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Abstract

This paper suggests applying pseudospectral model predictive method for exo-atmospheric guidance. The method is a fusion 

of pseudospectral law and model predictive control, in which a two point boundary value problem is formulated using model 

predictive approach and solved by applying pseudospectral law. In this work, the method is applied to exo-atmospheric 

guidance with specific target requirement. The existing exo-atmospheric guidance methods suffice general requirements 

for guidance, but cannot ensure specific target constraints; whereas, the presented method is able to do so. The proposed 

guidance law is assessed through simulation of perturbed cases, and the tests suggest that the method is able to operate semi-

autonomously under control and thrust vector perturbations. 
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1. Introduction

Exo-atmospheric guidance refers to guidance beyond the 

atmosphere with negligible aerodynamic effects. In vacuum, 

a vehicle encounters forces from two sources only: its own 

thrust and gravitation of the planet. Due to the relative 

simplicity, closed loop optimal or near-optimal solution 

can be obtained for vacuum guidance. This has been used 

as an advantage in guidance system of the existing exo-

atmospheric vehicles.  For the past and present missions, 

vacuum guidance methods have been sufficient. For 

example, in an orbital injection mission, only the desired 

orbit and velocity is to be met; for CRV (Crew Return Vehicle), 

CLV (Crew Launch Vehicle), or CaLV (Cargo Launch Vehicle), 

the end position is comparatively more important, which 

the existing vacuum guidance methods can ensure. But, for 

the missions involving global payload delivery, the desired 

accuracy is far stringent than that presently expected. For a 

global payload delivery mission, the flight would comprise 

of endo, exo, re-entry, and terminal phases of flight which 

are starkly different from each other. In a typical mission, the 

first phase is ascending through the atmosphere, controlled 

by endo-atmospheric guidance system which is generally 

an open loop method following a preselected profile. Once 

the altitude is enough to neglect atmospheric effects, the 

vacuum guidance system takes effect. Here, the transition is 

made because vacuum guidance methods cannot be applied 

inside the atmosphere, and the existing endo-atmospheric 

methods do not offer adequate autonomy so as to ensure 

the required accuracy. In this paper, we demonstrate the 

feasibility of a recently proposed pseudospectral model 

predictive method for exo-atmospheric guidance. This 

method does not rely on the simplifications of vacuum 

flight, and yet, it is able to provide on board solution feasible 

for future application. The method has previously been 

demonstrated for endo-atmospheric flight, and therefore, it 

could be a candidate method for the guidance of all phases 

of global delivery system.

2.  Review of Exo-atmospheric Guidance 
Methods

A number of vacuum guidance approaches are available 

in the existing literature. However, only a few have ever 
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been tested or flown on an actual launch vehicle. The only 

closed-loop vacuum guidance algorithms applied thus 

far are as follows: Iterative Guidance Mode (IGM) and 

Powered Explicit Guidance (PEG). The earliest of these 

is the Iterative Guidance Mode [1] which was designed 

for the Saturn class vehicles. The approach was to solve a 

set of quasi-explicit equations in the near-closed form. 

However, in this method, the terminal condition was 

limited to a set, where both the final in-plane velocity 

components as well as the radial component of the final 

position coordinates were specified. Compared to IGM, a 

more general method was developed by G. W. Cherry [2]. 

His method provided a universal solution to boundary-

value problems of powered guidance, and derivation of the 

steering law avoided specialized mathematics. An essential 

feature of the approach was the E-matrix, which mapped 

the difference in the boundary conditions into the thrust-

allocation guidance coefficients. This method was designed 

to control the final position as well as final components of 

velocity. It was used for lunar descent and ascent mission 

of Apollo [3]. A thorough detail of his work can be found in 

G.W. Cherry’s paper [2]. From IGM, a more capable vector 

based algorithm called Linear Tangent Guidance (LTG) 

was developed. It was developed by Ronald F. Jaggers. This 

method was generalized for usage in the Space Shuttle [4] 

so that it could handle all exo-atmospheric manoeuvres 

and requirements, including ascent, ascent aborts, and 

deorbit. LTG was later renamed as PEG and was chosen 

for Orion orbit insertion, deorbit, and rendezvous burn 

guidance, and it was also used in the trade studies for 

Altair lunar landing guidance. The original theoretical 

formulation of PEG is given in Jaggers [3].  The basic 

algorithm derives a closed solution to an optimal control 

problem by maximizing vehicle’s total mass at terminus. 

PEG is formulated under the four important assumptions as 

follows: the aerodynamic forces are negligible; the engine 

exhaust velocity is constant; either the thrust (mass flow 

rate) or acceleration is constant; and the target conditions 

are independent of time and functions, but only of the 

estimated (navigation) inertial position and velocity states. 

With the linear gravity model proposed by Jezewski [5], a 

costate solution is developed. From optimal control theory 

and the linear gravity model, it is found that the optimal 

thrust direction, which is required to steer the vehicle to 

the desired target, is along the direction of the velocity 

costate vector. The basic PEG algorithm is designed for 

handling 4 specific orbital insertion constraints of the final 

radius, velocity, flight path angle, and orbital inclination. 

For other forms of terminal constraints, modifications are 

needed on a case-by-case basis. If the number of terminal 

constraints is not four, substantial changes to the algorithm 

will be required. As such, research efforts have continued 

in expanding the capability of vacuum powered guidance 

algorithm. 

The recent on-going efforts to achieve the capabilities 

of responsive space launch and autonomous space 

operations have brought renewed interest in both endo 

and exo-atmospheric guidance. For guidance inside the 

atmosphere, numerous methods have been developed and 

studied. Further details can found in the references [6-10]. 

However, for exo-atmospheric guidance, the PEG approach 

still remains as the basis for modification and improvement. 

Some of the researches on PEG include those of Rose M. 

Benjamin and David K. Gellar [11], Dukeman [12, 13], Lu, 

P. et al. [7, 14, 15], Lijun Zhang [16], etc. The methods of 

Lu, P. et al. [7, 14, 15] consider complete ascent profile 

including coast phases. However, the methods involve 

analytical multiple shooting method for guidance solution 

and require iterations. Dukeman [12, 13] solved calculus-

of-variation two-point-boundary-value- problem starting 

from vertical rise till main engine cut-off. The proposed 

method does not involve iteration and is mathematically 

faster and robust. Here, we suggest pseudospectral model 

predictive control for exo as well as endo atmospheric 

guidance. It is demonstrated that the proposed method can 

guide a vehicle orbital insertion in a rapid manner. 

3. Pseudospectral Model Predictive Control

The pseudospectral model predictive control (PMPC) 

method, which was first presented by Yang Liang et al. [17], 

combines MPC (Model Predictive Control) and GPM (Gauss 

Pseudospectral Method). In this approach, the state and 

control variables are approximated by using LG (Legendre 

Gauss) points, and the system dynamics are approximated 

on the LG collocation points. The linear optimal control 

problem is modelled to obtain corrections to the nominal 

control, which will minimize terminal deviation from 

the nominal state. These corrections are derived from 

the predicted state of the MPC problem. Mathematical 

formulation of the method is described in the following, with 

an introduction to GPM.

3.1 The Gauss Pseudospectral Method

GPM is a pseudospectral collocation method where a 

function is interpolated on LG points. For details on GPM, 

the readers are referred to references [18, 19]. In this method, 

the Legendre polynomial LN(τ) is used as the basis function. 
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A Legendre polynomial LN(τ) of N degree has N LG points 

which exist in the domain [-1, 1]. For real problem, the LG 

points need to be mapped onto real time domain [t0, tf] using 

the following affine transformation.
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Here, equation (14) is the transversatility condition which includes the effect of the predicted state deviation 

Ψ on the terminal states xf  [17]; ν is a Lagrange multiplier. If the desired terminal state is restricted to some 

specific value, the first part of the transversatility condition is used. 

In order to solve this TPBVP, we need to define the derivatives of state and costate on the LG 

collocation points. This is done as shown in equation (2) and (4). For convenience, we redefine the 
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Gauss quadrature rule. 
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The obtained costate vector can then be used to get the control using relation of equation (10). 

3.3 Implementation of Pseudospectral Model Predictive Control 

PMPC method needs a reference or starting profile in order to get a predicted trajectory. This initial 

control profile may be obtained from off-line optimization or any other method. But, the presented method 

does not need the initial profile to be strictly optimal.  A rough constant control profile works effectively in 

running the guidance law. For further on board implementation, the following steps are performed: 

1. Through predictive integration, the terminal error δψ is found from the reference control. 

2. If the terminal errors are within the desired limits i.e., |δψ| < |δψ|tolerance the reference control is 

applied for the rest of the flight. 

3. If the terminal errors are not within the desired limits i.e., |δψ| > |δψ|tolerance the guidance law is 

used to calculate uk (complete control profile).  

4. From the new control profile uk the current control command u0 is passed on to the vehicle 

control system. 

5. The control profile uk is used in the predictive integration, in order to check the tolerance of 

projected terminal error. 

6. If the projected terminal error is within limits, this profile replaces the nominal profile and 

supplies subsequent control commands. 

In the above calculation for control profile, equation (17) is solved for which the complete code is 

written and executed in Matlab. The selected number of collocation node was 10 in this collocation type 

method. Typical collocation methods are time intensive and generally require higher number of nodes for 

accuracy. However, the proposed method is a predictive method; as such, it is computationally faster and 

require lesser number of collocation points. The implementation process is shown in Fig. 1. 
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4.  From the new control profile uk the current control 

command u0 is passed on to the vehicle control system.

5..  The control profile uk is used in the predictive 

integration, in order to check the tolerance of projected 

terminal error.

6..  If the projected terminal error is within limits, this 

profile replaces the nominal profile and supplies 

subsequent control commands.

In the above calculation for control profile, equation 

(17) is solved for which the complete code is written and 

executed in Matlab. The selected number of collocation 

node was 10 in this collocation type method. Typical 

collocation methods are time intensive and generally 

require higher number of nodes for accuracy. However, 

the proposed method is a predictive method; as such, it 

is computationally faster and require lesser number of 

collocation points. The implementation process is shown 

in Fig. 1. 

4. Dynamics of Vacuum Flight

Exo-atmospheric flight ensues after the boundary of 

dense atmosphere where the guidance system works 

in a vacuum surrounding. In the exo-atmosphere, the 

density is significantly low, as to make any aerodynamic 

effects negligible. Fig. 2 shows the diminishing trend of 

atmospheric density and air pressure with increasing 

altitude. In the figure, the dynamic pressure encountered 

by a point mass vehicle at speeds ranging from 5,000 to 

10,000 m/sec is also shown. The plots show negligible 

dynamic pressure above 100 km altitude where the 

pressure is around 27~28 kg/(m.sec2) for the specified 

velocity ranges.

Considering the atmospheric condition, vacuum flight 

can be modelled by completely omitting the aerodynamic 

effects. The flight mechanical equations can, therefore, be 

stated as:
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In the above equations, the effect of Earth’s rotation is omitted. Fig. 3 shows the forces acting on a vehicle 

outside the atmosphere, which are thrust and gravitation. The conventions used for angle of attack α and 

pitch angle θp are also shown in the figure. 

 

Fig. 3 Forces acting on a flight vehicle in the exo-atmosphere (Longitudinal only). 
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5. Vehicle Models 

Guidance method presented here is for a hypersonic vehicle in prompt global delivery mission. The 

complete mission scenario involves launching of the hypersonic vehicle atop a launch vehicle, release from 

launch vehicle, re-entry, and finally, reaching the terminus. We assume that Titan II Gemini (GLV) is used 

for launch. This is a liquid propelled vehicle with a total mass of 154,200 kg, which carries a payload of 

maximum 3,580 kg [20, 21]. Detailed mass breakdown and propulsion properties are shown in Fig. 4. The 

aerodynamic properties are tabulated in Table 1 and 2 [21]. 
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Fig. 4 Launch vehicle model Titan II GLV. 

Table 1 Aerodynamic properties – coefficient of lift for Titan II [21]. 

Range of Mach number Values of CLα 

0 ≤ Ma ≤ 0.25 2.8 
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Ma ≥ 3.6 3.55 

 

Table 2 Aerodynamic properties - coefficient of drag for Titan II [21]. 

Range of Mach number Values of CDα 

0 ≤ Ma ≤ 0.8 0.29 

0.8 ≤ Ma ≤ 1.068 Ma – 0.51 

Ma ≥ 1.068 0.091 + 0.5 Ma -1 

 

Simplified aerodynamic model of the hypersonic vehicle is represented through the following relations. 
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Where, CL0 = -0.01, CL1 = 0.018, CD0 = 0.01, and k = 3.4. 

6. Exo Atmospheric Ascent Guidance 
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Fig. 5 Ascent trajectory of launch vehicle. 
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we need to ensure very accurate end positions which calls 

for a robust guidance method that can autonomously 

isolate deviation and steer the vehicle without significant 

performance degradation. For evaluation, a reference 

trajectory consisting of two boost and one coast phase is 

generated using sequential quadratic programming (SQP). 

For this Matlab command ‘fmincon’ was used. Fig. 5 below 

shows the reference profile. The boundary conditions for 

exo-atmospheric flight are listed in Table 3.

6.1 Off nominal cases

Launch vehicle ascent generally employs an open-loop 

method for endo atmospheric guidance and a closed-loop 

law for vacuum flight. Here, we consider the launch vehicle 

using thrust vector for controlling flight. Therefore, the 

considered perturbations are resulting from problem with 

the thrust vector control or the engine nozzle. 

6.1.1 Thrust vector control problem

Thrust vector control (TVC) problems [22-24] may be 

caused by hardware issues regarding the actuators or power 

supplies, or it may be due to software issues regarding the 

improper commands being sent to the actuators. These 

problems could manifest themselves by actuators failing 

to hard over (maximum angle), failing in place, or failing 

to the null position.  Typical actuator failures include 

the followings: 1) lock in place (LIP); 2) hard over failure 

(HOF); 3) float; and 4) loss of effectiveness (LOE). In 

the case of LIP failures, the actuator “freezes” at certain 

condition and does not respond to subsequent commands. 

HOF is characterized by the actuator moving to and 

remaining at the upper or lower position limit, regardless 

of the command. The speed of response is limited by the 

actuator rate limit. Float failure occurs when the actuator 

contributes zero moment to the control authority. Loss of 

effectiveness is characterized by lowering the actuator gain 

with respect to its nominal value. These actuator problems 

can be simulated by using the following parameterizations 

[23].
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In the above parameterization, uc is the commanded control, kc is the ratio by which the actuator loses 

effectiveness, and tF is the moment from when the actuator problem starts. In the case of LIP problem, the 

uc(t) will remain constant; and for LOE, the commanded control will lose its effectiveness defined by the 

ratio kc. Generally, there are multiple thrust vector nozzles for controlling pitch, yaw and roll motion of 

launch vehicle. Therefore, simulating the actuator problems require detailed modelling of the thrust vector 
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In the above parameterization, uc is the commanded 

control, kc is the ratio by which the actuator loses 

effectiveness, and tF is the moment from when the actuator 

problem starts. In the case of LIP problem, the uc(t) will 

remain constant; and for LOE, the commanded control will 

lose its effectiveness defined by the ratio kc. Generally, there 

are multiple thrust vector nozzles for controlling pitch, yaw 

and roll motion of launch vehicle. Therefore, simulating the 

actuator problems require detailed modelling of the thrust 

vector nozzles. In our evaluation, we only apply loss of 

control effectiveness.

6.1.2 Engine nozzle damage

Engine nozzle damage could occur during flight, 

resulting in the loss of performance, control issues, or both. 

This can be represented by the following parameterization 

of thrust.
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6.2 Simulation Results

Gauss PMPC method for ascent guidance is evaluated 

through perturbed cases, with thrust and control errors. 

Guided trajectories for thrust perturbation are compared to 

unguided trajectories, and the terminal errors are compared. 

The first set of results is for vector nozzle problem. Here, 

simulation results for 6 cases of thrust effect loss are shown. 

Control and initial state perturbations are not included 

here. The control calculated from the guidance law is seen 

to effectively steer the vehicle on to the reference trajectory. 

Effectiveness of the guidance law can be understood from 

Table 4. The terminal altitude error is reduced by about 10 

times the unguided terminal altitude. The error in vehicle 
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Fig. 6 Guided and unguided trajectory for thrust perturbation (unit of time is seconds). 

Table 4 Terminal error for guided and unguided trajectory for thrust perturbation. 

  |∆hf| 
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|∆ f| 
(deg) 
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(deg) 

|∆vf| 
(m/sec) 

|∆ f| 
(deg) 

|∆mf| 
(kg) 

Unguided 

T = 0.85 × T 862.2 0.037 6.85×10-5 257.20 0.68 999.7 
T = 0.90 × T 584.01 0.025 4.62×10-5 173.88 0.46 666.5 
T = 0.95 × T 296.76 0.013 2.33×10-5 88.21 0.23 333.2 
T = 1.05 × T 306.73 0.012 2.38×10-5 90.89 0.23 333.23 
T = 1.10 × T 623.93 0.026 4.82×10-5 184.63 0.47 666.47 

 T = 1.15 × T 952.15 0.039 7.32×10-5 281.42 0.72 999.6 

Guided 

T = 0.85 × T 87.4 9.08×10-5 1.68×10-7 0.58 0.0017 <1 
T = 0.90 × T 58.86 6.17×10-5 1.14×10-7 0.39 0.0015 <1 
T = 0.95 × T 29.72 3.15×10-5 5.82×10-8 0.20 0.0009 <1 
T = 1.05 × T 30.26 3.28×10-5 6.04×10-8 0.22 0.0013 <1 
T = 1.10 × T 61.04 6.65×10-5 1.23×10-7 0.45 0.0031 <1 

 T = 1.15 × T 92.3 1.02×10-5 1.88×10-7 0.70 0.0055 <1 

Fig. 6. Guided and unguided trajectory for thrust perturbation (unit of time is seconds).

Table 4. Terminal error for guided and unguided trajectory for thrust perturbation.
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mass is maintained to less than 1 kg.

Control problem has more prominent effect on the 

altitude and flight path angle. Error in vehicle mass is almost 

negligible. The results for control perturbation in Fig. 7 and 

Table 5 show that the method is capable of minimizing the 

effects. The terminal altitude error was within 100 meters; 

terminal flight path angle was also within the acceptable 

limits. Fig. 8 and Tables 6 and 7 show the results from the 

cases with both thrust and control problem. The method 

performs equally well for these fully perturbed cases.

6.3 Sensitivity of Initial Control Guess

Autonomy is an important aspect of any guidance law. It 
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Fig. 7 Guided and unguided trajectory for control perturbations (unit of time is seconds). 

Table 5 Terminal error for guided and unguided trajectory for control perturbation. 
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(deg) 

Unguided 
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kc = 0.85 1331.93 0.0018 3.35×10-6 20.82 0.69 
kc = 0.90 886.59 0.0013 2.36×10-6 14.27 0.45 
kc = 1.10 880.14 0.0016 2.87×10-6 15.87 0.46 
kc = 1.15 1317.42 0.0024 4.49×10-6 24.39 0.68 

 kc = 1.30 2616.39 0.0055 1.01×10-5 52.29 1.35 

Guided 

kc = 0.70 85 8.78×10-5 1.62×10-7 0.49 0.0004 

kc = 0.85 42.16 4.45×10-5 8.22×10-8 0.24 0.0001 
kc = 0.90 28.03 2.98×10-5 5.5×10-8 0.16 5.6×10-5 
kc = 1.10 27.71 3.02×10-5 5.58×10-8 0.15 3.1×10-5 
kc = 1.15 41.43 4.54×10-5 8.4×10-8 0.21 8.2×10-5 

 kc = 1.30 82.07 9.17×10-5 1.69×10-7 0.40 0.00038 

Fig. 7. Guided and unguided trajectory for control perturbations (unit of time is seconds).

Table 5. Terminal error for guided and unguided trajectory for control perturbation.
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Fig. 7 Guided and unguided trajectory for control perturbations (unit of time is seconds). 
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is therefore imperative to assess the presented method 

for the degree of autonomy it can offer. The method 

is by formulation, a predictive one, where a reference 

control profile is corrected based on the terminal error 

in the predicted trajectory. However, it is not important 

that an optimal control profile is available for the initial 

predictions. Any arbitrary profile should be adequate, 

as long as the predicted trajectory is not too far from 

the required one. In order to ascertain the sensitivity of 

initial control guess, we apply a ‘zero’ profile as the initial 
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Fig. 8 Guided and unguided trajectories for both control and thrust perturbations (unit of time is seconds). 

 

 

 

 

 

 

 

 

 

Fig. 8. Guided and unguided trajectories for both control and thrust perturbations (unit of time is seconds).

Table 6. Terminal error for guided trajectory with both control and thrust problems.
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Table 6 Terminal error for guided trajectory with both control and thrust problems. 

kc T |∆hf| 
(m) 

|∆ f| 
(deg) 

|∆ f| 
(deg) 

|∆vf| 
(m/sec) 

|∆ f| 
(deg) 

|∆mf| 
(kg) 

1.15 1.05 74.99 8.32×10-5 1.54×10-7 0.44 0.0012 <1 
1.25 1.10 140.94 0.00016 2.97×10-7 0.81 0.0027 <1 
1.25 1.05 104.39 0.00012 2.17×10-7 0.57 0.0009 <1 
1.15 1.10 109.22 0.00012 2.26×10-7 0.68 0.0029 <1 
1.50 0.95 94.61 0.00016 1.96×10-7 0.40 0.0017 <1 
1.25 0.90 <1 8.74×10-7 1.61×10-9 0.07 0.0015 <1 
0.55 0.55 301.57 0.00028 5.24×10-7 1.97 0.0010 <1 
0.75 0.55 276.41 0.00026 4.89×10-7 1.76 0.0004 <1 
0.55 0.75 227.38 0.00022 4.06×10-7 1.52 0.0026 <1 
0.75 0.75 189.11 0.00019 3.46×10-7 1.24 0.0022 <1 
0.90 0.90 82.77 8.56×10-5 1.58×10-7 0.54 0.0016 <1 
0.85 0.85 120.49 0.00012 2.27×10-7 0.79 0.00198 <1 
0.95 0.95 42.63 4.48×10-5 8.29×10-8 0.28 0.00095 <1 
0.85 0.95 68.72 7.15×10-5 1.32×10-7 0.43 0.0010 <1 
0.95 0.85 98.37 0.00010 1.87×10-7 0.65 0.0018 <1 

 

Table 7 Terminal error for unguided trajectory with both control and thrust problems. 

kc T |∆hf| 
(m) 

|∆ f| 
(deg) 

|∆ f| 
(deg) 

|∆vf| 
(m/sec) 

|∆ f| 
(deg) 

|∆mf| 
(kg) 

1.15 1.05 1707.41 0.0102 1.89×10-7 64.88 0.95 333.23 
1.25 1.10 3089.19 0.0208 3.88×10-7 136.27 1.74 667 
1.25 1.05 2630.38 0.0081 1.51×10-5 45.45 1.43 331.2 
1.15 1.10 2110.08 0.0231 4.30×10-5 156.94 1.23 666.46 
1.50 0.95 3751.74 0.0223 4.13×10-5 176.96 1.87 333.23 
1.25 0.90 1336.02 0.0288 5.31×10-5 211.10 0.54 666.47 
0.55 0.55 4350.21 0.1049 0.00019 688.57 3.02 2999.09 
0.75 0.55 3462.76 0.1053 0.00019 697.66 2.54 2999.09 
0.55 0.75 4231.41 0.0587 0.00010 381.26 2.62 1666.16 
0.75 0.75 2964.08 0.0593 0.00011 394.35 1.94 1666.16 
0.90 0.90 1362.47 0.0239 4.41×10-5 161.42 0.86 666.46 
0.85 0.85 1953.38 0.0357 6.59×10-5 240.26 1.25 999.70 
0.95 0.95 711.99 0.0119 2.22×10-5 81.34 0.45 333.23 
0.85 0.95 1546.39 0.011 2.02×10-5 68.73 0.88 333.23 
0.95 0.85 1224.82 0.0367 6.75×10-5 251.21 0.86 999.69 

 

Control problem has more prominent effect on the altitude and flight path angle. Error in vehicle mass is 

almost negligible. The results for control perturbation in Fig. 7 and Table 5 show that the method is capable 

of minimizing the effects. The terminal altitude error was within 100 meters; terminal flight path angle was 

also within the acceptable limits. Fig. 8 and Tables 6 and 7 show the results from the cases with both thrust 

and control problem. The method performs equally well for these fully perturbed cases. 
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control. In Fig. 9, we see that in the 3rd correction, the 

control profile from Gauss PMPC almost exactly matches 

the optimal one.

In Fig. 10, the altitude predictions are shown for the 

above control profiles. From the plot, it is evident that 

even with a deviation of around 7 km in initial prediction 

(with arbitrarily selected control profile), the proposed 

method could close in near to the optimal solution in the 

Table 7. Terminal error for unguided trajectory with both control and thrust problems.
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almost negligible. The results for control perturbation in Fig. 7 and Table 5 show that the method is capable 

of minimizing the effects. The terminal altitude error was within 100 meters; terminal flight path angle was 

also within the acceptable limits. Fig. 8 and Tables 6 and 7 show the results from the cases with both thrust 

and control problem. The method performs equally well for these fully perturbed cases. 
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6.3 Sensitivity of Initial Control Guess 

Autonomy is an important aspect of any guidance law. It is therefore imperative to assess the presented 

method for the degree of autonomy it can offer. The method is by formulation, a predictive one, where a 

reference control profile is corrected based on the terminal error in the predicted trajectory. However, it is 

not important that an optimal control profile is available for the initial predictions. Any arbitrary profile 

should be adequate, as long as the predicted trajectory is not too far from the required one. In order to 

ascertain the sensitivity of initial control guess, we apply a ‘zero’ profile as the initial control. In Fig. 9, we 

see that in the 3rd correction, the control profile from Gauss PMPC almost exactly matches the optimal one. 
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Fig. 9 Initial, corrected, and optimal control profiles (unit of time is seconds). 

In Fig. 10, the altitude predictions are shown for the above control profiles. From the plot, it is evident that 

even with a deviation of around 7 km in initial prediction (with arbitrarily selected control profile), the 

proposed method could close in near to the optimal solution in the very first step. The optimal solution was 

reached in the 3rd step with very negligible terminal errors (shown in Table 8). 

Fig. 9. Initial, corrected, and optimal control profiles (unit of time is seconds).
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Fig. 10 Predicted and optimal altitude profiles (unit of time is seconds). 

Table 8 Terminal state errors for predicted and optimal control profiles. 

Control profile |∆hf| 
(m) 

|∆ f| 
(deg) 

|∆ f| 
(deg) 

|∆vf| 
(m/sec) 

|∆ f| 
(deg) 

Initial guess 7992.7365 0.0002732 -5.0489e-007 -1.9872 -0.0027412 
1st control correction 8.4472 1.3e-005 -2.4121e-008 0.39154 0.010032 

2nd control correction 0.90389 9.6461e-007 -1.7812e-009 -0.023269 -0.00041848 

 

7. Conclusion 

A pseudospectral model predictive control method is proposed for exo-atmospheric guidance problem. 

The method is robust, because it relies on predicted trajectory for generating guidance solution. The method 

also has significant autonomy, because it does not necessarily need an optimal initial guess. The method is 

evaluated for thrust and control problems. The results indicate its feasibility in rejecting perturbations. 

However, the proposed method has only been applied for exo-atmospheric guidance; it does not consider the 

complete ascent flight. Further work is necessary to consider the complete ascent flight, including coast 

phases, in order to have a truly effective ascent guidance method. 
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Fig. 10. Predicted and optimal altitude profiles (unit of time is seconds).
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very first step. The optimal solution was reached in the 

3rd step with very negligible terminal errors (shown in 

Table 8).

7. Conclusion

A pseudospectral model predictive control method is 

proposed for exo-atmospheric guidance problem. The 

method is robust, because it relies on predicted trajectory 

for generating guidance solution. The method also has 

significant autonomy, because it does not necessarily need 

an optimal initial guess. The method is evaluated for thrust 

and control problems. The results indicate its feasibility in 

rejecting perturbations. However, the proposed method has 

only been applied for exo-atmospheric guidance; it does 

not consider the complete ascent flight. Further work is 

necessary to consider the complete ascent flight, including 

coast phases, in order to have a truly effective ascent 

guidance method.
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Fig. 10 Predicted and optimal altitude profiles (unit of time is seconds). 

Table 8 Terminal state errors for predicted and optimal control profiles. 

Control profile |∆hf| 
(m) 

|∆ f| 
(deg) 
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|∆vf| 
(m/sec) 
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7. Conclusion 

A pseudospectral model predictive control method is proposed for exo-atmospheric guidance problem. 

The method is robust, because it relies on predicted trajectory for generating guidance solution. The method 

also has significant autonomy, because it does not necessarily need an optimal initial guess. The method is 

evaluated for thrust and control problems. The results indicate its feasibility in rejecting perturbations. 

However, the proposed method has only been applied for exo-atmospheric guidance; it does not consider the 

complete ascent flight. Further work is necessary to consider the complete ascent flight, including coast 

phases, in order to have a truly effective ascent guidance method. 
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