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Abstract

Aircraft manufacturing companies have to consider multiple derivatives to satisfy various market requirements. They modify 

or extend an existing aircraft to meet new market demands while keeping the development time and cost to a minimum. Many 

researchers have studied the derivative design process, but these research efforts consider baseline and derivative designs 

together, while using the whole set of design variables. Therefore, an efficient process that can reduce cost and time for aircraft 

derivative design is needed. In this research, a more efficient design process is proposed which obtains global changes from 

local changes in aircraft design in order to develop aircraft derivatives efficiently. Sensitivity analysis was introduced to remove 

unnecessary design variables that have a low impact on the objective function. This prevented wasting computational effort 

and time on low priority variables for design requirements and objectives. Additionally, uncertainty from the fidelity of analysis 

tools was considered in design optimization to increase the probability of optimization results. The Reliability Based Design 

Optimization (RBDO) and Possibility Based Design Optimization (PBDO) methods were proposed to handle the uncertainty 

in aircraft conceptual design optimization. In this paper, Collaborative Optimization (CO) based framework with RBDO and 

PBDO was implemented to consider uncertainty. The proposed method was applied for civil jet aircraft derivative design that 

increases cruise range and the number of passengers. The proposed process provided deterministic design optimization, 

RBDO, and PBDO results for given requirements.    

Key words:  Reliability Based Design Optimization, Possibility Based Design Optimization, Aircraft Conceptual Design, 

Derivative Design

1. Introduction

A family of military/civil aircraft generally has multiple

derivatives to satisfy diverse requirements. Aircraft 

manufacturers develop new aircraft models as modifications 

or extensions of existing aircraft in order to meet new market 

demands while keeping the development time and cost 

to a minimum [1]. The commonality of the aircraft as well 

as its family has advantages to both the airliner and the 

manufacturer. These include simplification of maintenance 

procedures, flexibility in scheduling and reduced spare-

parts inventory [1]. Additionally, airlines that operate several 

derivative aircraft types can reduce the pilot training time 

between different types. However, the redesign for derivatives 

of existing aircraft does require additional development 

resources and time. Many researchers studied techniques 

for derivative design. These research efforts considered the 

whole set of design variables and designed the baseline and 

derivatives simultaneously [1-10]. Richard et al., Robert et al., 

and Deepak et al. identified the important parameters for the 

family design by applying the market requirement analysis [1, 

2, and 3]. Jonathan et al. utilized the generation of a Pareto 
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frontier to identify the candidates of product family members 

[4]. Timothy et al. and Rajesh et al. applied a Multi-Objective 

Genetic Algorithm (MOGA) for derivative design. A genetic 

algorithm with the considerations of different platform 

levels was employed to optimize the product baseline and 

its family [5, 6, and 7]. A Multi-Objective Particle Swarm 

Optimization (MOPSO) method was proposed by Seng Ki et 

al. [8]. Moreover, James et al. and Dongwook et al. suggested 

an evolutionary method and data mining technique for a 

family of aircraft design [9, 10]. They assumed values for the 

requirements needed for the market purposes, which often 

differed from actual market requirements. A more efficient 

design process for aircraft derivative design is needed to 

properly handle the ever changing market demands.  

The aircraft conceptual design utilizes many types of low 

fidelity analysis tools because of their fast computation time. 

However, comparably low accuracy of these analysis tools 

makes an error and it can cause the optimization results 

to violate active constraints. This error can be handled 

as uncertainty. Uncertainty is inherent in any form of 

simulation-based design. Recently, handling uncertainty in 

design optimization has been studied in order to increase 

the probability of optimized solutions. The Reliability Based 

Design Optimization (RBDO) method has been developed to 

enforce probabilistic constraints in optimization problems 

involving uncertainty [11]. The RBDO method is used 

when the information concerning uncertain parameter is 

sufficient to generate accurate input of statistical distribution 

functions. However, the probabilistic method cannot be used 

for reliability analysis when a sufficient amount of uncertain 

data cannot be obtained. The Possibility Based Design 

Optimization (PBDO) method is proposed to overcome this 

disadvantage of the RBDO method [12]. The PBDO method 

uses a fuzzy membership function for uncertain parameter 

modeling and is useful when it has insufficient data for 

producing probability density functions.

In this research, an efficient derivative design process was 

studied to develop aircraft derivatives. Sensitivity analysis and 

an aircraft database were used to identify important design 

variables for objectives and requirements. Furthermore, 

uncertainty of low fidelity analysis tools was considered in 

order to increase the reliability of optimized design results. 

The RBDO and PBDO algorithms were developed to deal 

with uncertainty connected to the traditional low fidelity 

analysis used in aircraft conceptual design. Error terms were 

derived from comparing analysis results of low fidelity tools 

and a database of existing aircraft. 

The proposed derivative design process was applied to 

B737-300 aircraft to design the aircraft that is comparable 

to B737-900. The design variables for derivative design were 

selected from GSA result. The comparison between B737-800 

and different cases with different number of design variables 

was performed to select design variables. The target aircraft 

was optimized using the selected design variables.  

2. Derivative design process

The proposed design process selected design variables 

and obtained derivative designs based on changes in 

requirements. The global sensitivity analysis method 

was implemented to enhance efficiency of the derivative 

design optimization process. The sensitivity analysis result 

demonstrated the most necessary design variables that 

need to be altered to satisfy the new requirements. This 

information was used to reduce the scope of the derivative 

design optimization problem. The reduction of the number 

of design variables increased the computational efficiency of 

the Multidisciplinary Design Optimization (MDO) problem.

When the new requirements have emerged, the designer 

has to analyze these requirements and establishes the design 

problem. From the problem definition, design requirements 

and objectives are specified and qualitative and quantitative 

properties are derived. A fuzzy expert system is used to 

identify the feasible range of design variables in order to 

satisfy the new demand. A database within the aircraft and 

their derivatives is used for the criteria of the inference 

engine in the expert system. The first phase of the process 

specifies the range of design variables to satisfying the new 

demands. The derived boundaries of design variables are 

utilized in the sensitivity analysis for the next phase.

Using the results of the baseline aircraft analysis, sensitivity 

analysis is carried out to identify which design variables are 

important for complying with the new design requirements. 

The sensitivity analysis is used for various applications 

such as ranking the individual parameters in order of their 

relative importance to the objective and assessing changes 

in the response due to parameter variations. The sensitivity 

analysis is implemented to select the important design 

variables for local derivative design changes.

When uncertain parameters are considered, RBDO 

and PBDO methods are employed. RBDO and PBDO are 

the methods to overcome the drawbacks of deterministic 

optimization. They have been developed to improve product 

reliability in industrial engineering. To apply RBDO and 

PBDO with MDO, a distribution of the uncertain parameters 

is developed. Subsequently, RBDO and PBDO are prepared 

to derive the reliable solution when uncertainty from low 

fidelity analysis tools are considered. Fig. 1 shows the 

concept of the proposed design process. 
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2.1 Expert system 

The database is categorized by aircraft type and arranged 

by the parts that are considered to fulfill each additional 

requirement. The database then provides guidance in 

selecting the design variables for local design changes. The 

first phase of the design process specifies the design variables 

relevant to the new demands. The fuzzy expert system is then 

used to establish the feasible region of design variables that 

comply with the new demands. The feasible region for each 

design variable is utilized in the sensitivity analysis for the 

next phase [13, 14]. Fig. 2 shows the process of the expert 

system in this research. 

The expert system consists of the design variables, rules, 

and results. A fuzzy function is applied to design variables for 

input into the expert system and the values are normalized 

between 0 and 1 based on the information in the database. 

2.2  Global sensitivity analysis: extended Fourier 
Amplitude Sensitivity Test (e-FAST) method

The e-FAST method was implemented in this research to 

determine the global sensitivity indices [15]. This method 

is based on the original Fourier Amplitude Sensitivity Test 

(FAST) method. The FAST method is more efficient than 

the Monte Carlo Simulation method when estimating 

value, variance and contribution of individual inputs to the 

sensitivity of the function output [15-18]. 

The e-FAST method computes the main contribution of 

each input to the variance of the output. A sinusoidal function 

of a particular frequency for each input is implemented in 

the sampling procedure in e-FAST method. The frequencies 

assigned to the parameters must meet several criteria so that 

they can be distinguished within a Fourier analysis. Due 

to the symmetry properties of trigonometric functions, the 

sinusoidal function will repeat the same samples, so a re-

sampling scheme is implemented to avoid this inefficiency. 

The e-FAST method is robust at low sample sizes and 

computationally efficient [19]. In this research, the e-FAST 

module was developed using the Visual Fortran language. 

Fig. 3 describes the application of the global sensitivity 

analysis method in this research. 

2.3 Design optimization with uncertainty

This research examined the implementation of the RBDO 

and PBDO methods considering uncertainty from low 

fidelity analysis methods. Low fidelity analysis tools create 
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uncertainty and this can cause the optimization results to 

violate certain constraints. 

2.3.1 Uncertainty 

Figure 4 shows uncertainty sources in a simulation-based 

design process. It is difficult to simulate natural phenomena 

exactly, thus simulation models apply many assumptions 

and simplifications, which generate errors in the model. 

In addition, uncertainty can exist due to uncontrollable 

variations in the external environment or an inadequate 

unified modeling technique. This uncertainty is researched 

and suitable methods are applied to handle different types of 

uncertainty [27-30]. 

2.3.2 Reliability Based Design Optimization (RBDO)

The basic idea of the RBDO is implementing numerical 

optimization algorithms to achieve a reliable optimal 

design while considering the associated uncertainty [11, 21]. 

Active constraints for the deterministic solution may lead 

to a system failure when an optimization is carried out with 

uncertainty. The reliable solution is placed farther inside the 

feasible design region than the deterministic optimization 

result to achieve the targeted reliability level. In the RBDO, 

probability theory is applied to model uncertainty and 

the Probability Density Function (PDF) is used to obtain 

probability distributions of the random variables. The 

probability of failure corresponding to a particular failure 

mode can be obtained or posed as a constraint in the 

optimization problem in order to obtain the reliability target 

[22, 26, and 27]. The RBDO model can generally be defined 

as [11]
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where gi is the ith disciplinary constraint.

2.5 RBDO/PBDO with MDO

Many research of reliability based MDO methods and 

various RBDO techniques was studied [34-40]. In this 

research, the CO method was implemented and combined 
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uncertainty associated with various parameters. Since 

compatibility between disciplines was carried out by the 

objective function of each local optimization, auxiliary 
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and a historical database were compared to derive error terms for uncertainty-based design optimization methods. 

Additionally, RBDO and PBDO results were compared with each other. RBDO and PBDO targeted only active 

constraints, adjusting designs away from the active constraints within the optimization scheme. 

In this work, the B737-300 was selected as the baseline for derivative design since it has many types of derivative. 

The solution procedure is described as below and is shown in Fig. 5. 
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(2) Determine important design variables to achieve new requirements using Global Sensitivity Analysis (GSA).  
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requirements using Global Sensitivity Analysis (GSA). 

(3)  Obtain derivative design optimization cases (various 

numbers of design variables) from the GSA result. 

(4)  Compare optimization cases with the baseline aircraft 

and its known derivative and minimize the difference. 

(5)  Input requirements (modelled after the B737-900 for 

comparison). 

(6)  Implement a GSA method to identify important design 

variables to satisfy the new design requirements.

(7)  Run optimization and solve for the derivative aircraft 

configuration. 

The design requirements shown in Table 1 were compatible 

with the B737-900. The analysis method consisted of four 

discipline groups: weight, performance, aerodynamics and 

stability. 

3.1 Expert system

In this research, a database was developed by collecting 

data from forty different types of civil jet aircraft [47-57]. 

Table 2 shows the design variables and their fuzzy input 

range from the database. The design variables and rules for 

the expert system were extracted from the database. When 

derivatives were considered, these design variables were 

changed to satisfy new requirements [46]. 

The responses shown in Fig. 6 were derived from the 

expert system based on the B737-300 aircraft, which has been 

adopted as a baseline concept for this research. Fig. 6 shows 

the feasible region for new requirements with normalized 

values, and the results show various aircraft trends when the 

design variables were changed. Fig. 6. a) presents the trend 

of the wingspan with respect to the number of passengers of 

B737-800 (dotted line, 0.228) and B737-900 (solid line, 0.238) 

on the target cruise range as 2,000 NM (normalized value is 

0.1). In this figure, the shading region represented the feasible 

space. From this figure, the corresponding required range for 

the wing span was found to be 0.02~0.52 (normalized value). 

Table 1. Design requirements of aircraft derivative design [47]

10 

(3) Obtain derivative design optimization cases (various numbers of design variables) from the GSA result.  

(4) Compare optimization cases with the baseline aircraft and its known derivative and minimize the difference.  

(5) Input requirements (modelled after the B737-900 for comparison).  

(6) Implement a GSA method to identify important design variables to satisfy the new design requirements. 

(7) Run optimization and solve for the derivative aircraft configuration.  

 
The design requirements shown in Table 1 were compatible with the B737-900. The analysis method consisted of 

four discipline groups: weight, performance, aerodynamics and stability.  

 
Table 1. Design requirements of aircraft derivative design [47] 

Requirement Target Value 

Number of Passengers Npax = 189 

Payload Mass Mpl = 45,720 lb 
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Empty Weight We ≤ 93,655 lb 

Approach Speed Va ≤ 140 kts 
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Table 2. Design variables and its range for fuzzy function 

 
Very Low Low Medium High Very High

Wing Span (ft) 85 110 135 160 185 

Wing Aspect Ratio 6.8 7.5 8.1 8.7 9.3 

Wing Taper Ratio 0.15 0.2 0.25 0.29 0.35 

Horizontal Tail Span (ft) 32 41.3 49.8 58.3 66.8 

Vertical Tail Span (ft) 14 18.4 22.8 27.2 31.6 

Length of Fuselage (ft) 93.1 123.7 154.3 184.9 215.5 

Number of Passengers 76 170 265 360 455 

Range (NM) 1,298 2,768 4,238 5,709 7,179 
 

 

The responses shown in Fig. 6 were derived from the expert system based on the B737-300 aircraft, which has 

been adopted as a baseline concept for this research. Fig. 6 shows the feasible region for new requirements with 

normalized values, and the results show various aircraft trends when the design variables were changed. Fig. 6. a) 

presents the trend of the wingspan with respect to the number of passengers of B737-800 (dotted line, 0.228) and 

B737-900 (solid line, 0.238) on the target cruise range as 2,000 NM (normalized value is 0.1). In this figure, the 

shading region represented the feasible space. From this figure, the corresponding required range for the wing span 

was found to be 0.02~0.52 (normalized value). Similarly, Fig. 6. b) ~ 6. f) indicate the trends of other design 

variables with respect to the target cruise range and the number of passengers. Table 3 shows normalized values and 

real values regarding cruise range related trends for B737-800 and B737-900. Table 4 shows the feasible range of 

design variables from the expert system results.   

 
      a) Span of main wing           b) Aspect ratio of main wing 
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Similarly, Fig. 6. b) ~ 6. f ) indicate the trends of other design 

variables with respect to the target cruise range and the 

number of passengers. Table 3 shows normalized values and 

real values regarding cruise range related trends for B737-

800 and B737-900. Table 4 shows the feasible range of design 

variables from the expert system results.  

3.2 Analysis modules

3.2.1 Aerodynamics 

The aerodynamics discipline shows the lift and drag 

characteristics of aircraft based on an estimation method 

of Raymer [52] and Torenbeek [53]. Fig. 7 shows how the 

aerodynamics discipline was handled. 17 design variables 

and 11 parameters were used in this analysis module. The 

lift and drag results derive the thrust required and were 

compared with actual aircraft data. To maintain level flight, 

the net thrust must overcome the drag and it is given in Eq. 

(9) [52, 53]. 

13 

Table 4. Feasible range of design variables  

Design variable 
Normalized value Real value 

Lower 
boundary 

Upper 
boundary 

Lower 
boundary 

Upper 
boundary 

Wing Span (ft) 0.02 0.52 87.83 151.66

Wing Aspect Ratio 0.5 1.0 8.52 10.10

Wing Taper Ratio 0.5 1.0 0.27 0.38

Horizontal Tail Span (ft) 0.02 0.5 33.65 54.05

Vertical Tail Span (ft) 0.02 0.76 14.44 30.66

Length of Fuselage (ft) 0.0 0.52 93.10 172.54
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research of the authors implemented this analysis module and normal distribution of its error has a mean value of 

1.052, variance of 0.019, and standard deviation of 0.137 [41]. Fig. 8 shows a histogram and normal distribution of 
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The thrust value depends on velocity, altitude, 

aerodynamic shape and the weight of the aircraft. The 

previous research of the authors implemented this analysis 

module and normal distribution of its error has a mean 

value of 1.052, variance of 0.019, and standard deviation of 

0.137 [41]. Fig. 8 shows a histogram and normal distribution 

of errors of thrust required. Left axis of the figure represents 

the frequency of error and right axis is frequency of normal 

distribution. The constraints in the aerodynamic discipline 

require the designs to generate a lift force greater than the 

gross weight. As described in the next section, the gross 

weight value was delivered from the weight estimation 

discipline. 

3.2.2 Weight 

The statistical group weight method was implemented 
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 e) Span of horizontal tail             f) Span of vertical tail 

 
Fig. 6. Feasible region of major design variables from the expert system 

Table 3. Normalized value and real value of design variables and requirements 

Design variable 

B737-800 B737-900 

Normalized 
value 

Real value 
Normalized 

value 
Real value 

Wing Span (ft) 0.206 111.52 0.206 111.52

Wing Aspect Ratio 0.566 8.73 0.566 8.73

Wing Taper Ratio 0.628 0.3 0.628 0.3

Horizontal Tail Span (ft) 0.336 47.07 0.336 47.07

Vertical Tail Span (ft) 0.524 25.96 0.524 25.96

Length of Fuselage (ft) 0.207 124.71 0.264 133.40

Requirements   

Number of Passengers 0.228 184 0.238 189

Range (NM) 0.10 2,000 0.10 2,000

Fig. 6. Feasible region of major design variables from the expert system
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for aircraft weight estimation. The statistical relationship 

of the weight and center of gravity for each major aircraft 

component allowed for an estimate of the overall empty 

weight of the aircraft. Many aircraft conceptual design 

publications described this method in detail [52, 53]. 

In general, the statistical equations are functions of the 

geometry and performance requirements of the aircraft 

while considering the payload capacity, cruise speed, and 

altitude. Moreover, the empty weight, the gross weight, the 

center of gravity, and the moments of inertia of the aircraft 

were also calculated. These equations cannot give the exact 

value of aircraft weight, but provided a reasonable estimation 

Table 3. Normalized value and real value of design variables and requirements
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Wing Span (ft) 0.02 0.52 87.83 151.66

Wing Aspect Ratio 0.5 1.0 8.52 10.10

Wing Taper Ratio 0.5 1.0 0.27 0.38

Horizontal Tail Span (ft) 0.02 0.5 33.65 54.05

Vertical Tail Span (ft) 0.02 0.76 14.44 30.66

Length of Fuselage (ft) 0.0 0.52 93.10 172.54

 

3.2 Analysis modules 

3.2.1 Aerodynamics  

 
Fig. 7. The aerodynamics discipline analysis 

 
The aerodynamics discipline shows the lift and drag characteristics of aircraft based on an estimation method of 

Raymer [52] and Torenbeek [53]. Fig. 7 shows how the aerodynamics discipline was handled. 17 design variables 

and 11 parameters were used in this analysis module. The lift and drag results derive the thrust required and were 

compared with actual aircraft data. To maintain level flight, the net thrust must overcome the drag and it is given in 

Eq. (9) [52, 53].  

 (9)

 

The thrust value depends on velocity, altitude, aerodynamic shape and the weight of the aircraft. The previous 

research of the authors implemented this analysis module and normal distribution of its error has a mean value of 

1.052, variance of 0.019, and standard deviation of 0.137 [41]. Fig. 8 shows a histogram and normal distribution of 
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of the group weight. The weight estimation module 

implemented 17 design variables and 7 parameters. Fig. 9 

shows how analysis in the weight discipline was performed. 

The comparison between forty cases of predicted weight 

and database values has been done in the previous study 

[41]. The empty weight error term can be approximated by a 

normal distribution with a mean of 0.872, variance of 23.781 

and a standard deviation of 4.877 [41]. It’s shown in Fig. 10. 

The weight constraints coincide with those of the B737-900. 

The empty weight requirement values are shown in Table 1.

3.2.3 Performance 

The net force acting on the aircraft was computed from 

drag, lift, and available thrust forces over a numerical 

simulation. The range is intimately connected with engine 

performance via the specific fuel consumption. In this 

research, the Breguet range equation was used for jet 

propelled aircraft and it is given in Eq. (10) [52]. 

15 
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where R is the range, ct is the thrust specific fuel consumption 

in a consistent unit, and ρ∞ is the air density. Moreover, SW is 

the wing area, W0 is the gross weight, and W1 is the weight with 

the fuel tanks empty. CL and CD are lift and drag coefficient 

respectively. The cruise range was selected as a performance 

constraint and defined by the performance characteristics of 

the B737-900. Fig. 11 shows the simple block diagram used in 

the performance analysis discipline. 

The forty cases of cruise range prediction results were 

compared in the first author’s previous work and normal 

distribution of its error has a mean value of 1.006 as well 

as a variance and standard deviation of 0.010 and 0.101 

respectively [41]. Errors were represented in the histogram 

and normal distribution functions. It is shown in Fig. 12. 

3.2.4 Stability and control 

The static margin as well as lateral and directional stability 

were considered in the stability and control discipline. 

A static margin of 5% was used as a longitudinal stability 

constraint. Yaw static stability was enforced at a full thrust 

climb scenario with a failed engine. The stability and control 
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errors of thrust required. Left axis of the figure represents the frequency of error and right axis is frequency of normal 

distribution. The constraints in the aerodynamic discipline require the designs to generate a lift force greater than the 

gross weight. As described in the next section, the gross weight value was delivered from the weight estimation 

discipline.  
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discipline defines the system constraints given in Table 

5. However, uncertain parameters were not defined in 

this discipline. Fig. 13 shows how the stability and control 

discipline was handled. 

3.3 Global Sensitivity Analysis (GSA) result

The design variables and their ranges were shown in Table 

6. These values and ranges were defined using the results of 

the expert system. Span length and area of the wing can be 

derived from Eqs (11) and (12) respectively [52, 53]. Span 

length of the wing and empennage of the expert system 

result was implemented as constraints of optimization. 

17 

optimization.  
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B is the span length, CRoot is the root chord length, TR is the taper ratio, AR is the aspect ratio, and S is the wing 

area.  

Table 6. Range of design variables 

Design Variable Lower boundary Upper boundary 

Wing geometry 

ARW 8.52 10.10
TRW 0.27 0.38

CRoot_W (ft) 15.0 26.0
ΛLE_W (deg) 20.0 30.0

ScsW (ft2) 230.0 350.0

Horizontal tail 
geometry 

ARH 3.8 6.0
TRH 0.2 0.3

CRoot_H (ft) 10.5 28.5
ΛLE_H (deg) 30.0 40.0

ScsH (ft2) 68.0 85.0

Vertical tail 
geometry 

ARV 1.6 2.3
TRV 0.2 0.35

CRoot_V (ft) 15.0 20.0
ΛLE_V (deg) 35.0 45.0

ScsV (ft2) 53.0 70.0

Fuselage geometry 
Lf (ft) 93.10 172.54
LT (ft) 38.0 64.0

Engine 
T (lbf) 17,000.0 30,000.0
Wf (lb) 18,000.0 45,100.0

 
Using the ranges of each design variable from Table 6, the e-FAST method was performed as a GSA for new 

requirements such as number of passengers, empty weight and cruise range. Table 7 shows the sensitivity indices and 

rankings for objective. Increasing number of passengers was new requirement for derivative design so fuselage 

length was increased. Moreover, design variables which related to fuselage length, weight, and cruise range had 

higher rank among the whole design variables as shown in Table 7. This result has similar trend of previous 

parametric studies [54, 55]. 
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respectively [41]. Errors were represented in the histogram and normal distribution functions. It is shown in Fig. 12.  
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B is the span length, CRoot is the root chord length, TR 

is the taper ratio, AR is the aspect ratio, and S is the wing 

area. 

Using the ranges of each design variable from Table 

6, the e-FAST method was performed as a GSA for new 

requirements such as number of passengers, empty weight 

and cruise range. Table 7 shows the sensitivity indices and 

rankings for objective. Increasing number of passengers 

was new requirement for derivative design so fuselage 

length was increased. Moreover, design variables which 

related to fuselage length, weight, and cruise range had 

higher rank among the whole design variables as shown in 

Table 7. This result has similar trend of previous parametric 

studies [54, 55].

3.4 Optimum design result

The important design variables (based on their sensitivity 

rank) were selected for derivative design. To compare the 

results of the design variable selection, different numbers 

of design variables were used. Three cases with a different 

number of design variables were analyzed and compared 

with the B737-800 to select design variables for derivative 

design. 

Table 8 shows a comparison between B737-800 data 

and four cases. Case 2 shows similar performance 

characteristics while using a reduced number of design 

variables. In addition, Table 8 shows the computational 

CPU time for each case. CPU time was computed from the 

intrinsic subroutine of the Fortran compiler as Eq. (13) 

[56]. In this paper, a laptop with an AMD PhenomTM II P820 

Triple-Core Processor with 4 GB RAM memory was used 

to perform the optimization problems. Fig. 14 shows the 

aircraft configuration of each case. Each case had different 

number of design variables and had different main wing 

and empennage geometries. 

20 

 (13)

 
From these results, 16 design variables from Case 2 were used for aircraft derivative designs that were comparable 

with B737-900 performance. The system objective function was defined to maximize cruise range. In this problem, 

the number of passengers was fixed as the target aircraft. The error distributions from low fidelity analysis results of 

each discipline were simulated while incorporating the uncertainty. This uncertainty in each discipline was 

considered in the CO with RBDO and PBDO algorithms. Four disciplines, described in the previous section, were 

considered in the CO method. For RBDO and PBDO formulation, the constraints satisfied a normal distribution and 

used a fuzzy membership function that was defined using error estimation. RBDO and PBDO methods had a target 

reliability level of 99.87% probability. In Table 9, the performance of B737-900 was compared with the results of 

deterministic optimization, RBDO, and PBDO with the selected design variables. These results showed small errors. 

Resultant configurations were shown in Fig. 15.  

 

Table 9. Comparison of design results (B737-900) 
Design Variable B737-900 CO  RBDO PBDO 

Wing geometry 

ARW 8.73 8.92 8.86 8.78
TRW 0.3 0.3 0.3 0.3

CRoot_W (ft) 17.29 20.0 20.0 20.0
ΛLE_W (deg) 25.02 25.02 25.0 25.0

ScsW (ft2) 259.95 264.80 262.65 261.33

Horizontal tail 
geometry 

ARH 5.88 5.6 5.7 5.7
TRH 0.226 - - -

CRoot_H (ft) 15.85 15.86 15.86 15.85
ΛLE_H (deg) 34 - - -

ScsH (ft2) 80.95 80.94 80.95 80.95

Vertical tail 
geometry 

ARV 2.08 2.12 2.10 2.10
TRV 0.23 0.25 0.24 0.23

CRoot_V (ft) 18.99 18.93 18.96 18.98
ΛLE_V (deg) 40 40 40 40

ScsV (ft2) 67.08 - - -
Fuselage 
geometry 

Lf (ft) 133.40 134.01 134.01 134.01
LT (ft) 60.99 58.53 58.53 58.53

Engine 
T (lbf) 27,300 27,300 27,300 27,300
Wf (lb) 25,700 25,700 25,700 25,700

Cruise range R (NM) 2,060 2,170 2,127 2,097
Improvement  (%) - 5.34% 3.25% 1.80%

CPU time (sec) - 15.37 16.02 15.69

(13)

From these results, 16 design variables from Case 

Table 7. Global sensitivity analysis result

18 

Table 7. Global sensitivity analysis result 

Design Variable 1st order Total Rank 

Wing geometry 

ARW 0.07310 0.13804 3

TRW 0.07371 0.14196 2

CRoot_W 0.06451 0.12477 5

ΛLE_W 0.04946 0.09555 13

ScsW 0.03859 0.07568 15

Horizontal tail 
geometry 

ARH 0.04920 0.09591 12

TRH 0.01574 0.03121 19

CRoot_H 0.05017 0.09764 11

ΛLE_H 0.02170 0.04286 18

ScsH 0.04428 0.08635 14

Vertical tail 
geometry 

ARV 0.06173 0.11698 9

TRV 0.06972 0.13113 4

CRoot_V 0.05493 0.10654 10

ΛLE_V 0.03808 0.07414 16

ScsV 0.02213 0.04376 17

Fuselage geometry 
Lf 0.06417 0.12417 6

LT 0.08313 0.15846 1

Engine 
T 0.06314 0.12210  7

Wf 0.06252 0.11698 8
 
 
 

3.4 Optimum design result 

The important design variables (based on their sensitivity rank) were selected for derivative design. To compare 

the results of the design variable selection, different numbers of design variables were used. Three cases with a 

different number of design variables were analyzed and compared with the B737-800 to select design variables for 

derivative design.  
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Table 8. Comparison of design results (B737-800)

19 

Table 8. Comparison of design results (B737-800) 
Design Variable B737-800 Case 1 (19) Case 2 (16) Case 3 (13) Case 4 (9) 

Wing geometry 

ARW 8.73 8.73 8.73 8.74 8.82
TRW 0.3 0.3 0.3 0.3 0.3

CRoot_W (ft) 17.29 20.0 20.0 20.0 21.8
ΛLE_W (deg) 25.02 25.02 25.0 25.01 -

ScsW (ft2) 259.95 280.0 280.0 - -

Horizontal tail 
geometry 

ARH 5.88 5.6 5.0 5.0 -
TRH 0.226 0.228 - - -
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4. Conclusion

In this research, an enhanced derivative design 

optimization process was proposed. The expert system as 

well as a global sensitivity analysis method were applied 

to select the design variables for the derivative design.

A reduced number of design variables was helpful for 

decreasing the redesign cost for the developing derivatives 

of a baseline product. Furthermore, the RBDO and PBDO 

methods were proposed to obtain reliable results while 

considering the associated uncertainty. 

The proposed derivative design process was implemented 

in the civil jet aircraft derivative design problem. It 

performed to compare the actual B737-800 characteristics 

with the derivative design result that implemented the 

baseline of B737-300. The number of design variables was 

selected from this comparing result which shows small error. 

Then B737-900 was defined as the comparable target of the 

derivative of B737-300. The number of design variables was 

fixed as previous case study with B737-800. Additionally, 

uncertainty considered in the analysis methods depended 

on the statistical or the simplified analytical equations. 

The error terms were defined as the ratio of predicted 

performance to that of the observed performance taken from 

the aircraft database. The deterministic optimization result 

had an improvement compared to B737-900, but the design 

result laid on near the constraint boundaries. Enforcing 

target reliability indices moved the optimum result into the

Table 9. Comparison of design results (B737-900)
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From these results, 16 design variables from Case 2 were used for aircraft derivative designs that were comparable 

with B737-900 performance. The system objective function was defined to maximize cruise range. In this problem, 

the number of passengers was fixed as the target aircraft. The error distributions from low fidelity analysis results of

each discipline were simulated while incorporating the uncertainty. This uncertainty in each discipline was

considered in the CO with RBDO and PBDO algorithms. Four disciplines, described in the previous section, were

considered in the CO method. For RBDO and PBDO formulation, the constraints satisfied a normal distribution and

used a fuzzy membership function that was defined using error estimation. RBDO and PBDO methods had a target

reliability level of 99.87% probability. In Table 9, the performance of B737-900 was compared with the results of

deterministic optimization, RBDO, and PBDO with the selected design variables. These results showed small errors.

Resultant configurations were shown in Fig. 15. 

Table 9. Comparison of design results (B737-900)
Design Variable B737-900 CO RBDO PBDO 

Wing geometry 

ARW 8.73 8.92 8.86 8.78
TRW 0.3 0.3 0.3 0.3

CRoot_W (ft) 17.29 20.0 20.0 20.0
ΛLE_W (deg) 25.02 25.02 25.0 25.0

ScsW (ft2) 259.95 264.80 262.65 261.33

Horizontal tail 
geometry 

ARH 5.88 5.6 5.7 5.7
TRH 0.226 - - -

CRoot_H (ft) 15.85 15.86 15.86 15.85
ΛLE_H (deg) 34 - - -

ScsH (ft2) 80.95 80.94 80.95 80.95

Vertical tail 
geometry 

ARV 2.08 2.12 2.10 2.10
TRV 0.23 0.25 0.24 0.23

CRoot_V (ft) 18.99 18.93 18.96 18.98
ΛLE_V (deg) 40 40 40 40

ScsV (ft2) 67.08 - - -
Fuselage 
geometry 

Lf (ft) 133.40 134.01 134.01 134.01
LT (ft) 60.99 58.53 58.53 58.53

Engine 
T (lbf) 27,300 27,300 27,300 27,300
Wf (lb) 25,700 25,700 25,700 25,700

Cruise range R (NM) 2,060 2,170 2,127 2,097
Improvement  (%) - 5.34% 3.25% 1.80%

CPU time (sec) - 15.37 16.02 15.69
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a) B737-900 b) CO result c) RBDO result d) PBDO result
Fig. 15. Comparison of aircraft design result with B737-900

RBDO and PBDO results indicated smaller cruise range than the deterministic optimization result. These results 

fall in the feasible region when constraints were adjusted to consider uncertainty while satisfying the target reliability

index level. The amount of information for uncertainty from each discipline was not the same as described in the 

previous section. Therefore, RBDO result cannot guarantee accuracy in the optimization result since its accuracy

depends on the accuracy of the uncertainty distribution even though it showed the better cruise range than PBDO 

result. 

4. Conclusion

In this research, an enhanced derivative design optimization process was proposed. The expert system as well as a 

global sensitivity analysis method were applied to select the design variables for the derivative design. A reduced

number of design variables was helpful for decreasing the redesign cost for the developing derivatives of a baseline

product. Furthermore, the RBDO and PBDO methods were proposed to obtain reliable results while considering the 

associated uncertainty. 

The proposed derivative design process was implemented in the civil jet aircraft derivative design problem. It 

performed to compare the actual B737-800 characteristics with the derivative design result that implemented the 

baseline of B737-300. The number of design variables was selected from this comparing result which shows small 

error. Then B737-900 was defined as the comparable target of the derivative of B737-300. The number of design

variables was fixed as previous case study with B737-800. Additionally, uncertainty considered in the analysis

methods depended on the statistical or the simplified analytical equations. The error terms were defined as the ratio of

predicted performance to that of the observed performance taken from the aircraft database. The deterministic

optimization result had an improvement compared to B737-900, but the design result laid on near the constraint 

boundaries. Enforcing target reliability indices moved the optimum result into the feasible region of the design space 

by implementing the RBDO and PBDO. The accuracy of the RBDO result was not guaranteed from this result since

the aerodynamic analysis module had the relatively small amount of data on the uncertain parameter. On the other 
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feasible region of the design space by implementing the 

RBDO and PBDO. The accuracy of the RBDO result was not 

guaranteed from this result since the aerodynamic analysis 

module had the relatively small amount of data on the 

uncertain parameter. On the other hand, the PBDO result 

can guarantee target probability even though the analysis 

module had an insufficient amount of data for uncertain 

parameter. If the aerodynamic analysis module increases 

the data of its uncertain parameter, the accuracy of the 

RBDO result will be increased too. According to the results 

of this paper, when a designer has sufficient information 

of uncertain parameters, the RBDO gives reliable results. 

However, when limited information is used, the PBDO is 

superior. In addition, the proposed derivative design process 

reduced the computation time by implementing of logically 

reduced number of design variables.  

The proposed process is applicable to other types of 

engineering products and may save considerable amount 

of time and effort for the derivative design. The sensitivity 

analysis result can be used for not only approximation model 

and the low fidelity analysis tools, but also the high fidelity 

analysis tools such as FEM and CFD. The proposed method 

as RBDO with CO and PBDO with CO are useful to consider 

the error of the approximation models or the low fidelity 

analysis tools. 
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