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Abstract

The hypersonic flow on the stagnation streamline of a blunt body is analyzed with quasi one-dimensional (1-D) Navier-Stokes 

equations approximated by adopting the local similarity to the two-dimensional (2-D)/axisymmetric Navier-Stokes equations. 

The governing equations are solved using the implicit finite volume method. The computational domain is confined from the 

stagnation point to the shock wave, and the shock fitting method is used to find the shock position. We propose a boundary 

condition at the shock, which employs the shock wave angle in the vicinity of the stagnation streamline using the shock shape 

correlation. As a result of numerical computation conducted for the hypersonic flow over a sphere, the proposed boundary 

condition is shown to improve the accuracy of the prediction of the shock standoff distance. The quasi 1-D Navier-Stokes code 

is efficient in computing time and is reliable for the flow analysis along the stagnation streamline and the prediction of heat 

flux at the stagnation point in the hypersonic blunt body flow.
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1. Introduction

Flow field analysis around the nose tip and leading edge of 

the hypersonic vehicle has attracted much interest because 

the largest heat flux occurs in these regions. The Fay and 

Riddell formula [1], which is the correlation of numerical 

solutions of boundary layer equations, obtains the heat flux 

at the stagnation point of a blunt body and is still used today 

for quick analysis. After the success of Moretti and Abbett’s 

[2] work, computational fluid dynamics has progressed 

rapidly and is used widely in solving hypersonic blunt 

body flows. Fig. 1 shows a schematic of the hypersonic flow 

around a blunt body. In the typical approach to solving this 

flow, the computational domain should cover the subsonic 

region in the shock layer to ensure that the flow at the 

outflow boundary is supersonic. Therefore, although the 

stagnation properties are needed, we have to solve the two-

dimensional (2-D) domain. On the other hand, if the flow 

equations on the stagnation streamline can be solved, the 

computational time might be significantly reduced. Several 

researchers have attempted to solve the flow field along the 

stagnation streamline of a blunt body in supersonic and 

hypersonic flows. Kao [3] considered flow analysis near 

the stagnation streamline of a blunt body by applying local 

similarity to the 2-D Navier-Stokes equations in a rarefied 

flow. Jain and Adimurthy [4] investigated the flow structure 

of a merged layer near the stagnation point of a blunt body 

for flights in a rarefied atmosphere by solving Navier-Stokes 
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Fig. 1. Hypersonic flow around a blunt body. 
Fig. 1. ��Hypersonic flow around a blunt body.
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equations, adopting the concept of local similarity. These 

researches only considered flight conditions with very 

small Reynolds numbers in rarefied flow. The study by 

Klomfass and Müller [5] was the first attempt to adopt 

modern computational fluid dynamics algorithms to solve 

the conservative form of dimensionally reduced Navier-

Stokes equations approximated by Kao [3]. An implicit 

finite volume algorithm using the shock fitting method 

was applied to solve the equations. Also, William et al. [6] 

adopted the shock capturing method to solve quasi one-

dimensional (1-D) Navier-Stokes equations along the 

stagnation streamline of a sphere. According to the results 

by William et al. [6], the shock standoff distance at the 

stagnation point predicted by the dimensionally reduced 

quasi 1-D equations is about 10% shorter than that obtained 

by the original 2-D/axisymmetric equations. This tendency 

is the same as that shown in the result by Klomfass and 

Müller [5].

In this study, a computational procedure to solve the 

flow field along the stagnation streamline of a blunt body in 

hypersonic flow is suggested. Dimensionally reduced quasi 

1-D Navier-Stokes equations are solved by applying the 

implicit finite volume method. The computational domain 

is confined from the stagnation point to a shock wave, and 

the shock fitting method is used to find the shock position. 

The boundary condition at the shock is proposed, which 

employs the shock wave angle in the vicinity of the stagnation 

streamline using the shock shape correlation by Billig [7]. 

Numerical computations are conducted for hypersonic flow 

over a sphere to assess the accuracy of the quasi 1-D Navier-

Stokes code. Results such as the flow properties along the 

stagnation streamline, the shock standoff distance, and the 

stagnation point heat flux produced by the quasi 1-D Navier-

Stokes code are compared with those obtained by the 2-D/

axisymmetric Navier-Stokes code and experiment.

2. Governing Equations and Boundary Conditions

2.1 Governing Equations

Navier-Stokes equations in spherical coordinates (r,θ,ϕ) 

for rotationally symmetric flow 

3 

confined from the stagnation point to a shock wave, and the shock fitting method is used to find the 

shock position. The boundary condition at the shock is proposed, which employs the shock wave 

angle in the vicinity of the stagnation streamline using the shock shape correlation by Billig [7]. 

Numerical computations are conducted for hypersonic flow over a sphere to assess the accuracy of the 

quasi 1-D Navier-Stokes code. Results such as the flow properties along the stagnation streamline, the 

shock standoff distance, and the stagnation point heat flux produced by the quasi 1-D Navier-Stokes 

code are compared with those obtained by the 2-D/axisymmetric Navier-Stokes code and experiment. 

2. Governing Equations and Boundary Conditions

2.1 Governing Equations 

Navier-Stokes equations in spherical coordinates ��� �� ��  for rotationally symmetric flow 

� �
�����			����� are considered, and the freestream is in the direction of � � � as illustrated in Fig. 2. 

Dimensionally reduced quasi 1-D Navier-Stokes equations are obtained by applying the concept of 

local similarity used by Kao [3]. Local similarity is achieved by expanding the flow quantities in the 

powers of the distance from the stagnation point. If we designate the distance as sin �, the flow 

quantities are expanded about the axis of symmetry as follows: 

���� �� � ����� ��s � � ����� ��s � sin �
���� �� � ����� sin � � ����� sin� �
���� �� � ����� � �����	sin�� � �����	sin��                                               (1) 

���� �� � ����� � �����	sin��
���� �� � ����� � �����	sin��
���� �� � ����� � �����	sin��
Here, �	 is velocity in the radial direction, �	 is velocity in the tangential direction, �	 is pressure, 

�	 is density, �	 is temperature, and �	 is viscosity. In the above, only the terms corresponding to the 

first truncation are preserved, while for the pressure, �� is included in the first truncation [3] as 

indicated by the dotted line. Substituting the flow quantities of the first truncation into the original 

Navier-Stokes equations and equating terms that contain similar powers of sin �, yields a system of 

 are considered, 

and the freestream is in the direction of θ=0 as illustrated 

in Fig. 2. Dimensionally reduced quasi 1-D Navier-Stokes 

equations are obtained by applying the concept of local 

similarity used by Kao [3]. Local similarity is achieved by 

expanding the flow quantities in the powers of the distance 

from the stagnation point. If we designate the distance as 

sin θ, the flow quantities are expanded about the axis of 

symmetry as follows:

3 

confined from the stagnation point to a shock wave, and the shock fitting method is used to find the 

shock position. The boundary condition at the shock is proposed, which employs the shock wave 

angle in the vicinity of the stagnation streamline using the shock shape correlation by Billig [7]. 

Numerical computations are conducted for hypersonic flow over a sphere to assess the accuracy of the 

quasi 1-D Navier-Stokes code. Results such as the flow properties along the stagnation streamline, the 

shock standoff distance, and the stagnation point heat flux produced by the quasi 1-D Navier-Stokes 

code are compared with those obtained by the 2-D/axisymmetric Navier-Stokes code and experiment. 

2. Governing Equations and Boundary Conditions

2.1 Governing Equations 

Navier-Stokes equations in spherical coordinates ��� �� ��  for rotationally symmetric flow 

� �
�����			����� are considered, and the freestream is in the direction of � � � as illustrated in Fig. 2. 

Dimensionally reduced quasi 1-D Navier-Stokes equations are obtained by applying the concept of 

local similarity used by Kao [3]. Local similarity is achieved by expanding the flow quantities in the 

powers of the distance from the stagnation point. If we designate the distance as sin �, the flow 

quantities are expanded about the axis of symmetry as follows: 

���� �� � ����� ��s � � ����� ��s � sin �
���� �� � ����� sin � � ����� sin� �
���� �� � ����� � �����	sin�� � �����	sin��                                               (1) 

���� �� � ����� � �����	sin��
���� �� � ����� � �����	sin��
���� �� � ����� � �����	sin��
Here, �	 is velocity in the radial direction, �	 is velocity in the tangential direction, �	 is pressure, 

�	 is density, �	 is temperature, and �	 is viscosity. In the above, only the terms corresponding to the 

first truncation are preserved, while for the pressure, �� is included in the first truncation [3] as 

indicated by the dotted line. Substituting the flow quantities of the first truncation into the original 

Navier-Stokes equations and equating terms that contain similar powers of sin �, yields a system of 

(1)

Here, u is velocity in the radial direction, v is velocity 

in the tangential direction, p is pressure, ρ is density, T 

is temperature, and μ is viscosity. In the above, only the 
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while for the pressure, p2 is included in the first truncation 
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the equations for the stagnation streamline are specified by 
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the shock standoff distance with respect to θ is numerically 

approximated as follows:
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where θ1 is a numerically small value. In addition, δ1 is the 

shock standoff distance at the angle θ1, and can be calculated 

from the distance between the point at the shock (xs, ys) and 

the point at the body (xb, yb), as
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where x, y are the coordinates of the shock wave, Rs is the 

radius of curvature of the shock, and β is the wave angle. For 

a sphere, δ and Rs are calculated as
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Also, for the angle of θ1, the line in the radial direction with 

a slope of a=tan θ1 is given as
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Thus, we can obtain the coordinate of the point at the 

shock (xs, ys) using Eq. (12) and Eq. (15). The initial value of 

the shock distance at the stagnation line is obtained from 

Eq. (13) after the first iteration δ has been calculated from 
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the shock fitting algorithm. On the other hand, the radius 

of curvature of the shock, Rs, is obtained from Eq. (14) 

throughout the iterations.

At the shock boundary, the velocity is decomposed into the 

shock normal and shock tangent components with the shock 

angle θs. The flow quantities behind the shock are calculated by 

the Rankine-Hugoniot relations for moving shock as follows:
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In the above, subscript ∞ means ahead of the shock and 

subscript s means behind the shock, u and v are the velocity 

components normal and tangential to the shock, respectively, 

Vs is the shock velocity, and a is the speed of sound. From 

these equations, we can obtain the flow quantities behind 

the shock. With Eq. (1), the boundary condition at the shock 

wave is given as follows:
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3. Numerical Procedures

3.1 Spatial Discretization and Time Integration 

Eq. (2) is transformed into a generalized coordinate �	. Using a finite volume method, we obtain 

the following semidiscrete conservation approximation at a cell i with unit spacing ��	 � 1:
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where subscript 1 2⁄  means the interface of the cell and �  is the Jacobian of the coordinate 
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shock acceleration can be written as the chain rule as follows
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turbulence interaction problems. Among these evaluations, the shock fitting method developed by 

Henrick et al. [15] is employed in this study. This method uses the momentum equation along the 

shock normal direction instead of a characteristic relation. The momentum normal to the shock wave 

is obtained by using the Rankine-Hugoniot relations as 

���� �
�
∞
�����∞���∞�∞�	�����∞�����∞��∞����������∞��∞� ��

���∞���∞�����∞
�
�
��∞�����∞�

�                               (27) 

The momentum is only a function of shock velocity ��, and shock acceleration can be written as the 

chain rule as follows 

���
�� � ����������� ��� ���������                                                            (28) 

The derivative of the momentum with respect to the shock velocity is obtained from Eq. (27) and the 

term ����	������ is computed from the momentum equation while neglecting viscous terms as 

(28)

The derivative of the momentum with respect to the shock 

velocity is obtained from Eq. (27) and the term d(ρsus)/dt is 

computed from the momentum equation while neglecting 

viscous terms as
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�������
�� � � �������������� �� �

�
� ���������� � ����                                       (29) 

The shock velocity is then calculated from Eq. (28). The location of the shock is obtained from the 

shock velocity and the grid is modified to follow the new position of the shock at every time step. 

 

4. Results and Discussions 

The test case is a hypersonic flow over a sphere in calorically perfect gas with �	 � 2�7	����K,

� � �.4. The nose radius of a sphere is 0.02794	�. The freestream conditions are �∞ � �0.�,

�∞ � 47.�	�, and ��∞ � �.� � �0� , and the wall temperature is 294.4	K. Viscosity is calculated 

from Sutherland’s law, and a constant Prandtl number of 0.72  is assumed. These conditions 

correspond to the experimental conditions of Ref. [16]. 

First, we attempted to find the suitable value of �� in Eq. (10). Calculations are conducted for 

values of �� 1.0, 0.1, 0.01, and 0.001. The number of grid points is 200 for all calculations. Figs. 4(a) 

and 4(b) show the effect of �� on the prediction of shock standoff distance and heat flux at the 

stagnation point. As shown in the results, the shock standoff distance and heat flux are almost the 

same for the variation of �� , except for the heat flux at �� of 1.0. Hereafter, �� of 0.01 is used for 

all calculations. We also tested the effect of the number of grid points on the results. Calculations are 

performed for four grid points, 100, 200, 400, and 800, and the shock standoff distance and heat flux 

at the stagnation point are compared in Fig. 5. The influence of the number of grid points on the shock 

standoff distance is minimal, as shown in Fig. 5(a). On the other hand, the heat flux at the stagnation 

point decreases as the number of grid points increases, as shown in Fig. 5(b), and the decrement of 

heat flux is largest when the number of grid points increases from 100 to 200. Through these results, 

the number of grid points of 200 is used for all calculations of the quasi 1-D code. 

Next, the results of the quasi 1-D Navier-Stokes code are validated through comparison with the 

results of the 2-D/axisymmetric Navier-Stokes code. The 2-D/axisymmetric code [10, 17] employs 

shock capturing method and has the same numerical algorithms for inviscid flux and time integration 

as described in the previous chapter. For the 2-D computation, the number of grid points along the 

(29)

The shock velocity is then calculated from Eq. (28). The 

location of the shock is obtained from the shock velocity and 

the grid is modified to follow the new position of the shock 

at every time step.

4. Results and Discussions

The test case is a hypersonic flow over a sphere in calorically 

perfect gas with R=287J/kgK, γ=1.4. The nose radius of a 

sphere is 0.02794m. The freestream conditions are M∞=10.6, 

T∞=47.3K and Re∞=1.1×105, and the wall temperature is 

294.4K. Viscosity is calculated from Sutherland’s law, 

and a constant Prandtl number of 0.72 is assumed. These 

conditions correspond to the experimental conditions of 

Ref. [16].

First, we attempted to find the suitable value of θ1 in Eq. 

(10). Calculations are conducted for values of θ1 1.0, 0.1, 

0.01, and 0.001. The number of grid points is 200 for all 

calculations. Figs. 4(a) and 4(b) show the effect of θ1 on the 

prediction of shock standoff distance and heat flux at the 

stagnation point. As shown in the results, the shock standoff 

distance and heat flux are almost the same for the variation 

of θ1, except for the heat flux at θ1 of 1.0. Hereafter, θ1 of 

0.01 is used for all calculations. We also tested the effect of 

the number of grid points on the results. Calculations are 

performed for four grid points, 100, 200, 400, and 800, and 

the shock standoff distance and heat flux at the stagnation 

point are compared in Fig. 5. The influence of the number 

of grid points on the shock standoff distance is minimal, as 

shown in Fig. 5(a). On the other hand, the heat flux at the 
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Fig. 4. (a) Effect of  on shock standoff distance for a sphere at Mach 10.6. 
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Fig. 4. ��(a) Effect of θ1 on shock standoff distance for a sphere at Mach 
10.6.
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Fig. 5. (a) Effect of the number of grid points on shock standoff distance for a sphere at Mach 10.6. 
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Fig. 5. ��(a) Effect of the number of grid points on shock standoff dis-
tance for a sphere at Mach 10.6.
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Fig. 4. (b) Effect of  on stagnation point heat flux for a sphere at Mach 10.6. 
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Fig. 4. ��(b) Effect of θ1 on stagnation point heat flux for a sphere at 
Mach 10.6.
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Fig. 5. (b) Effect of the number of grid points on stagnation point heat flux for a sphere at Mach 10.6. 
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Fig. 5. ��(b) Effect of the number of grid points on stagnation point heat 
flux for a sphere at Mach 10.6.
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stagnation point decreases as the number of grid points 

increases, as shown in Fig. 5(b), and the decrement of heat 

flux is largest when the number of grid points increases from 

100 to 200. Through these results, the number of grid points 

of 200 is used for all calculations of the quasi 1-D code.

Next, the results of the quasi 1-D Navier-Stokes code are 

validated through comparison with the results of the 2-D/

axisymmetric Navier-Stokes code. The 2-D/axisymmetric 

code [10, 17] employs shock capturing method and has 

the same numerical algorithms for inviscid flux and time 

integration as described in the previous chapter. For the 

2-D computation, the number of grid points along the 

body is 120 and normal to the body is 200. Fig. 6 shows 

pressure contours around a sphere produced by the 2-D/

axisymmetric code, and a distinct bow shock is captured 

without shock instability. For the computations of the quasi 

1-D code, freestream conditions are used as initial data and 

the fixed time step with the Courant-Friedrichs and Lewy 

(CFL) number of 10 is used. Figs. 7(a), 7(b), and 7(c) show 

the convergence histories of the density residual, shock 

velocity, and shock standoff distance, respectively. The 

shock velocity varies rapidly in the early stage of iteration, 

and then gradually converges to zero. The profiles of flow 

quantities along the stagnation streamline computed by the 

quasi 1-D code and 2-D/axisymmetric code are compared 

in Figs. 8(a) - 8(e). Two results are given for the quasi 1-D 

code: one using the normal shock boundary condition and 

the other using the proposed shock boundary condition. In 

the x axis, the value of 0 refers to the stagnation point and 

a negative value implies the distance from the stagnation 

point and terminates at the far field boundary. Distributions 

of density, pressure, temperature, and Mach number 

along the stagnation streamline are compared and show 

excellent agreement. In Fig. 8(e), the pressure profiles near 

the shock position are enlarged to clearly show the effect 

of the shock boundary conditions. It can be seen that the 

shock position predicted by the quasi 1-D code with present 

shock boundary condition is closer to the shock position by 

the 2-D/axisymmetric code than that with the normal shock 

boundary condition. In addition, Fig. 9 shows the comparison 

of velocities (u1,v1) computed by the quasi 1-D code with two 

boundary conditions at the shock. According to the results, 

the velocity profiles produced with two boundary conditions 

slightly differ, and the shock position predicted with the 

boundary condition of the normal shock wave is shorter 

than that with the present boundary condition. These results 

demonstrate that the proposed shock boundary condition 

improves the prediction capability of the shock position. Fig. 
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Fig. 6. Pressure contours for a sphere at Mach 10.6. 
Fig. 6. ��Pressure contours for a sphere at Mach 10.6.
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Fig. 7. (a) Convergence history of density residual of quasi 1-D code.
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Fig. 7. ��(a) Convergence history of density residual of quasi 1-D code.
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Fig. 7. (b) Convergence history of shock velocity of quasi 1-D code. 
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Fig. 7. ��(b) Convergence history of shock velocity of quasi 1-D code.
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Fig. 7. (c) Convergence history of shock standoff distance of quasi 1-D code. 
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Fig. 8. (a) Comparison of densities along the stagnation streamline of a sphere at Mach 10.6. 
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Fig. 8. ��(a) Comparison of densities along the stagnation streamline of 
a sphere at Mach 10.6.
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Fig. 8. (e) Enlarged profiles of pressures near the shock wave for a sphere at Mach 10.6. 
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Fig. 8. ��(e) Enlarged profiles of pressures near the shock wave for a 
sphere at Mach 10.6.
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Fig. 8. (b) Comparison of pressures along the stagnation streamline of a sphere at Mach 10.6. 
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Fig. 8. ��(b) Comparison of pressures along the stagnation streamline of 
a sphere at Mach 10.6.
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Fig. 8. (c) Comparison of temperatures along the stagnation streamline of a sphere at Mach 10.6. 
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Fig. 8. ��(c) Comparison of temperatures along the stagnation stream-
line of a sphere at Mach 10.6.
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Fig. 8. (d) Comparison of Mach numbers along the stagnation streamline of a sphere at Mach 10.6. 
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Fig. 8. ��(d) Comparison of Mach numbers along the stagnation stream-
line of a sphere at Mach 10.6.
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Fig. 9. Effect of shock boundary conditions on velocity profiles along the stagnation streamline. 
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Fig. 9. ��Effect of shock boundary conditions on velocity profiles along 
the stagnation streamline.
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Fig. 10. (a) Comparison of pressures at the stagnation point of a sphere at Mach 10.6. 
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Fig. 10. ��(a) Comparison of pressures at the stagnation point of a 
sphere at Mach 10.6.
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Fig. 10. (b) Comparison of heat fluxes at the stagnation point of a sphere at Mach 10.6. 
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Fig. 10. ��(b) Comparison of heat fluxes at the stagnation point of a 
sphere at Mach 10.6.
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10(a) shows the wall pressures computed by the two codes, 

which agree well at the stagnation point. Fig. 10(b) compares 

the heat fluxes at the stagnation point by the two codes and 

the experiment [16]. The heat flux predicted by the quasi 1-D 

code is slightly lower than those obtained by the experiment 

and the 2-D/axisymmetric code.

5. Conclusion

Numerical computations are conducted for a flow at Mach 

10.6 in perfect gas of a sphere by using the quasi 1-D Navier-

Stokes equations code. The distributions of flow quantities 

along the stagnation streamline, the shock standoff distance, 

and the heat flux at the stagnation point computed by the 

quasi 1-D code are compared with results obtained by the 

2-D Navier-Stokes code and experiment. The proposed 

shock boundary condition consequently improves the 

prediction of the shock standoff distance by providing more 

accuracy. The quasi 1-D code is more efficient in computing 

time and is more reliable for the flow field analysis along 

the stagnation streamline and prediction of heat flux at the 

stagnation point in hypersonic blunt body flows. Also, the 

quasi 1-D code will be useful for the prediction of heat flux 

at the stagnation point of a vehicle along the flight trajectory 

and for the examination of thermo-chemical models if 

numerical procedures are extended to thermochemical non-

equilibrium flow.
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