direct methods via certain optimization tool (or algorithm) such as 

CFSQP and CEALM [6] are proper. In this paper, both of CFSQP and CEALM will be applied for 

a problem to find an optimal trajectory with a performance index which denotes minimizing the 

consumption of fuel to climb. They will be applied to a problem but with different uses of them. 

CEALM will be used to find the tendency expected and it helps for initial guessing for CFSQP 

which is mainly used for the trajectory optimization problem in this paper. This difference 

application of them will be demonstrated later.

Sub-choice for Optimization Method

Due to the complexity of air-breathing propulsion system, we carefully decide the use of 

direct method for the trajectory optimization which is employed in this paper. Here, sub-choice for 

optimization method remains. Generally a continuous optimization problem can be transformed to 

a discrete problem. It is parameter optimization problem to treat certain trajectories for states, 

controls or either. Out of many studies for parameter optimization, what will be used for our 

problem is the choice.
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One of many ways for parameter optimization is collocation method. Collocation method 

takes all states and control variables as unknown parameters. In this method, static constraints 

are added on every node after discretization. In this manner, there’s no integration procedure but 

equality constraints which is called as ‘defect’ are loaded. All trajectories of system’s states are 

expressed as user defined polynomials and if the polynomials are proper enough to account for the 

complexity of real system, it is one of solutions. However it is suboptimal solution also. Despite 

a glance of no improvement, it is useful when user has a marginal accuracy level for all system’s 

states and control variables. The order of polynomials will express all parameters with the 

accuracy level of its order. And it takes much less time to optimize.

As one of the collocation methods, Pseudo-Spectral (PS) method [7~10] for optimal control 

have been developed rapidly. It is known that PS method is a powerful computational method for 

solving complex nonlinear control problems and various algorithms have been developed since 

1990s. Differed with any other collocation methods which collocate just two node points, PS 

method collocates all parameters over the nodes for one state or control with Nth order basis 

interpolation functions. In PS method, the continuous functions are approximated at a set of 

carefully selected quadrature nodes. These nodes are called Gauss points, Gauss-Radau points or 

Gauss-Lobatto points. The quadrature nodes are determined by the corresponding orthogonal 

polynomial basis used for the approximation. It is known that, with just N nodes, quadrature 

integration achieves zero error for any polynomial integrand of degree less than or equal to 2N-1 

[15~19]. Furthermore, compared with Hermite-Simpson method which is one of representative 

collocation methods, Hermite-Simpson induces totally N equality constraints for each state on N+1 

node points, on the other hand PS method induces N+1 equality constraints for each state on N+1 

node points. In spite of this a little disadvantage, PS algorithm adopts Gauss type integration rule. 

It helps simple and accurate integration for states or controls much more than Hermite-Simpson’s. 

That’s why the PS method is adopted for optimization in this paper. In present, PS method is 

employed to many applications for trajectory optimization, which include launch vehicle trajectory 

optimization, orbit transfer mission for satellites, and etc. In this paper, to use the advantage and 

to get fancy results, trajectory optimization will be accomplished using PS method.

Furthermore, Legendre polynomials are tried to be basis functions and an optimal problem 

is solved with quadrature nodes called as LGL points.

Gross Structure to Optimize

Fig. 3 shows the whole process of choice of optimization method.

Since it is hard to construct the necessary conditions or Hamiliton-Jacobi-Bellman equation, 

direct method is used in this paper. Additionally the numerical error and computational burden 

(taking long time) due to the integration process, we choose collocation method which interpolates 

both of state and control variables. Out of collocation methods, PS method is chosen finally. Using 

PS method, it is expected to get a fine solution and the advantage of problem formulation.

Fig. 3. Optimization Diagram and Choice of Optimization Method
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Trajectory Optimization of Supersonic Air-breathing Missile

Problem Definition and Performance Index

The purpose of this study is to trajectory optimization for minimization fuel consumption till 

reach designed altitude and Mach after boosting phase. It is important to save fuel since saved 

fuel can be used for an optional operation or long range (or endurance) flight. Therefore 

minimizing fuel consumption is taken to be performance index in this paper. The mathematical 

expression is as followed.

     



                             (4)

Additionally, boundary conditions are given as;

1) Initial Boundary Conditions:

Mach number, altitude, flight path angle = (2.1, 3 km, 0 deg)

2) Terminal Boundary Conditions:

Mach number, altitude, flight path angle = (2.9, 14km, 0 deg)

These boundary conditions imply that the flight from land to air is dealt with. It is assumed 

that a booster can help till the initial conditions.

Governing Equations

When it is assumed to be 2-D equation for simplicity, the dynamic equations are expressed 

like below.







 



  

                            (5)

In this governing equations control variables are angle of attack, equivalence ratio (fuel 

injection rate) and nozzle throat area. With angle of attack change, lift and drag differ and with 

equivalence ratio and nozzle throat area rate change, thrust differs.

Problem Reformulation into PS method

From using PS method, the problem is transformed into PS formulation on discrete region, 

that is

      

 

 



  



 

 




                     (6)

subject to



 
  

 



                           (7)

 

 

 



    

 

 



                            (8)

where  and  are state and control variable vector at 'k'th node.  and  are the 

parameters in this parameter optimization problem.
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Trend Analysis

The problem for trajectory optimization is to save fuel during the flight to a designation 

position and direction. As described, an air-breathing missile takes a flight from low altitude and 

low velocity to high altitude and high velocity. It can be differently expressed as a flight from low 

energy level to high energy level. 

Therefore the problem can be defined newly as energy change with possibly small 

consumption of fuel during the flight. A specific energy level for an aircraft is defined as follows

  


                                     (9)

In this paper, it is required that energy level increases as highly as possible with unit fuel 

consumption. For this, Eq. (9) is modified to be useful to solve the problem.



  

     
   


               (10)

where   is weight.

The final equation (Eq. (10)) is used to find the best combination of equivalence ration and 

nozzle throat area which induce the maximum value of energy change with unit fuel mass. If 

altitude, Mach, and angle of attack are assumed to be fixed, then drag is determined. Therefore 

with fixed drag, the problem is to find two parameters which make maximum value of Eq. (10).

To obtain the parameters, Co-Evolutionary Augmented Lagrange Method (CEALM) is used. 

The reason of this choice of use is that since CEALM employs genetic algorithm and stochastic 

process in it, therefore it searches wider region than the other engines which use gradient method. 

By using CEALM, the risk is reduced to be fallen at the bad local minimum. From the results, we 

can find a proper initial guess for trajectory optimization via CFSQP. Fig. 4 indicates the concept 

drawing of CEALM processing on the region of equivalence ratio and nozzle throat area.

Fig. 4. Concept Drawing for CEALM

Numerical Results

Trajectory optimization using Pseudo-Spectral is accomplished by using CFSQP. All 

dynamic and boundary constraints are satisfied in a tolerance bound which user designates. The 

results are obtained from initial guessing with the values for time (30 sec), equivalence ratio (0.9 

for whole node points) and nozzle throat area (0.9 for most flight and 0.75 for the end of flight).

This initial guess comes from the results of trend analysis using CEALM.

★ Time of flight: 33.44 sec

★ Fuel consumption: 14.59kg

★ Flight Distance : about 22.5 km

★ State and Control Trajectories (Fig. 5 and Fig. 6)
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Fig. 5. Trajectory of Missile(2-D)

     

                    (a) Velocity (km/s)                          (b) Flight Path Angle (deg)

    

                (c) Angle of Attack (deg)                         (d) Mach number

     

            (e) Fuel Flow Rate (normalized)             (f) Nozzle Throat Area (normalized)

(g) Thrust (normalized)
Fig. 6. Optimized States, Controls, and Other Physical Quantities
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On each graph, (star) points are the values optimized on LGL points and a line is from 

Lagrange interpolation (Except for nozzle throat area). For optimization, 8th order Legendre 

polynomials are used as basis function (9 node points). Fig. 5 shows the 2-D path trajectory of 

missile and Fig. 6 shows the rest states, controls and physical quantities which can be obtained. 

Fuel consumption is about 14.59 kg and the flight distance is about 22.5 km during the flight (for 

33.44 sec) as described.

One thing remarkable is the result in Fig. 6.(f). It shows the nozzle throat to be suddenly 

closed a little during the terminal flight. It means that, during the terminal flight near designated 

altitude(14 km) and Mach(2.9), narrower nozzle throat area is proper. The data set for nozzle 

throat area is divided with 0.25 normalized scale interval. Therefore one step narrower nozzle 

throat area setting is proper that wider nozzle throat area.

Cost Analysis with Alternative Initial Settings and Different Time

To verify whether the results from optimization are well optimized or not, it is required that 

optimizations should be performed with other initial settings and different flight time (fixed) and 

compared with obtained results above. Table 1 and 2 show costs with different initial setting for 

optimization not from trend analysis.

When initial settings for equivalence ratio and nozzle throat area differ, the obtained 

trajectories for states and controls differ slightly with the results from the trend analysis. It 

generates worse results. With different flight time which is fixed, a minor result is obtained, too. 

From these results, it is guaranteed that the cost value of 14.59 kg is the best solution out of the 

other initial settings and time for optimization.

Table 1. Optimization Results (Cost) with Alternative Initial Settings

Initial Settings (for whole   flight) Cost (kg)

Equivalence   Ratio : 0.6
Nozzle   Throat Area : 0.9 14.71

Equivalence   Ratio : 0.7
Nozzle   Throat Area : 0.9 14.61

Equivalence   Ratio : 0.9
Nozzle   Throat Area : 0.5 14.62

Equivalence   Ratio : 0.9
Nozzle   Throat Area : 0.75 14.61

Table 2. Optimization Results (Cost) with Different Flight Time (fixed)

Time (sec) 30 32 35 36

Cost (kg) 14.85 14.64 14.61 14.63

Conclusions

Using PS method, we try to find an optimal solution for a supersonic air-breathing missile 

trajectory in this paper. PS method is generally faster than a case when explicit integration 

procedure is involved. Due to the complexity of air-breathing propulsion missile characteristics, 

direct method (parameter optimization) approach is demonstrated. Among many kinds of 

parameter optimizations, collocation method is used, which parameterizes both of states and 

controls. Finally, one of collocation methods is adopted for problem formulation, and that is PS 

method.
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It cannot be assured whether the solution is optimal or not. Therefore trend analysis is 

described to find a proper initial set of parameters. From this trend analysis, we can validate the 

obtained solution. The other initial settings not through the trend analysis result in worse 

performance. Therefore it gives denotation that, at least, the results from initial guessing via trend 

analysis is close to global solution though it is still local solution. Additionally, this gives a sense 

to set initial settings when optimization is performed using CFSQP.

Finally, through this study, it is hoped that similar trajectory optimizations with alternative 

performance index are accomplished and it is expected that there are applications of this research 

such as a guidance law to track the trajectory obtained by optimization.
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