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Abstract

This paper aims to address the intelligent active vibration control problem of a flexible rectangular plate vibration involving 

parameter variation and external disturbance. An adaptive sliding mode (ASM) MIMO control strategy and smart piezoelectric 

materials are proposed as a solution, where the controller design can deal with problems of an external disturbance and 

parametric uncertainty in system. Compared with the current ‘classical’ control design, the proposed ASM MIMO control 

strategy design has two advantages. First, unlike existing classical control algorithms, where only low intelligence of the 

vibration control system is achieved, this paper shows that high intelligent of the vibration control system can be realized by 

the ASM MIMO control strategy and smart piezoelectric materials. Second, the system performance is improved due to two 

additional terms obtained in the active vibration control system. Detailed design principle and rigorous stability analysis are 

provided. Finally, experiments and simulations were used to verify the effectiveness of the proposed strategy using a hardware 

prototype based on NI instruments, a MATLAB/SIMULINK platform, and smart piezoelectric materials. 
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1. Introduction

Typically, modern spacecraft include some flexible 

structures, such as solar arrays and antennas. Attitude 

maneuvers are prone to excite vibrations in these flexible 

structures because of their typically low damping. Such 

vibrations have characteristics of large amplitudes and long 

periods of time. Moreover, the coupling between elastic and 

rigid-body motions can be aroused during the orientation of 

a spacecraft. As a result, the issues of dynamic modeling and 

vibration control of flexible spacecraft structures have been 

studied intensively recently. 

Literature reviews on active vibration control of flexible 

structures have been presented in several investigations. The 

development of active vibration control experienced two 

stages: ‘classical’ active vibration control and intelligent active 

vibration control.  

With respect to classical active vibration control, Dixiong 

Yang (1) revealed the essential connections among several 

popular chaos feedback control approaches, investigated the 

intrinsic relationship between the stability transformation 

method and speed feedback control method for controlling 

the equilibrium of continuous autonomous systems. Danfeng 

(2) applied a harmonic balance method to investigate the 

amplitude of the self-excited vibration, and designed a 

PI controller to control the amplitude of the vibration at a 
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given level. The effectiveness of this method showed good 

prospects for its application to commercial maglev systems. 

Bin (3) proposed a non linear dynamic modeling method for 

a rigid-flexible coupling satellite antenna system composed 

of laminated shell reflector undergoing a large overall 

motion, and used a PD with a vibration force feedback 

control strategy to eliminate the system vibration. Previdi 

(4) presented a full analysis and the complete development 

of a system for mechanical vibration reduction in a 

kitchen hood using piezoelectric actuators, and provided a 

minimum variance (MV) controller to get the theoretically 

‘best’ performance in terms of noise reduction. Xiuting 

(5) investigated the potential beneficial performance of 

a quasi-zero-stiffness vibration isolator (QZS-VI) with a 

simple linear time-delayed active control strategy, provide 

a time-delayed active control which can not only further 

strengthen the robustness of the system in stability, but also 

noticeably improved system transmissibility performance 

both in force and base excitations and obviously decrease 

the settling time of system transient response subject to 

an impact load. Dafang (6) investigated active vibration 

control of a flexible beam with piezoelectric pieces on the 

surface using an independent modal space control method, 

which was able to control the first three modes of the beam 

independently. Cazzulani (7) proposed exploiting the 

measurements of Fiber Bragg Grating sensors as feedback 

for active vibration control applications. The experimental 

tests confirmed that smart structures with embedded FBG 

sensors could be profitably designed to suppress vibrations. 

Hu (8) presented a new and effective approach for vibration 

suppression of large space structures, and developed the 

equations of motion of a flexible structure with a set of 

arbitrarily distributed CMGs. Xianglong (9) presented an 

analytical study of active structural acoustic control of an 

elastic cylindrical shell coupled to a two-stage vibration 

isolation system, and developed an analytical active-

passive model to attenuate sound radiating from the base 

shell structure, which consisted of a rigid-body machine, 

an intermediate rigid mass, and a supporting cylindrical 

shell, all connected by a combination of passive and active 

isolators. 

Regarding intelligent active vibration control research, 

using robust control theory, Zhang (10) investigated the 

robust finite frequency H∞ passive fault-tolerant static-

output-feedback controller design problem, used the 

finite frequency H∞ control to attenuate the effect from the 

external disturbance to the controlled output. Zhicheng 

(11) developed an active vibration control for a two-hinged 

plate, obtained state space representations for bending and 

torsional vibrations, and designed two H∞ robust controllers 

for suppressing the vibrations of the bending and torsional 

modes, based on two low-order models of the bending and 

torsional motion.

Using adaptive control theory and fuzzy control theory, 

Zolfagharian (12) presented a mechatronic approach 

integrating both passive and active controllers to deal with 

unwanted noise and vibration produced in an automobile 

wiper system operation; a bi-level adaptive-fuzzy controller 

was used where the parameters were tuned simultaneously 

by a multi-objective genetic algorithm (MOGA) to deal 

with the conflicting interests in the wiper control problem. 

Jaroslaw (13) presented a fuzzy logic-based robust feedback 

anti-sway control system that could be applicable with or 

without a sensor of sway angle of a payload, and proposed an 

iterative procedure combining a pole placement method and 

interval analysis of closed-loop characteristic polynomial 

coefficients to design a robust control scheme. Nemanja (14) 

dealt with active free vibration control of smart composite 

beams using a particle-swarm optimized self-tuning fuzzy 

logic controller, and proposed integration of a self-tuning 

method with membership function optimization using the 

PSO algorithm to improve FLC performance and robustness. 

Young presented the concept of sliding mode control 

in 1978, since when it has been used by many researchers 

in the field of engineering control. However, few papers 

talked about AVC of flexible structures using the sliding 

mode control algorithm. A. El et al. (15) presented a non-

linear controller design for biaxial feed drive systems for 

reducing the control input variance while maintaining 

motion accuracy. Experimental results demonstrated a 

significant performance improvement in terms of control 

input variance while maintaining motion accuracy. Oliveira 

et al. (16) presented an automatic tuning method for the 

discontinuous component of the Sliding Mode Generalized 

Predictive Controller (SMGPC), subject to constraints. 

Simulations and performance indexes for common process 

models in industry, such as non-minimum phase and time- 

delayed systems, resulted in better performance, improving 

robustness and tracking accuracy. Chen et al. (17) proposed 

an intelligent self-repairing control scheme for a class of non-

linear MIMO systems; the control method was applied to a 

helicopter flight control system with loss-in-effectiveness 

faults. Some simulation results illustrated the effectiveness 

and feasibility of the proposed control scheme in the paper. 

Ghasemi et al. (18) used the notion of finite-time stability to 

apply it to the problem of coordinated motion in multi-agent 

systems, obtained non-Lipschitzian closed-loop dynamics 

restricted to the surface, which leads to the convergence of 

the system trajectories to the origin in finite time. Acosta 

et al. (19) introduced a sliding mode control approach for 
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designing multiple discontinuous control inputs, where the 

control effort overcame only uncertainties, disturbances or 

unstable dynamics. Two illustrative examples were given to 

show the feasibility of the method. Zhang et al. (20) proposed 

a fractional order sliding mode control (FROSMC) scheme 

for the velocity control of permanent magnet synchronous 

motor (PMSM), and used a fuzzy logic inference scheme 

(FLIS) to obtain the gain of switching control. Simulations 

and experiments demonstrated that the proposed FROSMC 

not only achieved better control performance with smaller 

chatting than that with integer order sliding mode control, 

but it was also robust to external load disturbance and 

parameter variations. Zhang et al. (21) exploited the robust 

H∞ sliding-mode controller design problem for discrete-

time Markovian jump linear systems, and provided two 

numerical examples to illustrate the advantages and the 

efficacy of the proposed method when simultaneously 

considering intermittent observations, system uncertainty, 

and external disturbance. In 2014, Yang et al. (22) presented 

an experimental study about flexible plate using adaptive 

fuzzy sliding mode (AFSM) control strategy; however, the 

limitations of above control strategy were more complex 

and it was difficult to be applied in control engineering, so 

there is still s need to investigate vibration control using 

other intelligent control methods. Then, the advantages 

of different control strategies could be compared. Surely, 

the feasibility of control algorithms in engineering practice 

would be confirmed.

The proposed ASM MIMO control scheme can be used 

in active vibration control systems in which unknown 

disturbances and perturbations increase the complexity of 

a non-linear complex vibration system. Thus, the intelligent 

controller design becomes more challenging. Moreover, 

the proposed scheme incorporates an adaptive control 

law mechanism to deal with uncertainty. To achieve better 

tracking vibration control performance in a limited time and 

to attenuate efficiently the effects of both disturbances and 

uncertainties to an expectation level, an ASM MIMO control 

scheme was adopted in the control design for a structure 

vibration control system with parameter uncertainties. 

Finally, experiments and numerical simulation examples 

of a flexible plate structure vibration system are provided 

to confirm the effectiveness of the proposed intelligent 

vibration control scheme.

2. Dynamics Model of Flexible Plate

In this section, the present discretization and reduced-

order modeling method (DROMM) for modeling of a flexible 

plate structure will be considered. The proposed method 

achieves an accurate dynamics model and its structure is 

simple, thereby providing controller design with MIMO 

features, and the effectiveness of the vibration control system 

can maintain the vibration reduction performance based on 

intelligent control theory. 

Considering the continuous cantilever plate (Fig. 1) and 

discrete state of the plate (Fig. 2) (22), we can establish a 

dynamic model of the rectangular plate 
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damping matrices; 0( )ij ijij ij ijC C L YY Y        where 1 2 3j i    , U  is the 1s  input vector; X

is the 1dn   nodal displacement vector; X  is the 1dn   nodal velocity vector; X  is the 

1dn   nodal acceleration vector; [ ]P  is the damping matrix, d dn n ; [ ]M  is the mass 

matrix, d dn n ; ijF is a concentrated force that is applied to ijm ; [ ]K  is the stiffness 

matrix, d dn n  ; and [ ]L is influence coefficient matrix, dn s .

3. Example of Flexible Plate Modeling

An example is used for illustration. The plate is 10 m  10 m, the elasticity modulus E

= 206 GPa, Poisson’s ratio = 0.3,   = 7900 kg/m 3 , the elasticity shear modulus 

G =79.4 GPa, and the thickness is 0.001 m. Using the dynamics modeling method above, 

the parameters of the model ([M],[K],[P],[L]) can be obtained. 

Paper (23) confirmed the validity of the new model obtained by comparing essential 

features between a finite element model and obtained model, such as natural 

frequencies.

4. The DESIGN of ASM MIMO CONTROLLER

An n degree of freedom plate system (24) model is described as  

     ˆˆ ˆ
r rM q C q q K qq q       (2) 

damping matrices; 

 

Assumed that:  

11 11

21 21

31 31

33 33

3 1 1
1 3 1 1

1 2 1
1 4 1 1

[ ]
1 1 4 1 1

1 1 3 1
1 3 1

1 1 3 1
1 1 2

C C

C C
P

C C

C C

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 

   
 

   
    

 
 

    
 

   
 

damping matrices; 0( )ij ijij ij ijC C L YY Y        where 1 2 3j i    , U  is the 1s  input vector; X

is the 1dn   nodal displacement vector; X  is the 1dn   nodal velocity vector; X  is the 

1dn   nodal acceleration vector; [ ]P  is the damping matrix, d dn n ; [ ]M  is the mass 

matrix, d dn n ; ijF is a concentrated force that is applied to ijm ; [ ]K  is the stiffness 

matrix, d dn n  ; and [ ]L is influence coefficient matrix, dn s .

3. Example of Flexible Plate Modeling

An example is used for illustration. The plate is 10 m  10 m, the elasticity modulus E

= 206 GPa, Poisson’s ratio = 0.3,   = 7900 kg/m 3 , the elasticity shear modulus 

G =79.4 GPa, and the thickness is 0.001 m. Using the dynamics modeling method above, 

the parameters of the model ([M],[K],[P],[L]) can be obtained. 

Paper (23) confirmed the validity of the new model obtained by comparing essential 

features between a finite element model and obtained model, such as natural 

frequencies.

4. The DESIGN of ASM MIMO CONTROLLER

An n degree of freedom plate system (24) model is described as  

     ˆˆ ˆ
r rM q C q q K qq q       (2) 

 where j, i=1, 2, 3, 

U is the s×1 input vector; X is the nd×1 nodal displacement 

vector; 
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damping matrices; 0( )ij ijij ij ijC C L YY Y        where 1 2 3j i    , U  is the 1s  input vector; X

is the 1dn   nodal displacement vector; X  is the 1dn   nodal velocity vector; X  is the 

1dn   nodal acceleration vector; [ ]P  is the damping matrix, d dn n ; [ ]M  is the mass 

matrix, d dn n ; ijF is a concentrated force that is applied to ijm ; [ ]K  is the stiffness 

matrix, d dn n  ; and [ ]L is influence coefficient matrix, dn s .

3. Example of Flexible Plate Modeling

An example is used for illustration. The plate is 10 m  10 m, the elasticity modulus E

= 206 GPa, Poisson’s ratio = 0.3,   = 7900 kg/m 3 , the elasticity shear modulus 

G =79.4 GPa, and the thickness is 0.001 m. Using the dynamics modeling method above, 

the parameters of the model ([M],[K],[P],[L]) can be obtained. 

Paper (23) confirmed the validity of the new model obtained by comparing essential 

features between a finite element model and obtained model, such as natural 

frequencies.

4. The DESIGN of ASM MIMO CONTROLLER

An n degree of freedom plate system (24) model is described as  

     ˆˆ ˆ
r rM q C q q K qq q       (2) 

 is the nd×1 nodal velocity vector; 
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damping matrices; 0( )ij ijij ij ijC C L YY Y        where 1 2 3j i    , U  is the 1s  input vector; X

is the 1dn   nodal displacement vector; X  is the 1dn   nodal velocity vector; X  is the 

1dn   nodal acceleration vector; [ ]P  is the damping matrix, d dn n ; [ ]M  is the mass 

matrix, d dn n ; ijF is a concentrated force that is applied to ijm ; [ ]K  is the stiffness 

matrix, d dn n  ; and [ ]L is influence coefficient matrix, dn s .

3. Example of Flexible Plate Modeling

An example is used for illustration. The plate is 10 m  10 m, the elasticity modulus E

= 206 GPa, Poisson’s ratio = 0.3,   = 7900 kg/m 3 , the elasticity shear modulus 

G =79.4 GPa, and the thickness is 0.001 m. Using the dynamics modeling method above, 

the parameters of the model ([M],[K],[P],[L]) can be obtained. 

Paper (23) confirmed the validity of the new model obtained by comparing essential 

features between a finite element model and obtained model, such as natural 

frequencies.

4. The DESIGN of ASM MIMO CONTROLLER

An n degree of freedom plate system (24) model is described as  

     ˆˆ ˆ
r rM q C q q K qq q       (2) 

 is the nd×1 

nodal acceleration vector; [P] is the damping matrix, nd×nd; 

[M] is the mass matrix, nd×nd; Fij is a concentrated force that 

is applied to mij; [K] is the stiffness matrix, nd×nd ; and [L] is 

influence coefficient matrix, nd×s.

3. Example of Flexible Plate Modeling

An example is used for illustration. The plate is 10 m × 10 

m, the elasticity modulus E = 206 GPa, Poisson’s ratio = 0.3, 

ρ = 7900 kg/m , the elasticity shear modulus G =79.4 GPa, 

and the thickness is 0.001 m. Using the dynamics modeling 

method above, the parameters of the model ([M],[K],[P],[L]) 

can be obtained.

Paper (23) confirmed the validity of the new model 

obtained by comparing essential features between a finite 

element model and obtained model, such as natural 

frequencies.

4. The Design of Asm Mimo Controller

An n degree of freedom plate system (24) model is 

described as 
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damping matrices; 0( )ij ijij ij ijC C L YY Y        where 1 2 3j i    , U  is the 1s  input vector; X

is the 1dn   nodal displacement vector; X  is the 1dn   nodal velocity vector; X  is the 

1dn   nodal acceleration vector; [ ]P  is the damping matrix, d dn n ; [ ]M  is the mass 

matrix, d dn n ; ijF is a concentrated force that is applied to ijm ; [ ]K  is the stiffness 

matrix, d dn n  ; and [ ]L is influence coefficient matrix, dn s .

3. Example of Flexible Plate Modeling

An example is used for illustration. The plate is 10 m  10 m, the elasticity modulus E

= 206 GPa, Poisson’s ratio = 0.3,   = 7900 kg/m 3 , the elasticity shear modulus 

G =79.4 GPa, and the thickness is 0.001 m. Using the dynamics modeling method above, 

the parameters of the model ([M],[K],[P],[L]) can be obtained. 

Paper (23) confirmed the validity of the new model obtained by comparing essential 

features between a finite element model and obtained model, such as natural 

frequencies.

4. The DESIGN of ASM MIMO CONTROLLER

An n degree of freedom plate system (24) model is described as  

     ˆˆ ˆ
r rM q C q q K qq q       (2) (2)

where q is the n×1 vector of nodal displacements, τ is the n×1 

vector of applied nodal forces, 

 

where q  is the 1n  vector of nodal displacements,   is the 1n  vector of applied 

nodal forces,  M̂ q  is the n n  symmetric positive definite manipulator inertia matrix, 

 Ĉ q q q    is the 1n  vector of damping forces, and  K̂ q  is the 1n  vector of elastic 

forces.

The controller design problem is as follows. Given the desired trajectory  dq t , and with 

some or all the rectangular plate system parameters being unknown, derive a control law 

for the actuator forces and an estimation law for the unknown parameters such that the 

rectangular plate system output  q t  tracks the desired trajectories after an initial 

adaptation process.  

Undesirable steady-state position errors can be eliminated if we restrict them to lie on a 

sliding surface  

0q q     (3) 

where   is a constant matrix, whose eigenvalues are strictly in the right-half complex 

plane. Formally, we achieve this by replacing the desired trajectory  dq t  in the above 

derivation by the virtual “reference trajectory.” 

0

t

r dq q qdt    (4) 

Accordingly, dq  and dq  are replaced by  

r d r dq qq q q q            (5) 

If we define the sliding surface  

rrs q q qqq          (6) 

The control law and adaptation law become  

       1ˆˆ ˆ ˆ T
Dr r r rM q C q q K q K s a Y q q sq q q q                (7) 

 is the n×n symmetric 

positive definite manipulator inertia matrix, 

 

where q  is the 1n  vector of nodal displacements,   is the 1n  vector of applied 

nodal forces,  M̂ q  is the n n  symmetric positive definite manipulator inertia matrix, 

 Ĉ q q q    is the 1n  vector of damping forces, and  K̂ q  is the 1n  vector of elastic 

forces.

The controller design problem is as follows. Given the desired trajectory  dq t , and with 

some or all the rectangular plate system parameters being unknown, derive a control law 

for the actuator forces and an estimation law for the unknown parameters such that the 

rectangular plate system output  q t  tracks the desired trajectories after an initial 

adaptation process.  

Undesirable steady-state position errors can be eliminated if we restrict them to lie on a 

sliding surface  

0q q     (3) 

where   is a constant matrix, whose eigenvalues are strictly in the right-half complex 

plane. Formally, we achieve this by replacing the desired trajectory  dq t  in the above 

derivation by the virtual “reference trajectory.” 

0

t

r dq q qdt    (4) 

Accordingly, dq  and dq  are replaced by  

r d r dq qq q q q            (5) 

If we define the sliding surface  

rrs q q qqq          (6) 

The control law and adaptation law become  

       1ˆˆ ˆ ˆ T
Dr r r rM q C q q K q K s a Y q q sq q q q                (7) 

 is the 

n×1 vector of damping forces, and 

 

where q  is the 1n  vector of nodal displacements,   is the 1n  vector of applied 

nodal forces,  M̂ q  is the n n  symmetric positive definite manipulator inertia matrix, 

 Ĉ q q q    is the 1n  vector of damping forces, and  K̂ q  is the 1n  vector of elastic 

forces.

The controller design problem is as follows. Given the desired trajectory  dq t , and with 

some or all the rectangular plate system parameters being unknown, derive a control law 

for the actuator forces and an estimation law for the unknown parameters such that the 

rectangular plate system output  q t  tracks the desired trajectories after an initial 

adaptation process.  

Undesirable steady-state position errors can be eliminated if we restrict them to lie on a 

sliding surface  

0q q     (3) 

where   is a constant matrix, whose eigenvalues are strictly in the right-half complex 

plane. Formally, we achieve this by replacing the desired trajectory  dq t  in the above 

derivation by the virtual “reference trajectory.” 

0

t

r dq q qdt    (4) 

Accordingly, dq  and dq  are replaced by  

r d r dq qq q q q            (5) 

If we define the sliding surface  

rrs q q qqq          (6) 

The control law and adaptation law become  

       1ˆˆ ˆ ˆ T
Dr r r rM q C q q K q K s a Y q q sq q q q                (7) 

 is the n×1 vector of 

elastic forces.

The controller design problem is as follows. Given the 

desired trajectory qd(t), and with some or all the rectangular 

plate system parameters being unknown, derive a control 

law for the actuator forces and an estimation law for the 

unknown parameters such that the rectangular plate system 

output q(t) tracks the desired trajectories after an initial 

adaptation process. 

Undesirable steady-state position errors can be eliminated 

if we restrict them to lie on a sliding surface 

 

where q  is the 1n  vector of nodal displacements,   is the 1n  vector of applied 

nodal forces,  M̂ q  is the n n  symmetric positive definite manipulator inertia matrix, 

 Ĉ q q q    is the 1n  vector of damping forces, and  K̂ q  is the 1n  vector of elastic 

forces.

The controller design problem is as follows. Given the desired trajectory  dq t , and with 

some or all the rectangular plate system parameters being unknown, derive a control law 

for the actuator forces and an estimation law for the unknown parameters such that the 

rectangular plate system output  q t  tracks the desired trajectories after an initial 

adaptation process.  

Undesirable steady-state position errors can be eliminated if we restrict them to lie on a 

sliding surface  

0q q     (3) 

where   is a constant matrix, whose eigenvalues are strictly in the right-half complex 

plane. Formally, we achieve this by replacing the desired trajectory  dq t  in the above 

derivation by the virtual “reference trajectory.” 

0

t

r dq q qdt    (4) 

Accordingly, dq  and dq  are replaced by  

r d r dq qq q q q            (5) 

If we define the sliding surface  

rrs q q qqq          (6) 

The control law and adaptation law become  

       1ˆˆ ˆ ˆ T
Dr r r rM q C q q K q K s a Y q q sq q q q                (7) 

(3)

where 

 

where q  is the 1n  vector of nodal displacements,   is the 1n  vector of applied 

nodal forces,  M̂ q  is the n n  symmetric positive definite manipulator inertia matrix, 

 Ĉ q q q    is the 1n  vector of damping forces, and  K̂ q  is the 1n  vector of elastic 

forces.

The controller design problem is as follows. Given the desired trajectory  dq t , and with 

some or all the rectangular plate system parameters being unknown, derive a control law 

for the actuator forces and an estimation law for the unknown parameters such that the 

rectangular plate system output  q t  tracks the desired trajectories after an initial 

adaptation process.  

Undesirable steady-state position errors can be eliminated if we restrict them to lie on a 

sliding surface  

0q q     (3) 

where   is a constant matrix, whose eigenvalues are strictly in the right-half complex 

plane. Formally, we achieve this by replacing the desired trajectory  dq t  in the above 

derivation by the virtual “reference trajectory.” 

0

t

r dq q qdt    (4) 

Accordingly, dq  and dq  are replaced by  

r d r dq qq q q q            (5) 

If we define the sliding surface  

rrs q q qqq          (6) 
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. Thus, the 

adaptive controller defined by (8) is globally asymptotically 

stable and guarantees zero steady-state error for node 

positions. 
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The desired joint trajectory is given by  

q1_d=sin(2 t); q2_d=sin(2 t); q3_d=sin(2 t); q4_d=sin(2 t); q5_d=sin(2 t);  

q6_d=sin(2 t); q7_d=sin(2 t); q8_d=sin(2 t); q9_d=sin(2 t);

The displacements and velocities are chosen as  

1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9
x y y y y y y y y yy y y y y y y y y           

The initial displacements and velocities are chosen as  

x 0 =[1.0,0,1.0,0,1.0,0,1.0,0,1.0,0,1.0,0,1.0,0,1.0,0,1.0,0];

Using control law (8), Figure 3 shows the ASM MIMO control of the 57th, 59th, 61st,

39th, 41st , 43rd , 21st, 23rd, and 25th nodes. Figure 4 shows PD position tracking control 

of 57th, 59th, 61st, 39th, 41st , 43rd , 21st, 23rd, and 25th nodes.  

In this section, the effectiveness of ASM MIMO control is examined with the new 

plant model. Comparison of vibration response tracking control during the simulation 

time, and vibration control for the flexible plate vibration system is discussed on the 

basis of the intelligent control scheme shown in Figures 3 and 4. When conducting 

active suppression of the vibration, nine points are preferably chosen as the tracking 

signal. From Figures 3 and 4, the vibration response tracking control at each point is not 

good when the PD control method is adopted. In contrast, numerical simulation results 

of the proposed ASM MIMO control algorithm behavior are very good, especially when 
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Figure 3. Position tracking of the 57th, 59th, 61st, 39th, 41st , 43rd , 21st, 23rd, and 25th

nodes. Unit: m. 

Fig. 3. Position tracking of the 57th, 59th, 61st, 39th, 41st, 43rd, 21st, 23rd, and 25th nodes. Unit: m.
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good when the PD control method is adopted. In contrast, 

numerical simulation results of the proposed ASM MIMO 

control algorithm behavior are very good, especially when 

there are some disturbances in the system.

6. ��Experimental study with smart piezoelectric 
materials

FEA calculation and contrast analysis 

These results are shown in Table 1 and Figs. 5-7.

It is easy to see that there are small difference between the 

frequency of the PZT plate and the frequency of the regular 

plate.

Model test results and contrast analysis 

This section presents the results obtained on the test-

flexible plate. The plate is composed of several segments, as 

shown in Figs. 8-10. Table 2 shows the experimental results 

of natural frequency, obtained from different model test 

methods. We can see that data of Groups 7 and 8 are better 

than the other groups. In particular, we can see that the data 

 

Figure 4. PD position tracking error of 57th, 59th, 61st, 39th, 41st , 43rd , 21st, 23rd, and 

25th nodes. 
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Fig. 4. PD position tracking error of 57th, 59th, 61st, 39th, 41st, 43rd, 21st, 23rd, and 25th nodes.
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Frequency 1 2 3 4 5 6 7 8 9 

FEA result 
(Regular

plate)
0.8359 2.027 5.0545 6.3662 7.2835 12.459 14.451 14.669 16.525

FEA result 
(Piezoelectric

plate)
0.8392 2.0547 5.1419 6.5629 7.4702 13.05 14.792 15.453 17.111

Absolute
error 0.0033 0.0277 0.0874 0.1967 0.1867 0.591 0.341 0.784 0.586

Model test results and contrast analysis  

This section presents the results obtained on the test-flexible plate. The plate is 

composed of several segments, as shown in Figures 8-10. Table 2 shows the 

experimental results of natural frequency, obtained from different model test methods. 

We can see that data of Groups 7 and 8 are better than the other groups. In particular, we 

can see that the data of Groups 7 and 8 are in agreement with the results of the 

numerical simulation. Additionally, the results of flexible cantilever plate structure with 

nine PZT patches are shown in Table 3. 

Figure 5. PZT plate 

Table 2. Modal test value of natural frequency before installed actuators/sensors 
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of Groups 7 and 8 are in agreement with the results of the 

numerical simulation. Additionally, the results of flexible 

cantilever plate structure with nine PZT patches are shown 

in Table 3.

Optimal piezoelectric actuator locations and orientations

An intelligent optimal algorithm design method is 

presented for the orientation, placement, and numbers 

of actuators and sensors in closed-loop intelligent 

vibration control systems (Fig. 10). The method can be 

used to develop the non-linear programming problem; 

it is efficient and can handle complex optimization 

Table 2. Modal test value of natural frequency before installed actuators/sensors

 

Location Method  1 2 3 4 5 6 7 8 9 

A   

Random

Group
1  2.8 6.9 7.4 10.6 15.2 17.3 21.6 25.2

Group
2  2.8 7 10.5 15 17.3 21.8 25.3 28.3

Group
3  2.6 7.1 10.5 15.1 17.3 21.8 25.3 26.4

Group
4  7.2 10.6 15.2 16.9 21.7 25.3 28.3 34.1

Sine
Sweep

Group
1 0.8 2.6 4.1 7.4 10.7 13.1 15.2 17.3 21.8

Group
2 0.8 2.6 4.9 7.7 10.7 13.1 15.2 17.3 21.8

Group
3 0.8 2.6 4.1 7.4 10.7 13.1 15.2 17.2 21.8

Group
4 0.8 2.6 4.1 7.4 10.7 13.1 15.2 17.2 21.8

Group
5 0.8 2.6 4.4 5.2 6.9 7.5 10.8 12.9 15.2

Group
6 0.8 2.8 4.4 5.2 6.9 7.8 10.7 13.0 15.2

Group
7 0.7 2.8 4.0 5.3 6.9 7.6 8.8 10.6 13.2

Group
8 0.7 2.8 4.0 5.3 6.9 7.6 8.8 10.6 13.2

Hammer
Shot Failure 

B   

Random

Group
1  2.6 3.9 6.8 7.4 10.8 12.9 15.3 17.1

Group
2  2.8 3.9 6.8 7.4 10.6 12.9 16.6 17.1

Group
3  2.8 4 6.9 7.5 10.8 12.9 15.3 17.1

Sine
Sweep

Group
1 0.7 2.7 3.9 6.7 7.4 8.6 10.5 13.0 15.2

Group
2 0.7 2.7 3.9 6.7 7.4 8.6 10.5 13.0 15.2

Hammer
Shot Failure 

Optimal piezoelectric actuator locations and orientations 

An intelligent optimal algorithm design method is presented for the orientation, 

 

placement, and numbers of actuators and sensors in closed-loop intelligent vibration 

control systems (Fig. 10). The method can be used to develop the non-linear 

programming problem; it is efficient and can handle complex optimization problems 

and deal with many optimization variables. Several numerical analysis results (27,28) 

were performed to confirm the effectiveness of the method. Multiple procedures for the 

scheme are possible for the multi-objective optimization problem, and generated a set of 

solutions that can be used to configure the number and the actuators’s orientations and 

locations. This is illustrated in the example. 

Mechanical-electric coupled model 

The procedure of a new modeling method is discussed in this section, and the 

parameters of dynamic Eq. (3) are shown in Tables 4-10. 

Figure 6. PZT plate FEA model 

Table 3. Model test values of natural frequency 

Fig. 6. ��PZT plate FEA model
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problems and deal with many optimization variables. 

Several numerical analysis results (27,28) were performed 

to confirm the effectiveness of the method. Multiple 

procedures for the scheme are possible for the multi-

objective optimization problem, and generated a set 

of solutions that can be used to configure the number 

and the actuators’s orientations and locations. This is 

illustrated in the example.

Table 3. Model test values of natural frequency

 

Frequency
  1 2 3 4 5 6 7 8 9 

Experiment Group 1 0.7 2.8 4.0 5.3 6.9 7.6 8.8 10.6 13.2 
Group 2 0.7 2.7 3.9  6.7 7.4 8.6 10.5 13.0 
Average 0.7 2.75 3.95 5.30 6.8 7.5 8.7 10.55 13.1 

FEM Group 1 0.84 2.03  5.05 6.37 7.28 12.46 14.451 14.67
 Error 0.14 0.72  0.25 0.43 0.22 3.76 3.901 1.57 

Figure 7. Contrastive analysis of the first mode shape between common FEA model and Fig. 7. ��Contrastive analysis of the first mode shape between common FEA model and PZT plate FEA model. (a) Common plate FEA model (b) PZT 
plate FEA model

(a)

(b)
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Mechanical-electric coupled model

The procedure of a new modeling method is discussed 

in this section, and the parameters of dynamic Eq. (3) are 

shown in Tables 4-10.

To establish the vibration control model, in this section, 

experimental tests of the plate are used to determine 

parameters of the model. The reason for using an 

experiment for the input matrix L, instead of the finite 

element method (FEM) is because the base displacement 

of the controlled system can easily reflect the real situation 

of an intelligent vibration control system. This would make 

the control system (Figs. 8, 9) for vibration more effective. 

Moreover, the other system parametric values as presented 

in Tables 6-10.

Establish the experimental system

The experimental test results are shown in Figures 11-15. 

Some experiments must be performed if the ASM MIMO 

 

PZT plate FEA model. (a) Common plate FEA model (b) PZT plate FEA model 

Figure 8. Experiment and control instruments (1) 

Figure 9. Experiment and control instruments (2) 

Figure 10. Five locations of PZT 

Fig. 8. ��Experiment and control instruments (1)

Fig. 9. ��Experiment and control instruments (2) Fig. 10. ��Five locations of PZT

Table 4. Experiment test values of strain range

 

Table 4. Experiment test values of strain range 

Location 

 1 2 3 4 5 6 7 8 9 

Static 

Group 1 995 977 131 140 131 968 131 140 1012 

Group 2 986 968 140 123 140 986 123 149 995 

Group 3 977 977 123 131 123 997 114 131 1004 

Average 986 974 131 137 137 983 123 140 1003 

Deformed 

Group 1 995 986 123 131 105 123 123 123 986 

Group 2 986 1012 114 114 114 114 114 114 995 

Group 3 977 995 131 123 131 105 140 131 977 

Average 986 992 123 123 117 114 126 123 986 

 0 18 -8 -14 -20  3 -17 -17 

Table 5. Model test value of natural frequency after installed actuators and sensors 

Frequency

Location Type 1 2 3 4 5 6 7 8 9 

A Sine
Sweep 0.68 2.72 3.91 6.54 7.14 10.40 13.03 14.96 17.17

B Sine
Sweep 0.67 2.75 3.86 6.54 7.14 10.53 13.03 14.96 17.17

Average 0.675 2.735 3.885 6.54 7.14 10.465 13.03 14.96 17.17

To establish the vibration control model, in this section, experimental tests of the plate 

are used to determine parameters of the model. The reason for using an experiment for 

the input matrix L, instead of the finite element method (FEM) is because the base 
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control design is to be accepted by people in the research 

field. From the experimental set-up photograph in Figure 

8, a steel cantilever plate bonded with nine piezoelectric 

actuators is shown. Moreover, near the fixed end, a PCB 

sensor is used to acquire the displacement of flexible plate. 

Then, the acquired displacement signal is transmitted to 

the NI data acquisition (DAQ). Next, the NI compactrio is 

used to process experiment data and generate the actuating 

control voltage signals for piezoelectric patches to actuate 

the cantilevered plate. The computer loads the LABVIEW 

control programs to the NI compactrio and achieves current 

collect, process, store, and display of experimental data. 

Finally, the experimental results above are presented to 

confirm the capacity of the intelligent vibration controller. 

Additionally, in the experiments, two different control 

schemes are presented to confirm the effectiveness of the 

intelligent control system described. The validity of vibration 

suppression with the ASM MIMO was tested effectively.

Table 5. Model test value of natural frequency after installed actuators and sensors

 

Table 4. Experiment test values of strain range 

Location 

 1 2 3 4 5 6 7 8 9 

Static 

Group 1 995 977 131 140 131 968 131 140 1012 

Group 2 986 968 140 123 140 986 123 149 995 

Group 3 977 977 123 131 123 997 114 131 1004 

Average 986 974 131 137 137 983 123 140 1003 

Deformed 

Group 1 995 986 123 131 105 123 123 123 986 

Group 2 986 1012 114 114 114 114 114 114 995 

Group 3 977 995 131 123 131 105 140 131 977 

Average 986 992 123 123 117 114 126 123 986 

 0 18 -8 -14 -20  3 -17 -17 

Table 5. Model test value of natural frequency after installed actuators and sensors 

Frequency

Location Type 1 2 3 4 5 6 7 8 9 

A Sine
Sweep 0.68 2.72 3.91 6.54 7.14 10.40 13.03 14.96 17.17

B Sine
Sweep 0.67 2.75 3.86 6.54 7.14 10.53 13.03 14.96 17.17

Average 0.675 2.735 3.885 6.54 7.14 10.465 13.03 14.96 17.17

To establish the vibration control model, in this section, experimental tests of the plate 

are used to determine parameters of the model. The reason for using an experiment for 

the input matrix L, instead of the finite element method (FEM) is because the base 

Table 6. Experimental test values of displacement and voltages

 

Table 6. Experimental test values of displacement and voltage 

Voltage (V) 

CM
0
×
0

4
×
8

4
×
10

6
×
8

5
×
10

9
×
6

6
×
10

9
×
7

8
×
8

7
×
10

9
×
8

10
×
8

10
×
8

9
×
9

9
×
10

C
O
L
U
M
N

1 0 -1.5 -2.1 -2 -2 -1 -2 -0.5 -1.9 -2.2 -2 -2 -2 -2.5 -1.9
2 0 -0.5 -0.8 -0.5 -0.5 -0.5 -0.5 -1 -0.2 -1.2 -1.5 -0.5 -0.9 0 -1 
3 0 -1 -0.7 -0.8 -1 0 -0.7 -1.2 -1 -1 -1.1 -1.2 -1.2 -1 -1 
4 0 3 2.8 2.5 3 1.5 2.8 2 2.8 2.5 2.5 3.5 2 2.5 3 
5 0 2.5 2.2 2 2 1 1.2 1.3 2.5 1.5 2.5 2 2.3 2 2.2 
6 0 2.3 1.7 2.5 2.4 1.5 2.3 1.3 2.3 2 2 1 2.3 1.3 1.6 
7 0 -0.45 -0.5 -0.55 -0.45 -0.25 -0.45 -0.27 -0.57 -0.45 -0.25 -0.58 -0.32 -0.27 -0.28
8 0 -0.55 -0.35 -0.4 -0.17 -0.05 -0.27 -0.17 -0.37 -0.25 -0.15 -0.4 -0.23 -0.2 -0.25
9 0 2.8 2.5 2.5 2.2 2 3 2.1 2.8 2.1 2.5 2 2.3 2 2.1 

Table 7. Experimental test values of input matrix L

 

Table 7. Experimental test values of input matrix L 

Row

1 2 3 4 5 6 7 8 9 

C
O
L
U
M
N

1 0.000189 0.00016 0.00021 0.00022 0.00020 0.00020 0.00016 0.00020 0.00018 
2 0.000237 0.00020 0.00026 0.000286 0.00026 0.00025 0.000204 0.000251 0.000232
3 0.00028 0.00024 0.00031 0.00034 0.00031 0.00031 0.000245 0.000301 0.000279
4 0.000355 0.00030 0.000398 0.000429 0.00039 0.000388 0.000306 0.000377 0.000349
5 0.00037 0.00032 0.00042 0.00045 0.00041 0.000414 0.000326 0.000402 0.000372
6 0.00041 0.00035 0.00046 0.0005 0.00045 0.00045 0.00035 0.00044 0.00040 
7 0.00047 0.00040 0.00053 0.00057 0.00052 0.00051 0.00040 0.00050 0.00046 
8 0.00048 0.00041 0.00053 0.00057 0.00052 0.00052 0.00041 0.00050 0.00047 
9 0.00053 0.00045 0.00059 0.00064 0.00058 0.00058 0.00045 0.00056 0.00052 
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7. Conclusions

In this paper, we studied the vibration tracking control 

problem of a flexible plate structure system and proposed 

an ASM MIMO control method. ASM MIMO control 

is a combination of adaptive control and sliding mode 

control, having the advantages of intelligent control, 

MIMO control, and non-linear control in the sense of 

robustness of the control system. The proposed sliding 

mode control law is an intelligent feedback control law 

that involves tracking positions and tracking velocities. 

One advantage of the proposed ASM MIMO controller 

is that it is a MIMO control law that differs from a 

SISO controller; it can be used to deal with a complex 

system with features of non linearity and parameter 

coupling. The robust design of the ASM MIMO control 

is another advantage compared with a conventional PD 

control method. Simulation results demonstrated that 

Table 10. Damping matrix c value

 

Table 10. Damping matrix c value 

N·S/
M

Row
1 2 3 4 5 6 7 8 9 

C
O
L
U
M
N

1 202.7 -67.6 0 -67.6 0 0 0 0 0 

2 -218.2 654.6 -218.2 0 -218.2 0 0 0 0 
3 0 -10.4 20.8 0 0 -10.4 0 0 0 
4 -262.5 0 0 1050 -262.5 0 -262.5 0 0 
5 0 -138.1 0 -138.1 552.4 -138.1 0 -138.1 0 
6 0 0 -282.2 0 -282.2 846.6 0 0 -282.2
7 0 0 0 -67.6 0 0 202.7 -67.6 0 
8 0 0 0 0 -218.2 0 -218.2 654.6 -218.2
9 0 0 0 0 0 -10.4 0 -10.4 20.8 

7. Conclusions

In this paper, we studied the vibration tracking control problem of a flexible plate 

structure system and proposed an ASM MIMO control method. ASM MIMO control is 

a combination of adaptive control and sliding mode control, having the advantages of 

intelligent control, MIMO control, and non-linear control in the sense of robustness of 

the control system. The proposed sliding mode control law is an intelligent feedback 

control law that involves tracking positions and tracking velocities. One advantage of 

the proposed ASM MIMO controller is that it is a MIMO control law that differs from a 

SISO controller; it can be used to deal with a complex system with features of 

non-linearity and parameter coupling. The robust design of the ASM MIMO control is 

another advantage compared with a conventional PD control method. Simulation results 

demonstrated that ASM MIMO control is superior to PD in terms of good vibration 

tracking control performance under external disturbances, parametric uncertainties, and 

varying load conditions. 

Table 8. Experimental test values of mass matrix M

 

Table 8. Experimental test values of mass matrix M 

 Row 
1 2 3 4 5 6 7 8 9 

C
O
L
U
M
N

1 0.88 0 0 0 0 0 0 0 0 
2 0 0.88 0 0 0 0 0 0 0 
3 0 0 0.88 0 0 0 0 0 0 
4 0 0 0 0.88 0 0 0 0 0 
5 0 0 0 0 0.88 0 0 0 0 
6 0 0 0 0 0 0.88 0 0 0 
7 0 0 0 0 0 0 0.88 0 0 
8 0 0 0 0 0 0 0 0.88 0 
9 0 0 0 0 0 0 0 0 0.88 

Table 9. Stiffness matrix K value 
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N
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4 -262.5 0 0 1050 -262.5 0 -262.5 0 0 
5 0 -138.1 0 -138.1 552.4 -138.1 0 -138.1 0 
6 0 0 -282.2 0 -282.2 846.6 0 0 -282.2
7 0 0 0 -67.6 0 0 202.7 -67.6 0 
8 0 0 0 0 -218.2 0 -218.2 654.6 -218.2
9 0 0 0 0 0 -10.4 0 -10.4 20.8 
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Table 9. Stiffness matrix K value 

N/M
Row

1 2 3 4 5 6 7 8 9 

C
O
L
U
M
N

1 202.7 -67.6 0 -67.6 0 0 0 0 0 
2 -218.2 654.6 -218.2 0 -218.2 0 0 0 0 
3 0 -10.4 20.8 0 0 -10.4 0 0 0 
4 -262.5 0 0 1050 -262.5 0 -262.5 0 0 
5 0 -138.1 0 -138.1 552.4 -138.1 0 -138.1 0 
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ASM MIMO control is superior to PD in terms of good 

vibration tracking control performance under external 

disturbances, parametric uncertainties, and varying load 

conditions.
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