
Copyright ⓒ The Korean Society for Aeronautical & Space Sciences
Received: February  2, 2015   Revised: March 19, 2015   Accepted: March 23, 2015

102 http://ijass.org pISSN: 2093-274x eISSN: 2093-2480

Paper
Int’l J. of Aeronautical & Space Sci. 16(1), 102–109 (2015)
DOI: http://dx.doi.org/10.5139/IJASS.2015.16.1.102 

Path Tracking Controller Design and Simulation for Korean Lunar 
Lander Demonstrator

Sungwook Yang*, Jongjun Son** and Sangchul Lee***
Korea Aerospace University, Goyang 412-791, Korea

Abstract

In Korea, Lunar exploration program has been prepared with the aim of launching in the 2020's. As a part of it, a lunar lander 

demonstrator was developed, which was the model for verifying the system such as structure, propulsion, and control system, 

before launching into the deep space. This paper deals with the path tracking performance of the lunar lander demonstrator 

with respect to the thruster controller based on Pulse Width Pulse Frequency Modulator (PWPFM) and Pulse Width 

Modulator (PWM). First, we derived equations of motion, considering the allocation of the thrusters, and designed the path 

tracking controller based on Euler angle. The signal generated from the path tracking controller is continuous, so PWPFM 

and PWM modulator are adopted for generating ON/OFF signal. Finally, MATLAB simulation is performed for evaluating 

the path tracking ability. We compared the path tracking performances of PWPFM and PWM based thrust controller, using 

performance measures such as the total impulse and the position error with respect to the desired path.
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1. Introduction

In Korea, Lunar exploration program has been prepared 

with the aim of launching in the 2020's. As a part of it, a 

lunar lander demonstrator has been developed, which 

is the model for verifying the system such as structure, 

propulsion, and control system, before launching into the 

deep space. After verifying the system, the demonstrator 

will be evaluated by flight test including ascent, horizontal 

movement, descent, and touchdown phase. The flight test 

scenario was defined by considering the  final descent phase 

and touchdown phase of actual lunar landing mission [1]. 

The performance index of the control system would be final 

velocity, path tracking ability, etc. Therefore, precise model 

and controller are necessary [2].

Typical thruster control systems are thrust vector control 

(TVC) systems and reaction control system(RCS), which are 

commonly used for many launch vehicles worldwide. Masten 

space system developed a demonstrator to which the TVC 

was applied, and NASA is developing the Warm Gas Test 

Article(WGTA) by adopting the RCS. [3-4]

The signal generated from the controller is continuous, 

so modulation is necessary for generating ON /OFF signal. 

In general, bang-bang control, Schmitt trigger control, pulse 

width modulator (PWM), and pulse width pulse frequency 

modulator (PWPFM) are used for ON /OFF control. The 

PWM can be used in a quasilinear mode, by modulating 

the width of the reaction pulse proportionally to the level 

of the commanded torque input to the controller. A related 

technique is based on the well-known Schmidt trigger, which 

implements a PWPFM where the distance between the pulses 

is also modulated [5].

In this paper, the dynamic equations for the motion of 

the lunar lander demonstrator are derived, considering the 

allocation of thrusters. Next, we designed the path tracking 

controller based on Euler angle. In order to generate ON/OFF 

signal, PWPFM and PWM modulators were adopted. Finally, 

computer simulations were performed for evaluating the path 

tracking ability and comparing the path tracking performance 

between PWPFM and PWM based thruster controller. For the 
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performance measure, the total impulse [6] and the position 

error, with respect to the desired path, were used. 

2. Dynamic Modelling

X, Y, Z is an inertial frame, and xb, yb, zb is a frame which is 

attached at the center of mass as shown in Fig. 1.

2.1 Consideration of Thrusters Allocation

The demonstrator has main thrusters, which can be used 

for altitude control, and reaction thrusters, which can be 

used for attitude control. The arrangement of the thrusters 

is illustrated in Fig. 2; the force generated from i th thruster is
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The torque generated from total thrusters is as follows.

 

Fig. 2. Allocation and Direction of Thrusters 

The torque generated from total 
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2.2 Equations of Motion 

Using Newton-Euler equations, we 

can represent the dynamics of the 

demonstrator as follows. 

. .b b m t r t totalI I    ω ω ω T T T  (3) 

. .( ) m t r t g totalm m     V ω V F F F F  (4) 

�� � � (5) 

where �� � ��� �� ����  denotes the 

angular velocity vector with respect to the 

body frame, �  denotes the vector cross 

product, bI  is the inertia matrix of  

demonstrator, ���� � ������ ����� ������� 
is torque generated by main thrusters, 

���� � ������ ����� �������  is torque 

generated by reaction thrusters, m  is total 

mass of the demonstrator, �� �
���� ��� ����� is linear velocity with respect 

to body frame, ���� � ����� 0 0��  is the 

total force generated by main thrusters, 

���� � ������ ����� ������� is the total force 

generated by reaction thrusters, and 

�� � ���� ��� �����  is the gravity force 

with respect to body frame, � � �� � ��� 
is Euler angle. 

2.3 Thruster Modeling 

Simple thruster models assume a 

thrust profile as a square pulse; however, 

the response can be different. So, suitable 

approximations may be used to increase 

robustness and form a premise for making 

more precise maneuvers. In this paper, the 

general dynamic model is used to be 

realistic, as follows. [5] 

Tu u v   (5) 

where � is positive constant, � is an actual 

control input, and �  is desired actuator 

input. 

3. Design Controller 

The demonstrator is assumed as an 

under actuated platform, so it can track the 

path by changing the attitude. 

3.1 Euler angle based controller 
The demonstrator model given in the 

previous section is a complicated, non-

linear system. Equations (3) and (4) can be 

simplified under the following assumption. 

[7] 
① ������ � � � ����  
② ������ � � � �����  
③ ���� � ���� � ���� 
④ The angular displacement of � and 

� are small. 

This leads to the following dynamical 

equations based on Euler angle: 
��� � �������������� � �� (6) 

��� � ������������� � ������������� (7) 

��� � ��������� � ����������������� (8) 

where �� �� � are the 1-2-3 set of Euler 

angles. �� , �� , ��  are the acceleration with 

respect to the inertial frame. 

The altitude can be controlled by 

simple PD controllers, using Eq. (6). 

�� � ��� � ������ � �� � ������� � ���
�������� � (9) 

where �������� � 0. 
�  can be controlled by simple PD 

controllers, using as follows; 

�� � ������ � �� � ������� � �� � (10) 

y  axis is related to the  �  by Eq. 

(4). We designed a proportional derivative 

(PD) controller to control the � in order to 

control y  motion. From Eq. (7), setting 

� � � � 0  and ���� � � gives 

�� � ����������� � �� � ������ � �� �� (11) 

From Eq. (11), the command torque 

�� is as follows; 

�� � ������ � �� � ������� � ��� (12) 

� axis is related to the  �  by Eq. (8). 

We designed a proportional derivative(PD) 

(2)

2.2 Equations of Motion

Using Newton-Euler equations, we can represent the 

dynamics of the demonstrator as follows.
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where ωb=[ωx, ωy, ωz)]T denotes the angular velocity vector 

with respect to the body frame, × denotes the vector 

cross product, Ib is the inertia matrix of demonstrator,  

Tm.t=[τm.tx
, τm.ty

, τm.tz
]T is torque generated by main thrusters, 

Tr.t=[τr.tx
, τr.ty

, τr.tz
]T is torque generated by reaction thrusters, 

m is total mass of the demonstrator, Vb=
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② Ttotal≫ω×(Ibω)

③ Fm.t+Fr.t≅Fm.t
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This leads to the following dynamical equations based on 
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where ϕ, θ, ψ are the 1-2-3 set of Euler angles. 
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using Eq. (6).
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The torque generated from total 

thrusters is as follows. 
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2.2 Equations of Motion 

Using Newton-Euler equations, we 

can represent the dynamics of the 

demonstrator as follows. 
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is Euler angle. 

2.3 Thruster Modeling 

Simple thruster models assume a 

thrust profile as a square pulse; however, 

the response can be different. So, suitable 

approximations may be used to increase 

robustness and form a premise for making 

more precise maneuvers. In this paper, the 

general dynamic model is used to be 

realistic, as follows. [5] 
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where � is positive constant, � is an actual 

control input, and �  is desired actuator 

input. 

3. Design Controller 

The demonstrator is assumed as an 

under actuated platform, so it can track the 

path by changing the attitude. 

3.1 Euler angle based controller 
The demonstrator model given in the 

previous section is a complicated, non-

linear system. Equations (3) and (4) can be 

simplified under the following assumption. 
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In Eqs. (9)~(14), �� and ��	 are the 
proportional and the derivative gain, 
respectively. Subscript � means the desired 
state. 

3.2 PWPFM 
In the PWPFM, not only the 

frequency of the pulse but also the distance 

between the pulses are modulated. Its basic 

structure is shown in Fig. 3. The modulator 

includes a Schmitt trigger, a first-order-

filter, and a negative feedback loop [5,9,10].  
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The parameters of interest for 
designing the PWPFM are as follows: the 
gain mK  and the time constant m of the 
first order filter, the Schmitt trigger 
parameters onU  , offU  . The static 
characteristics of the continuous time 

modulator for a constant input R  are 
presented in Table 1[5,9]. 

�� is the output of Schmitt trigger, 
and ��� and ���� are the upper  and lower 
boundary value, respectively. In PWPFM, 
���  and ����  are determined by the on-
time of pulse[5,9]. 
3.3 PWM 

The basic structure of PWM is 

shown in Fig. 4. When a positive input to 

the PWM is greater than a carrier signal, 

the PWM output is ON. If the input falls 

below a carrier signal, the PWM output is 

OFF. As shown in Fig. 5, the PWM converts 

an analog signal into an ON/OFF signal. 

 

Fig. 4. PWM 

 

Fig. 5. Time History of PWM 

The parameters of interest for 

designing the PWM are as follows: the 

amplitude of carrier signal  ���� , the 

frequency of carrier signal  ���� . The on-

time of the PWM output is determined by 

���� and ����	. The static characteristics of 

the PWM are presented in Table 2. ���� is 

the control signal from the path tracking 

controller in Table 2. [11] 
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the PWM output is ON. If the input falls below a carrier 

signal, the PWM output is OFF. As shown in Fig. 5, the PWM 

converts an analog signal into an ON/OFF signal.

The parameters of interest for designing the PWM are as 

follows: the amplitude of carrier signal Acar, the frequency 

of carrier signal fcar. The on-time of the PWM output is 

determined by Acar and fcar. The static characteristics of the 

PWM are presented in Table 2. Acom is the control signal from 

the path tracking controller in Table 2 [11].

4. Simulation

4.1 Mass Properties and Allocation of Thrusters

Mass properties of the demonstrator are set as follows. 
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Five main thrusters for altitude control and 8 reaction 

thrusters for attitude control are applied on the demonstrator, 

as shown in Fig. 6. A main thruster and a reaction thruster 

can generate the 200N and 2.96N thrust, respectively. For 

generating the torque, reaction thrusters can be chosen 

according to the reaction thruster selection in Table 3.

4.2 Scenario

The scenario for the simulation consists of 4 phases: 

ascent, horizontal movement, descent, and touchdown. Fig. 

7 represent the desired path of lunar lander demonstrator. 

The flight time of the simulation is set as 40 seconds [12]. The 

demonstrator ascends up to 20 m altitude for 15 seconds and 

moves horizontally by changing the attitude. After that, the 

demonstrator descends and hovers at the level of 0.3m. When 

the following three conditions are satisfied simultaneously, 

all of the thrusters are cut off.

① Altitude: +0.33m ≥ Alt ≥ +0.27m

② Altitude Rate: ≥+0 m/s

③ Simulation Time: >35 sec

4.3 Simulation Result

The designed parameters of PWPFM and PWM are shown 

in Table 5. 

Figures 8-15 are the results of the translation motion, 

and Figs. 16-23 are the results of the rotational motion. Figs. 

24-29 represent force and torque generated from thrusters, 

respectively. Figs. 30 and 31 represent the three dimensional 

trajectory of the lunar lander demonstrator. The comparison 

results of the 3-dimensional position error are shown in Fig. 

32. Fis. 33 represents the area of position error with respect 

to time. As shown in Fig. 33, the error area of PWM based 

thruster controller is more than those of PWPFM based 

thruster controller by 21.01m∙s. Figs. 34 and 35 represent the 

total impulse with respect to the thruster. As shown in Figs. 34, 

PWPFM based main thruster controller use more total impulse 

than PWM based thruster controller by  155 N∙s(3.1%). And 
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4 Touchdown Engine cut off
conditions (0, 10, -10) 
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PWM based reaction thruster controller use more total impulse 

than PWPFM based thruster controller by 115.25 N∙s (77.1%) as 

shown in Fig. 35. In comparison with the total impulse of both 

main and reaction thruster, PWPFM based controller use more 

total impulse than PWM based controller by 39.8 N∙s. The final 

velocity and the final position error are shown in Table 6.
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Figures 8-15 are the results of the 

translation motion, and Figs. 16-23 are the 

results of the rotational motion. Figs. 24-

29 represent force and torque generated 

from thrusters, respectively. Figs. 30 and 

31 represent the three dimensional 

trajectory of the lunar lander demonstrator. 

The comparison results of the 3-

dimensional position error are shown in Fig. 

32. Fis. 33 represents the area of position 

error with respect to time. As shown in Fig. 

33, the error area of PWM based thruster 

controller is more than those of PWPFM 

based thruster controller by 21.01m∙s. Figs. 

34 and 35 represent the total impulse with 

respect to the thruster. As shown in Figs. 

34, PWPFM based main thruster controller 

use more total impulse than PWM based 

thruster controller by  155 N∙s(3.1%). And 

PWM based reaction thruster controller use 

more total impulse than PWPFM based 

thruster controller by 115.25 N∙s (77.1%) 

as shown in Fig. 35. In comparison with the 

total impulse of both main and reaction 

thruster, PWPFM based controller use 

more total impulse than PWM based 

controller by 39.8 N∙s. The final velocity 

and the final position error are shown in 

Table 6. 
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Thuster Control 
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X : -2.7068 
Y : 0.1065 
Z : -0.0190 

X : 0.3810 
Y : 0.0643 
Z : -0.1137 

Final Position Error 
(m) 

X : -0.3090 
Y : 1.2929 
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Fig. 8. ��Total External Force (PWPFM)
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Fig. 9. �� Total External Force (PWM)
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Fig. 10. �� Inertial Acceleration (PWPFM)

 

 
Fig. 11. Inertial Acceleration (PWM) 
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Fig. 16. Total External Torque (PWPFM) 
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Fig. 18. Angular Acceleration (PWPFM) 
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Fig. 11. �� Inertial Acceleration (PWM)
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Fig. 12. Inertial Velocity (PWPFM) 
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Fig. 14. Inertial Position (PWPFM) 

 
Fig. 15. Inertial Position (PWM) 

 
Fig. 16. Total External Torque (PWPFM) 
 

 
Fig. 17. Total External Torque (PWM) 

 
Fig. 18. Angular Acceleration (PWPFM) 
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Fig. 12. �� Inertial Velocity (PWPFM)
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Fig. 14. Inertial Position (PWPFM) 
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Fig. 16. Total External Torque (PWPFM) 
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Fig. 18. Angular Acceleration (PWPFM) 
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Fig. 13. �� Inertial Velocity (PWM)
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Fig. 14. Inertial Position (PWPFM) 
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Fig. 16. Total External Torque (PWPFM) 
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Fig. 18. Angular Acceleration (PWPFM) 
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Fig. 15. ��Inertial Position (PWM)
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Fig. 16.  Total External Torque (PWPFM)
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Fig. 19. ��Angular Acceleration (PWM)
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Fig. 20. ��Angular Rate (PWPFM)
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Fig. 21. ��Angular Rate (PWM)
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Fig. 22. ��Euler Angle (PWPFM)
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Fig. 34. Total Impulse of Main Thruster 

0 5 10 15 20 25 30 35 40
-1

0

1

T X [N
m

]

0 5 10 15 20 25 30 35 40
-10

0

10

T Y [N
m

]

0 5 10 15 20 25 30 35 40
-10

0

10

T Z [N
m

]

Time [sec]

0 5 10 15 20 25 30 35
-2

0

2

T X [N
m

]

0 5 10 15 20 25 30 35
-5

0

5

T Y [N
m

]

0 5 10 15 20 25 30 35
-5

0

5

T Z [N
m

]

Time [sec]

0 5 10 15 20 25 30 35 40
-2

0

2

T X [N
m

]

0 5 10 15 20 25 30 35 40
-5

0

5

T Y [N
m

]

0 5 10 15 20 25 30 35 40
-5

0

5

T Z [N
m

]

Time [sec]

-50

0

50

-50

0

50
0

5

10

15

20

25

X [m]Y [m]

Z 
[m

]

Desired
Actual

-50

0

50

-50

0

50
0

5

10

15

20

25

X [m]Y [m]

Z 
[m

]

Desired
Actual

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

Time [sec]

E
rro

r [
m

]

PWPFM
PWM

0 5 10 15 20 25 30 35 40
0

10

20

30

40

50

60

70

80

Time [sec]

E
rro

r A
re

a 
[m

s]

PWPFM
PWM

0 5 10 15 20 25 30 35 40
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time [sec]

To
ta

l I
m

pu
ls

e 
[N

s]

PWPFM
PWM

Fig. 27. ��Torque Generated by MT (PWM)
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Fig. 28. ��Torque Generated by RT  (PWPFM)
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Fig. 29. ��Torque Generated by RT (PWM)
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Fig. 30. ��3D Trajectory of the Demonstrator (PWPFM)
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Fig. 31. 3D Trajectory of the Demonstrator (PWM)
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5. Conclusion

In this paper, a path tracking controller based on thrusters 

for the lunar lander demonstrator was designed. For this, 

we first derived equations of motion by considering the 

allocation of thrusters. With the equations of motion, we 

designed the path tracking controller based on Euler angle. 

The signal generated from the controllers is continuous, 

so PWPFM and PWM are applied for generating ON/OFF 

signal. We constructed a 4-phase scenario including ascent, 

horizontal movement, descent, and touchdown. MATLAB 

simulations were performed for evaluating the path tracking 

ability and final landing velocity. The result shows that the 

proposed controllers of the lunar lander demonstrator can 

track the desired path well and land on the ground softly. 

Also, the result shows that PWPFM based thruster controller 

is slightly better than PWM based thruster controller, from 

the perspective of path tracking performance, while PWM 

based thruster controller use less total impulse than PWPFM 

based controller.
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