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Abstract

In this paper, the aeroelastic static response of flexible wings with arbitrary cross-section geometry via a coupled CUF-

XFLR5 approach is presented. Refined structural one-dimensional (1D) models, with a variable order of expansion for the 

displacement field, are developed on the basis of the Carrera Unified Formulation (CUF), taking into account cross-sectional 

deformability. A three-dimensional (3D) Panel Method is employed for the aerodynamic analysis, providing more accuracy 

with respect to the Vortex Lattice Method (VLM). A straight wing with an airfoil cross-section is modeled as a clamped beam, 

by means of the finite element method (FEM). Numerical results present the variation of wing aerodynamic parameters, 

and the equilibrium aeroelastic response is evaluated in terms of displacements and in-plane cross-section deformation. 

Aeroelastic coupled analyses are based on an iterative procedure, as well as a linear coupling approach for different free 

stream velocities. A convergent trend of displacements and aerodynamic coefficients is achieved as the structural model 

accuracy increases. Comparisons with 3D finite element solutions prove that an accurate description of the in-plane cross-

section deformation is provided by the proposed 1D CUF model, through a significant reduction in computational cost.
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1. Introduction

The in-depth understanding of aeroelastic effects on 

deformable lifting bodies (LBs), due to steady and unsteady 

aerodynamic loadings, is a typical challenging issue for the 

current design of aerospace vehicles [1]. Furthermore, with 

the forthcoming employment of composite materials in next-

generation aircraft configurations, such as High-Altitude 

Long Endurance aircraft (HALE) [2], and strut-braced wings 

[3], accurate evaluation of the aeroelastic response becomes 

even more crucial [4].

Recently, special attention has been directed to the 

profitable exploitation of the aeroelastic phenomena 

comprehension , by studying the concept of morphing wings, 

which are able to adapt and optimize their shape depending 

on the specific flight conditions and mission profiles [5, 6]. 

The smart wing is very flexible and could allow a number of 

advantages, such as drag reduction and aeroelastic vibrations 

suppression by means of adaptive control [7] and different 

solutions, such as compliant structures [8], bi-stable laminate 

composites [9], piezoelectric [10] and shape memory alloy 

actuation [11].

In order to develop aeroelastic tools that are able to work 

in any regime and with any LB geometry, the literature from 

the last decades has been widely influenced by research 

devoted to build reliable methods, to couple computational 

fluid dynamics (CFD) or classical aerodynamic methods with 

the finite element method (FEM) for structural modeling [12]. 
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Valuable examples are in the review articles by Dowell and 

Hall [13], and Henshaw et al. [14]. Reduced approaches, for 

instance panel methods, are widely used for the classical 

aerodynamics of wings under some limitations [15], 

allowing a sizeable reduction in terms of computational 

cost [16, 17]. The assumption of undeformable airfoil-cross-

sections [18] is typically not proper for recent configurations, 

since the weight reduction makes wings more flexible and 

highly-deformable. Hence, two-dimensional (2D) plate/

shell and three-dimensional (3D) solid methods are usually 

employed for the structural modeling, instead of classical 

one-dimensional (1D) theories, such as the Euler-Bernoulli, 

Timoshenko, or Vlasov theories [19].

With the advent of smart wings, detailed structural 

and aeroelastic models are even more essential to fully 

exploit the non-classical effects in wing design, due to the 

properties characterizing advanced composite materials, 

such as anisotropy, heterogeneity and transverse shear 

flexibility. Beam-like components can be analyzed by means 

of refined one-dimensional (1D) formulations, which have 

the main advantage of a lower computational cost required 

compared with 2D and 3D models. A detailed review of the 

recent development of refined beam models can be found 

in [20]. El Fatmi [21] improved the displacement field over 

the beam cross-section, by introducing a warping function, 

to refine the description of normal and shear stress of the 

beam. Generalized beam theories (GBT) originated with 

Schardt’s work [22] and improved classical theories, by 

using a piecewise beam description of thin-walled sections 

[23]. An asymptotic type expansion, in conjunction with 

variational methods, was proposed by Berdichevsky et al. 

[24], where a commendable review of prior works on beam 

theory development was given. An alternative approach to 

formulating refined beam theories, based on asymptotic 

variational methods (VABS), has led to an extensive 

contribution in the last few years [25].

A considerable amount of research activity devoted to 

aeroelastic analysis and optimization was undertaken in 

the last decades, by using reduced 1D models. A review 

was carried out by Patil [26], who investigated the variation 

of aeroelastic critical speeds with the composite ply lay-

up of box beams, via the unsteady Theodorsen’s theory. A 

thin-walled anisotropic beam model in-corporating non-

classical effects was introduced by Librescu and Song [27] 

to analyze the sub-critical static aeroelastic response, and 

the divergence instability of swept-forward wing structures. 

Qin and Librescu [28] developed an aeroelastic model 

to investigate the influence of the directionality property 

of composite materials, and non-classical effects on the 

aeroelastic instability of thin-walled aircraft wings. Among 

the several composite rotor blades applications, the work 

done by Jeon and Lee [29] concerning the steady equilibrium 

deflections, via a large deflection type beam theory with 

small strains, is worth mentioning. An example of the use of a 

refined beam theory for aeroelastic analysis can be found in 

[30], where the static and dynamic responses of a helicopter 

rotor blade are evaluated by means of a YF/VABS model.

Higher-order 1D models with generalized displacement 

variables, based on the Carrera Unified Formulation, have 

recently been proposed by Carrera and co-authors, for the 

static and dynamic analysis of isotropic and composite 

structures [31]. The CUF is a hierarchical formulation, 

which considers the order of the model as a free-parameter 

of the analysis. In other words, models of any order can be 

obtained, with no need for ad hoc formulations, by exploiting 

a systematic procedure. Structural 1D CUF models were used 

to analyze the structural response of isotropic aircraft wings, 

under aerodynamic loads computed through the Vortex 

Lattice Method (VLM), in [32]. The aeroelastic CUF-VLM 

coupling was preliminarily formulated in [33] for isotropic flat 

plates, and then extended to instability divergence detection 

and the evaluation of composite material lay-up effects on 

the aeroelastic response of moderate and high-aspect ratio 

wing configurations, in [34]. Flutter analyses of composite 

lifting surfaces were also presented in [35], by coupling the 

CUF approach with the Doublet Lattice Method.

The present work couples a refined one-dimensional finite 

element model based on CUF to an aerodynamic 3D Panel 

Method, implemented in the software XFLR5. Two potential 

methods are here compared: the VLM and the 3D Panel 

Method. The aeroelastic static response of a straight wing 

is computed through a coupled iterative procedure, and a 

linear coupling approach. Particular attention is drawn to 

the in-plane deformation of the wing airfoil cross-sections, 

as well as the aeroelastic influence of free stream velocity.

2.  Numerical models: refined 1D CUF model 
and panel methods

2.1 Variable kinematic 1D CUF FE model

For the sake of completeness, some details about the 

formulation of CUF finite elements are here retrieved from 

previous works [32, 34]. A structure with axial length L and 

cross-section Ω is discretized through a mesh of NEL 1D finite 

elements. A cartesian coordinate system is defined with axes 

x and z parallel to the cross-section, whereas y represents 

the longitudinal coordinate. According to the displacement-

based framework of CUF [31], the displacement field is 
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assumed to be an expansion of a certain class of functions  

Fτ, which depend on the cross-section coordinates x 

and z. Introducing the shape functions Ni and the nodal 

displacement vector 

5

���, �, �� �  ���x, z� ����� ���
� � �, � , ��
� � �, � , �� � ���� � 2�/2   (1)

where ��� contains the degrees of freedom of the ��� expansion term corresponding to the ��� ele-

ment node. The compact expression in Eq. 1 is based on Einstein's notation: repeated subscripts �
and � indicate summation. Multivariate Taylor's polynomials of the x and z variables are employed 

here as cross-section functions �� and � is defined as the expansion order, which is a free parameter 

of the formulation. Elements with number of nodes �� � � are formulated in the present work and 

named ��, using third-order Lagrange polynomials as shape functions [19]. The number of degrees 

of freedom (DOFs) used through the proposed approach is: 

���� � � �� � ���� � 2�
2 ����� � �� (2)

The variational statement employed is the Principle of Virtual Displacements: 

����� � � ������� � ������� �� �
�

����� � ���� (3)

where ���� is the internal strain energy and ���� is the work of external loadings variationally con-

sistent with the present method and here derived for the case of a generic concentrated load 

� � ����  ���  ����� acting on the arbitrary load application point ���, ��, ���, which does not nec-

essarily lies along the 1D finite element mesh, unlike standard 1D FE models. � stands for the virtual 

variation. By using Eq. 1, ����� becomes: 

����� � ���� � ����� �� �� � � ����� ��� (4)

where �� is evaluated in ���, ��� and �� is calculated in ��. In the case of small displacements 

with respect to the length �, the inplane (subscript �) and out-of-plane (subscript �) cross-section 

stress and strain vectors in Eq. 3 are related to the displacement vector via linear differential matrix 

operators ��, �� and material stiffness matrices ���, ���, ���, ��� as follows: 

�� � ���
�� � ���        �� � ����� � �����

�� � ����� � �����
(5)

Using Eq. 5, Eq. 3 can be rewritten in terms of virtual nodal displacements: 

����� ����� ��� � ����� ��� (6)

, the displacement vector 
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 with 

components ux, uy, and uz becomes:
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 contains the degrees of freedom of the τ-th 

expansion term corresponding to the i-th element node. The 

compact expression in Eq. 1 is based on Einstein’s notation: 

repeated subscripts τ and i indicate summation. Multivariate 

Taylor’s polynomials of the x and z variables are employed 

here as cross-section functions Fτ, and N is defined as the 

expansion order, which is a free parameter of the formulation. 

Elements with number of nodes NN=4 are formulated in the 

present work, and named B4, using third-order Lagrange 

polynomials as shape functions [19]. The number of degrees 

of freedom (DOFs) used through the proposed approach is:
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using Eq. 1, δLext becomes:
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where the  and fundamental nuclei and  are introduced. From Eq. 6 the go-

verning equation of motion can be derived through a finite element assembly procedure: 

 (7)

where  is the structural stiffness matrix and  is the vector of equivalent nodal forces. It should be 

noted that no assumptions on the expansion order have been made so far. Therefore, it is possible to 

obtain higher-order 1D models without changing the formal expression of the nuclei components as 

well as classical beam models such as Euler-Bernoulli's and Timoshenko's. Higher-order models pro-

vide an accurate description of the shear mechanics, the in-plane and out-of-plane cross-section de-

formation, Poisson's effect along the spatial directions and the torsional mechanics in more detail than 

classical models do. Thanks to the CUF, the present hierarchical approach is invariant with respect to 
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where ��� contains the degrees of freedom of the ��� expansion term corresponding to the ��� ele-

ment node. The compact expression in Eq. 1 is based on Einstein's notation: repeated subscripts �
and � indicate summation. Multivariate Taylor's polynomials of the x and z variables are employed 

here as cross-section functions �� and � is defined as the expansion order, which is a free parameter 

of the formulation. Elements with number of nodes �� � � are formulated in the present work and 

named ��, using third-order Lagrange polynomials as shape functions [19]. The number of degrees 

of freedom (DOFs) used through the proposed approach is: 
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The variational statement employed is the Principle of Virtual Displacements: 
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where ���� is the internal strain energy and ���� is the work of external loadings variationally con-

sistent with the present method and here derived for the case of a generic concentrated load 

� � ����  ���  ����� acting on the arbitrary load application point ���, ��, ���, which does not nec-

essarily lies along the 1D finite element mesh, unlike standard 1D FE models. � stands for the virtual 
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where �� is evaluated in ���, ��� and �� is calculated in ��. In the case of small displacements 

with respect to the length �, the inplane (subscript �) and out-of-plane (subscript �) cross-section 

stress and strain vectors in Eq. 3 are related to the displacement vector via linear differential matrix 
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Using Eq. 5, Eq. 3 can be rewritten in terms of virtual nodal displacements: 
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2.2.2 XFLR5: an implementation of aerodynamic potential methods 

XFLR5 is a software developed by Andre Deperrois. It performs viscous and inviscid aerodynamic 

analysis on airfoils and wings using three potential methods: the Lifting Line Theory (LLT), the VLM 

and the 3D Panel Method. The LLT method derives from the Prandtl's wing theory and considers the 

wing as a linear distribution of vortices. The VLM considers a wing as an infinitely thin lifting surface 

via a distribution of vortices placed over a wing reference surface. This method requires the non-

penetration condition on the reference surface as a boundary condition. Hence, the normal component 

of the induced velocity on the generic i-th aerodynamic panel with normal vector  is equal to 

zero:
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Further details on this method can be found in [15]. The 3D Panel Method schematizes the wing sur-

face as a distribution of doublets and sources. The strength of the doublets and sources is calculated to 

meet the appropriate boundary conditions (BCs), which may be of Dirichlet- or Neumann-type. Ac-
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Neumann-type. According to the creator of the program, 
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Panel Method employs a low-order panel method. The LLT 
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the mean surface between the upper and the lower wing 

surfaces. The 3D Panel Method is able to calculate the 

pressure coefficients on both the upper and the lower wing 
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3.  Aeroelastic static response analysis via 
the CUF-XFLR5 approach

In this work the aeroelastic static response of the wing 

is computed through an iterative procedure, based on a 

coupled CUF-XFLR5 method. Hence, the aerodynamic 

analysis is performed through the potential methods 

available in XFLR5, as previously mentioned; whereas, 

variable kinematic 1D CUF models provide the structural 

wing deformation with a variable expansion order N. 

3.1 Iterative procedure

Figure 1 shows in detail the aeroelastic iterative process, 

which starts with the evaluation of the pressure coefficients 
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be repeated for each iteration are: 

1. post-processing calculation of the aerodynamic forces;
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where  and  are the cartesian components of the relative displacement vector  along the 

chord direction x and the transversal direction z, respectively, between the deformed cross-section and 
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where △ux and △uz are the cartesian components of the 

relative displacement vector △
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where ��� contains the degrees of freedom of the ��� expansion term corresponding to the ��� ele-

ment node. The compact expression in Eq. 1 is based on Einstein's notation: repeated subscripts �
and � indicate summation. Multivariate Taylor's polynomials of the x and z variables are employed 

here as cross-section functions �� and � is defined as the expansion order, which is a free parameter 

of the formulation. Elements with number of nodes �� � � are formulated in the present work and 

named ��, using third-order Lagrange polynomials as shape functions [19]. The number of degrees 

of freedom (DOFs) used through the proposed approach is: 

���� � � �� � ���� � 2�
2 ����� � �� (2)

The variational statement employed is the Principle of Virtual Displacements: 

����� � � ������� � ������� �� �
�

����� � ���� (3)

where ���� is the internal strain energy and ���� is the work of external loadings variationally con-

sistent with the present method and here derived for the case of a generic concentrated load 

� � ����  ���  ����� acting on the arbitrary load application point ���, ��, ���, which does not nec-

essarily lies along the 1D finite element mesh, unlike standard 1D FE models. � stands for the virtual 

variation. By using Eq. 1, ����� becomes: 

����� � ���� � ����� �� �� � � ����� ��� (4)

where �� is evaluated in ���, ��� and �� is calculated in ��. In the case of small displacements 

with respect to the length �, the inplane (subscript �) and out-of-plane (subscript �) cross-section 

stress and strain vectors in Eq. 3 are related to the displacement vector via linear differential matrix 

operators ��, �� and material stiffness matrices ���, ���, ���, ��� as follows: 

�� � ���
�� � ���        �� � ����� � �����

�� � ����� � �����
(5)

Using Eq. 5, Eq. 3 can be rewritten in terms of virtual nodal displacements: 

����� ����� ��� � ����� ��� (6)

 along the chord direction 

x and the transversal direction z, respectively, between 



DOI:10.5139/IJASS.2013.14.4.310 314

Int’l J. of Aeronautical & Space Sci. 14(4), 310–323 (2013)

the deformed cross-section and the base section. Given 

a structural model, the base section corresponds to the 

undeformed cross-section, shifted and rotated in such a way 

that its leading edge and trailing edge points correspond to 

the leading edge and trailing edge points, respectively, of the 

deformed cross-section obtained by such a structural model. 

The iterative process in Fig. 1 is stopped once the 

convergences of the lifting coefficient CL, the moment 

coefficient CM, and the cross-section distortion of the wing 

sections are achieved simultaneously. The description of 

a similar iterative process can also be found in [12]. The 

convergence controls are thus:
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where ���� is equal to 10��, ��� , ��� , and ��� are the lifting coefficient, the moment coefficient, and 

the average cross-section distortion for the generic i-th iteration, respectively. The average distortion 

�� is defined in Eq. 18. A linear approach is adopted as usual in classical aeroelasticity: for each itera-

tion the aerodynamic loads computed for the deformed wing configuration are applied to the unde-

formed configuration, without changing the structural stiffness matrix � of Eq. 7. 

3.2 Aerodynamic loads computation 

The aerodynamic load computed by XFLR5 is a distributed pressure and in this work it is modeled as 

distributed forces. The generic force acting on the j-th aerodynamic panel is evaluated as: 

�� � 1
2 · �� · ��� · �� · ��

� (15)

where ��  is the free stream velocity and ��  is the air density. ��  is the area of the j-th 

aerodynamic panel which the pressure coefficient ��
�  refers to. According to XFLR5 notation, 

normal vectors are considered positive when ��
� is negative and their verse is outer-pointing. Each 

aerodynamic force is transferred from the aerodynamic model to the structural model following the 

approach described in section 2.1 for the generic concentrated load �.

(13)
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where the  and fundamental nuclei and  are introduced. From Eq. 6 the go-

verning equation of motion can be derived through a finite element assembly procedure: 

 (7)

where  is the structural stiffness matrix and  is the vector of equivalent nodal forces. It should be 

noted that no assumptions on the expansion order have been made so far. Therefore, it is possible to 

obtain higher-order 1D models without changing the formal expression of the nuclei components as 

well as classical beam models such as Euler-Bernoulli's and Timoshenko's. Higher-order models pro-

vide an accurate description of the shear mechanics, the in-plane and out-of-plane cross-section de-

formation, Poisson's effect along the spatial directions and the torsional mechanics in more detail than 

classical models do. Thanks to the CUF, the present hierarchical approach is invariant with respect to 

the order of the displacement field expansion. More details are not reported here, but can be found in 

the work of [31]. 

2.2 A numerical approach for wing aerodynamic analysis 

2.2.1 Preliminaries 

The evaluation of aerodynamic loads can be typically carried out through a CFD code which solves 

for example either Navier-Stokes equations or Euler equations numerically. This kind of analysis has 

a high computational cost but under some assumptions it is possible to employ simplified approaches. 

In the wing cases considered in the present work, the flow field is assumed to be steady and the fluid 

viscosity is not decisive since the viscous effects can be confined into a small region (boundary layers 

and wake regions). The fluid can be thus considered as inviscid and the flow field is irrotational, since 

the curl of the velocity vector  is equal to zero: 

 (8)

In this case the velocity vector  can be considered as the gradient of a potential function :

 (9)

Hence, the analysis of a wing or an airfoil under these conjectures can be performed by potential me-

thods. The potential function describing the flow field around an object can be defined as a combina-

tion of singularities such as doublets, vortices, sources or uniform flux over the external body surface. 

 of Eq. 7.
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where ���� is the internal strain energy and ���� is the work of external loadings variationally con-

sistent with the present method and here derived for the case of a generic concentrated load 
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Fig. 1. Aeroelastic iterative procedure, with controllers on aerodynamic coefficients and wing defor-
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Fig. 1. Aeroelastic iterative procedure, with controllers on aerodynamic coefficients and wing deformation.
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4. Numerical results

4.1 Aerodynamic assessment

Firstly, an aerodynamic assessment of the VLM and the 

3D Panel Method, which are able to evaluate the pressure 

coefficients on the wing surface, is performed analyzing 

the effects of two typical geometrical parameters: the airfoil 

thickness and the camber line. A straight wing is considered: 

the wing span is 10 m, and the airfoil chord is 1 m long, as 

drawn in Fig. 2a, where the right half-wing is depicted. This 

wing configuration is also used in the following structural 

and aeroelastic analyses. The effect of the camber line on 

the aerodynamic field is evaluated, using NACA 2415, 3415 

and 4415 airfoils. The analysis of the influence of the airfoil 

thickness is then carried out, using the symmetric NACA 

0005, 0010 and 0015 airfoils. The number of aerodynamic 

panels is chosen as a compromise between the limit number 

of panels that can be used in XFLR5 (= 5,000) [38], and the 

number of panels required, in order to achieve convergence 

in the aerodynamic results. In the following analyses, the 

choice of 

10 

For each iteration, the three-dimensional deformed configuration of the wing is built using 11 airfoils 

along the half-wing span at a distance of 0.5 m from each other. The first section lies at the wing root. 

The wing is discretized through a lattice of quadrilateral aerodynamic panels. Let ����  be the number 

of panels along the chord line and let ���
�  be the number of panels along the half-wing span. When 

the VLM is employed the total number of aerodynamic panels ��� is equal to � � ����  � ���
� . For 

the 3D Panel Method ���  must be calculated as � � ����  � ���
�  � � � ���� , where the term 

� � ����  � ���
�   is the number of panels along the wing span on the upper and lower surfaces of the 

wing. In addition, the term  � � ����  is the number of panels placed on the tip lateral cross-sections. 

For the sake of convenience, only half-wing is analyzed since the aerodynamic loads are considered to 

be symmetric with respect to the wing root. 

4. Numerical results 

4.1 Aerodynamic assessment 

Firstly an aerodynamic assessment of VLM and 3D Panel Method, which are able to evaluate the 

pressure coefficients on the wing surface, is performed analyzing the effects of two typical geometric-

al parameters: the airfoil thickness and the camber line. A straight wing is considered: the wing span 

is 10 m and the airfoil chord is 1 m long as drawn in Fig.2a, where the right half-wing is depicted. 

This wing configuration is also used in the following structural and aeroelastic analyses. The effect of 

the camber line on the aerodynamic field is evaluated using NACA 2415, 3415 and 4415 airfoils. The 

analysis of the influence of the airfoil thickness is then carried out using the symmetric NACA 0005, 

0010 and 0015 airfoils. The number of aerodynamic panels is chosen as a compromise between the 

limit number of panels that can be used in XFLR5 (= 5,000) [38] and the number of panels required in 

order to achieve convergence in the aerodynamic results. In the following analyses, the choice of 

���� � �� and ���
� � �� remains the same. 

For the present assessment analysis the free stream velocity is assumed to be �� � �� ��� such that 

the compressibility effects can be neglected. The air density is assumed to be � � � ����� �� ��⁄ .

The angle of attack  of the wing is equal to 3 deg. In all the following analyses the air density ��

 and 

10 

For each iteration, the three-dimensional deformed configuration of the wing is built using 11 airfoils 

along the half-wing span at a distance of 0.5 m from each other. The first section lies at the wing root. 

The wing is discretized through a lattice of quadrilateral aerodynamic panels. Let ����  be the number 

of panels along the chord line and let ���
�  be the number of panels along the half-wing span. When 

the VLM is employed the total number of aerodynamic panels ��� is equal to � � ����  � ���
� . For 

the 3D Panel Method ���  must be calculated as � � ����  � ���
�  � � � ���� , where the term 

� � ����  � ���
�   is the number of panels along the wing span on the upper and lower surfaces of the 

wing. In addition, the term  � � ����  is the number of panels placed on the tip lateral cross-sections. 

For the sake of convenience, only half-wing is analyzed since the aerodynamic loads are considered to 

be symmetric with respect to the wing root. 

4. Numerical results 

4.1 Aerodynamic assessment 

Firstly an aerodynamic assessment of VLM and 3D Panel Method, which are able to evaluate the 

pressure coefficients on the wing surface, is performed analyzing the effects of two typical geometric-

al parameters: the airfoil thickness and the camber line. A straight wing is considered: the wing span 

is 10 m and the airfoil chord is 1 m long as drawn in Fig.2a, where the right half-wing is depicted. 

This wing configuration is also used in the following structural and aeroelastic analyses. The effect of 

the camber line on the aerodynamic field is evaluated using NACA 2415, 3415 and 4415 airfoils. The 

analysis of the influence of the airfoil thickness is then carried out using the symmetric NACA 0005, 

0010 and 0015 airfoils. The number of aerodynamic panels is chosen as a compromise between the 

limit number of panels that can be used in XFLR5 (= 5,000) [38] and the number of panels required in 

order to achieve convergence in the aerodynamic results. In the following analyses, the choice of 

���� � �� and ���
� � �� remains the same. 

For the present assessment analysis the free stream velocity is assumed to be �� � �� ��� such that 

the compressibility effects can be neglected. The air density is assumed to be � � � ����� �� ��⁄ .

The angle of attack  of the wing is equal to 3 deg. In all the following analyses the air density ��

 remains the same.

For the present assessment analysis, the free stream velocity 

is assumed to be 

9

the base section. Given a structural model, the base section corresponds to the undeformed cross-

section shifted and rotated in such a way that its leading edge and trailing edge points corresponds to 

the leading edge and trailing edge points of the deformed cross-section obtained by such a structural 

model.  

The iterative process in Fig. 1 is stopped once the convergences of the lifting coefficient ��, the mo-

ment coefficient ��, and the cross-section distortion of the wing sections are achieved simultaneously. 

The description of a similar iterative process can be found also in [12]. The convergence controls are 

thus:

���� � ������
���

� ���� � ���� � ������
���

� ���� (13)

���� � ������
��� � ���� (14)

where ���� is equal to 10��, ��� , ��� , and ��� are the lifting coefficient, the moment coefficient, and 

the average cross-section distortion for the generic i-th iteration, respectively. The average distortion 

�� is defined in Eq. 18. A linear approach is adopted as usual in classical aeroelasticity: for each itera-

tion the aerodynamic loads computed for the deformed wing configuration are applied to the unde-

formed configuration, without changing the structural stiffness matrix � of Eq. 7. 

3.2 Aerodynamic loads computation 

The aerodynamic load computed by XFLR5 is a distributed pressure and in this work it is modeled as 

distributed forces. The generic force acting on the j-th aerodynamic panel is evaluated as: 

�� � 1
2 · �� · ��� · �� · ��

� (15)

where ��  is the free stream velocity and ��  is the air density. ��  is the area of the j-th 

aerodynamic panel which the pressure coefficient ��
�  refers to. According to XFLR5 notation, 

normal vectors are considered positive when ��
� is negative and their verse is outer-pointing. Each 

aerodynamic force is transferred from the aerodynamic model to the structural model following the 

approach described in section 2.1 for the generic concentrated load �.
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and the angle of attack  will be invariable parameters. The results focus on the variation of the 

spanwise local lifting coefficient �� along the wing span defined as: 

����� � ����
1
2 � �� � ��� � 2 � ���� � ���� (16)

where ���� and ���� are the chord and the Lift Force generated by the pressure acting on the pa-

nels with span-length 2 ���� placed at the y coordinate. More details can be found in [32]. As a first 

result, the trend of �� along the y axis (right half-wing) is reported in Fig. 3a. This analysis is carried 

out considering the variation of the airfoil thickness. As expected, the VLM is not able to take into ac-

count the variation of airfoil thickness, since it computes aerodynamic pressures on the wing reference 

surface, and underestimates �� with respect to the 3D Panel Method. On the contrary, the 3D Panel 

Method is able to evaluate the change of the lifting coefficient as the airfoil thickness increases, as can 

be seen in Fig. 3a.  

Figure 3b reports the trend of the spanwise local lifting coefficient ��  as the camber line changes. It 

is evident that both aerodynamic methods are able to analyze the influence of the camber line. Com-

paring Figs. 3a and 3b it should to be noted that the spanwise local lifting coefficient, and thus the 

aerodynamic pressures, is affected more by the camber line change than the airfoil thickness change. 

It can be concluded that the 3D Panel Method is able to provide a more realistic evaluation of the 

pressure distribution on the wing than the VLM. Moreover, the 3D Panel Method affords pressure 

loads on the actual wing surface, which are fundamental for an accurate study of the actual wing de-

formation and airfoil distortion, in lieu of loads applied on a fictitious wing reference surface as for 

the VLM case. These reasons make the 3D Panel Method the recommended classical aerodynamic 

tool for the following aeroelastic wing analyses.  

4.2 Structural assessment 

In order to validate the results given by the proposed higher-order 1D CUF approach a comparison of 

the static structural wing response is here performed with MSC Nastran. Only the right half-wing of 

the straight configuration introduced in the previous aerodynamic assessment (see Fig. 2a) is consi-

dered here due to loads and structural symmetry. A clamped boundary condition is taken into account 
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2 � �� � ��� � 2 � ���� � ���� (16)

where ���� and ���� are the chord and the Lift Force generated by the pressure acting on the pa-

nels with span-length 2 ���� placed at the y coordinate. More details can be found in [32]. As a first 

result, the trend of �� along the y axis (right half-wing) is reported in Fig. 3a. This analysis is carried 

out considering the variation of the airfoil thickness. As expected, the VLM is not able to take into ac-

count the variation of airfoil thickness, since it computes aerodynamic pressures on the wing reference 

surface, and underestimates �� with respect to the 3D Panel Method. On the contrary, the 3D Panel 

Method is able to evaluate the change of the lifting coefficient as the airfoil thickness increases, as can 

be seen in Fig. 3a.  

Figure 3b reports the trend of the spanwise local lifting coefficient ��  as the camber line changes. It 

is evident that both aerodynamic methods are able to analyze the influence of the camber line. Com-

paring Figs. 3a and 3b it should to be noted that the spanwise local lifting coefficient, and thus the 

aerodynamic pressures, is affected more by the camber line change than the airfoil thickness change. 

It can be concluded that the 3D Panel Method is able to provide a more realistic evaluation of the 

pressure distribution on the wing than the VLM. Moreover, the 3D Panel Method affords pressure 

loads on the actual wing surface, which are fundamental for an accurate study of the actual wing de-

formation and airfoil distortion, in lieu of loads applied on a fictitious wing reference surface as for 

the VLM case. These reasons make the 3D Panel Method the recommended classical aerodynamic 

tool for the following aeroelastic wing analyses.  

4.2 Structural assessment 

In order to validate the results given by the proposed higher-order 1D CUF approach a comparison of 

the static structural wing response is here performed with MSC Nastran. Only the right half-wing of 

the straight configuration introduced in the previous aerodynamic assessment (see Fig. 2a) is consi-

dered here due to loads and structural symmetry. A clamped boundary condition is taken into account 
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Fig. 2. Geometrical configuration of the straight wing.
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Fig. 2. Geometrical configuration of the straight wing. 

(a) Effect of the airfoil thickness 
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(b) NACA 2415 airfoil cross-section, with variable thickness and 2 cells 

Fig. 2. Geometrical configuration of the straight wing. 

(a) Effect 

of the airfoil thickness 
                                       (a) Effect of the airfoil thickness                                                                                  (b) Effect of the airfoil camber line

Fig. 3.  Effects of the (a) airfoil thickness and (b) camber line on the spanwise local lifting coefficient Cl of the straight wing, along the y axis. Com-
parison of the VLM and the 3D Panel Method. 
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Table 1. Pressure distribution on the wing along the spanwise direction for the structural assessment. 

�� � ������, ��� � �������� ��⁄ , ���� � �
� ����� � ���������.

y [m] ������
���� � � � ���� 1.00 

���� � � � ���� 0.75 

���� � � � ���� 0.50 

���� � � � ���� 0.25 

=50m/s, 
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Table 1. Pressure distribution on the wing along the spanwise direction for the structural assessment. 

�� � ������, ��� � �������� ��⁄ , ���� � �
� ����� � ���������.

y [m] ������
���� � � � ���� 1.00 

���� � � � ���� 0.75 

���� � � � ���� 0.50 

���� � � � ���� 0.25 

=1.225kg/m3, α=3o.
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aerodynamic pressures on the wing reference surface, and 

underestimates Cl with respect to the 3D Panel Method. In 

contrast, the 3D Panel Method is able to evaluate the change 

of the lifting coefficient as the airfoil thickness increases, as 

can be seen in Fig. 3a. 

Figure 3b reports the trend of the spanwise local lifting 

coefficient Cl as the camber line changes. It is evident that 

both aerodynamic methods are able to analyze the influence 

of the camber line. Comparing Figs. 3a and 3b, it should be 

noted that the spanwise local lifting coefficient, and thus the 

aerodynamic pressures, are affected more by the camber line 

change than the airfoil thickness change. It can be concluded 

that the 3D Panel Method is able to provide a more realistic 

evaluation of the pressure distribution on the wing than 

the VLM. Moreover, the 3D Panel Method affords pressure 

loads on the actual wing surface, which are fundamental 

for an accurate study of the actual wing deformation and 

airfoil distortion, in lieu of loads applied on a fictitious 

wing reference surface, as for the VLM case. These reasons 

make the 3D Panel Method the recommended classical 

aerodynamic tool for the following aeroelastic wing analyses. 

4.2 Structural assessment

In order to validate the results given by the proposed 

higher-order 1D CUF approach, a comparison of the static 

structural wing response is here performed, with MSC 

Nastran. Only the right half-wing of the straight configuration 

introduced in the previous aerodynamic assessment (see Fig. 

2a) is considered here, due to loads and structural symmetry. 

A clamped boundary condition is taken into account for the 

root cross-section (at y=0), whereas the tip cross-section is 

free. The cross-section employed is a 2415 NACA airfoil, with 

constant thickness equal to 2 mm. A spar with a thickness 

equal to 2 mm is inserted along the spanwise direction, 

at 25% of the chord. The isotropic material adopted is 

aluminum: Young’s modulus E=69GPa, and Poisson’s ratio 

v=0.33. 

Due to the small thickness and the well-known aspect 

ratio restrictions typical of solid elements, this wing is 

modeled in MSC Nastran by 214,500 solid Hex8 elements 

and 426,852 nodes, corresponding to 1,280,556 degrees of 

freedom (DOFs). The same structure is analyzed through 

CUF models with a variable expansion order up to N=14, and 

discretized through a 1D mesh of 10 B4 finite elements (31 

nodes). The number of DOFs depends on N, as expressed in 

Eq. 2; for instance, with 10 B4 elements and N=14, the DOFs 

are 11,160. However, an analysis of the present structure is 

also carried out through a Nastran shell FE model, but it is 

not reported herein, for the sake of brevity. Nonetheless, 

the error obtained between 1D CUF and shell results is 

comparable with the error obtained between 1D CUF and 
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(b) Effect of the airfoil camber line 

Fig. 3. Effects of the (a) airfoil thickness, and (b) camber line, on the spanwise local lifting coefficient 

 of the straight wing, along the  axis. Comparison of VLM and the 3D Panel Method. 

, , .

(a) Airfoil upper surface 
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(b) Airfoil lower surface 

Fig. 4. Percent error obtained by different 1D CUF models in the computation of the distortion along 

the airfoil (a) upper, and (b) lower surfaces, at the wing tip cross-section (  m). Structural as-

sessment: static wing response to a variable pressure distribution. Reference solution: Nastran solid. 

 (a) Relative lifting coefficient                    (b) Moment coefficient 

Fig. 5. Convergence of lifting and moment coefficients in the iterative aeroelastic analysis, for struc-

tural models with different accuracy. Aerodynamic method: 3D Panel. .

                                                     (a) Airfoil upper surface                                                                                                  (b) Airfoil lower surface

Fig. 4.  Percent error obtained by different 1D CUF models in the computation of the distortion along the airfoil (a) upper and (b) lower surfaces, at 
the wing tip cross-section (y=5m). Structural assessment: static wing response to a variable pressure distribution. Reference solution: Nas-
tran solid.

Table 1.  Pressure distribution on the wing along the spanwise direc-
tion, for the structural assessment. 
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Table 1. Pressure distribution on the wing along the spanwise direction for the structural assessment. 

�� � �� ���, � � � ����� �� ��⁄ , ���� � �
� ����� � ������ ��.

y [m] ������
���� � � � ���� 1.00 
���� � � � ���� 0.75 
���� � � � ���� 0.50 
���� � � � ���� 0.25 

Table 2. Convergent values of lifting coefficient ������ and moment coefficient ������ for different 

structural models. �� = 30 m/s, ���� = 0.4637, ���� = - 0.1629. 

Table 3. Convergence of the average distortion �� [mm] in the iterative aeroelastic analysis for different 

structural models. Airfoil cross-section at � � � m. ��= 30 m/s. 

“-“ : convergence achieved with a tolerance ���� � ����.

Model ������ ������ �����
���� ���� DOFs 

N = 1 0.4643 - 0.1633 2 279 
N = 4 0.4641 - 0.1634 2 1,395 
N = 8 0.4667 - 0.1659 3 4,185 
N = 9 0.4877 - 0.1823 6 5,115 

N = 10 0.4953 - 0.1886 8 6,138 
N = 12 0.5034 - 0.1950 9 8,463 
N = 14 0.5090 - 0.1994 10 11,160 

Model 
Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 
N = 1 0.0402 0.0403 0.0403 - - - - - - - - - - 
N = 4 0.0135 0.0136 0.0136 - - - - - - - - - - 
N = 8 0.1729 0.1816 0.1820 0.1821 0.1821 - - - - - - - - 
N = 9 1.1441 1.4721 1.5624 1.5868 1.5934 1.5951 1.5956 1.5958 - - - - - 

N = 10 1.4177 1.9198 2.1159 2.1930 2.2234 2.2353 2.2400 2.2419 2.2426 2.2429 - - - 
N = 12 1.6738 2.2852 2.5542 2.6774 2.7340 2.7600 2.7719 2.7774 2.7799 2.7811 2.7816 2.7818 - 
N = 14 1.7925 2.4670 2.7867 2.9456 3.0250 3.0646 3.0844 3.0941 3.0990 3.1014 3.1027 3.1033 3.1035
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solid results.

A variable pressure distribution step-like along the 

spanwise direction is applied to the upper and lower wing 

surfaces, in order to simulate a real pressure distribution, see 

Table 1. The static structural response of the wing is evaluated 

in terms of the distortion s at the tip cross-section. For the 

upper and lower surfaces, Figs. 4a and 4b show the percent 

error e obtained by computing the distortion through 1D 

CUF models and the Nastran solid model, which is taken as 

reference:

12 

for the root cross-section (at ), whereas the tip cross-section is free. The cross-section employed 

is a 2415 NACA airfoil with constant thickness equal to 2 mm. A spar with a thickness equal to 2 mm 

is inserted along the spanwise direction at 25% of the chord. The isotropic material adopted is alumi-

num: Young's modulus , Poisson's ratio .

Due to the small thickness and the well-known aspect ratio restrictions typical of solid elements, this 

wing is modeled in MSC Nastran by 214,500 solid Hex8 elements and 426,852 nodes, corresponding 

to 1,280,556 degrees of freedom (DOFs). The same structure is analyzed through CUF models with a 

variable expansion order up to N=14 and discretized through a 1D mesh of 10 B4 finite elements (31 

nodes). The number of DOFs depends on N as expressed in Eq. 2; for instance, with 10 B4 elements 

and N=14 the DOFs are 11,160. However, an analysis of the present structure is carried out also 

through a Nastran shell FE model, but it is not reported herein for the sake of brevity. Nonetheless, the 

error obtained between 1D CUF and shell results is comparable with the error obtained between 1D 

CUF and solid results. 

A variable pressure distribution step-like along the spanwise direction is applied to the upper and low-

er wing surfaces in order to simulate a real pressure distribution, see Table 1. The static structural re-

sponse of the wing is evaluated in terms of the distortion s at the tip cross-section. For the upper and 

lower surfaces, Figs. 4a and 4b show the percent error e obtained computing the distortion through 1D 

CUF models and Nastran solid model, which is taken as reference: 

(17)

As depicted in Figs. 4a and 4b, the proposed 1D FEs provide a convergent solution by gradually ap-

proaching the Nastran solid results as the expansion order increases from 8 to 14, according to the 

conclusions made in previous CUF works [39]. For N=14 the maximum percent error is about 3% for 

the upper surface and about 2.7% for the lower surface. For the wing configuration considered, the 

choice of N=14 seems hence to be accurate enough to detect the cross-section distortion with an ac-

ceptable error with respect to Nastran 3D results and with a remarkable reduction in terms of DOFs 

(about a 91% reduction, 11,160 vs. 1,280,556). 

4.3 Aeroelastic coupling 

(17)

As depicted in Figs. 4a and 4b, the proposed 1D FEs 

provide a convergent solution, by gradually approaching 

the Nastran solid results, as the expansion order increases 

from 8 to 14, according to the conclusions made in previous 

CUF works [39]. For N=14, the maximum percent error is 

about 3% for the upper surface, and about 2.7% for the lower 

surface. For the wing configuration considered, the choice of 

N=14 seems hence to be accurate enough to detect the cross-

section distortion with an acceptable error with respect to 

the Nastran 3D results, and with a remarkable reduction in 

terms of DOFs (about a 91% reduction, 11,160 vs. 1,280,556).

4.3 Aeroelastic coupling

This section focuses on the results regarding the 

equilibrium aeroelastic response of a wing exposed to a 

free stream velocity 

9

the base section. Given a structural model, the base section corresponds to the undeformed cross-

section shifted and rotated in such a way that its leading edge and trailing edge points corresponds to 

the leading edge and trailing edge points of the deformed cross-section obtained by such a structural 

model.  

The iterative process in Fig. 1 is stopped once the convergences of the lifting coefficient ��, the mo-

ment coefficient ��, and the cross-section distortion of the wing sections are achieved simultaneously. 

The description of a similar iterative process can be found also in [12]. The convergence controls are 

thus:

���� � ������
���

� ���� � ���� � ������
���

� ���� (13)

���� � ������
��� � ���� (14)

where ���� is equal to 10��, ��� , ��� , and ��� are the lifting coefficient, the moment coefficient, and 

the average cross-section distortion for the generic i-th iteration, respectively. The average distortion 

�� is defined in Eq. 18. A linear approach is adopted as usual in classical aeroelasticity: for each itera-

tion the aerodynamic loads computed for the deformed wing configuration are applied to the unde-

formed configuration, without changing the structural stiffness matrix � of Eq. 7. 

3.2 Aerodynamic loads computation 

The aerodynamic load computed by XFLR5 is a distributed pressure and in this work it is modeled as 

distributed forces. The generic force acting on the j-th aerodynamic panel is evaluated as: 

�� � 1
2 · �� · ��� · �� · ��

� (15)

where ��  is the free stream velocity and ��  is the air density. ��  is the area of the j-th 

aerodynamic panel which the pressure coefficient ��
�  refers to. According to XFLR5 notation, 

normal vectors are considered positive when ��
� is negative and their verse is outer-pointing. Each 

aerodynamic force is transferred from the aerodynamic model to the structural model following the 

approach described in section 2.1 for the generic concentrated load �.

=30m/s, via the iterative CUF-XFLR5 

procedure. This analysis aims at evaluating the influence of 

the CUF expansion order N on the aeroelastic behavior of 

the structure, as the accurate description of the cross-section 

distortion depends on N. The same material and straight 

wing configuration as those considered in the previous 

assessment are employed here, see Fig. 2a. In this case, the 

cross-section is the NACA 2415 airfoil, depicted in Fig. 2b. The 

spar thickness t3 is constant and equal to 2 mm; whereas, the 

skin thickness of upper and lower surfaces varies gradually, 

from 2 mm (t1 in Fig. 2b) to 1 mm (t2 in Fig. 2b), in the zone 

between 40% and 45% of the chord. This particular choice is 

coherent with the purpose of studying a highly-deformable 

nonclassical cross-section. 

The 1D structural mesh consists of 10 B4 elements. For the 

sake of brevity, a convergent study on the number of mesh 

elements is not reported here. In fact, the choice of 10 B4 

elements yields a good evaluation of displacements for all the 

points of the structure, as detailed in [32, 34], where a similar 

structural case in terms of wing configuration and applied 

aerodynamic loads was studied via the present structural 

model, and successfully assessed with a commercial FE solid 

model. 

The aeroelastic analysis is now carried out following the 

iterative coupled procedure CUF-XFLR5 described in Fig. 

1, and varying N. The convergence process on the lifting 

and moment coefficients is drawn in Fig. 5a, by means 

of a dimensionless parameter 
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This section focuses on the results regarding the equilibrium aeroelastic response of a wing exposed to 

a free stream velocity  via the iterative CUF-XFLR5 procedure. This analysis aims at 

evaluating the influence of CUF expansion order N on the aeroelastic behavior of the structure, as the 

accurate description of the cross-section distortion depends on N. The same material and straight wing 

configuration as those considered in the previous assessment are employed here, see Fig. 2a. In this 

case the cross-section is the NACA 2415 airfoil depicted in Fig. 2b. The spar thickness  is constant 

and equal to 2 mm whereas the skin thickness of upper and lower surfaces varies gradually from 2 

mm (  in Fig. 2b) to 1 mm (  in Fig. 2b) in the zone between the 40% and the 45% of the chord. 

This particular choice is coherent with the purpose of studying a high-deformable nonclassical cross-

section.  

The 1D structural mesh consists of 10 B4 elements. For the sake of brevity, a convergent study on the 

number of mesh elements is not reported here. In fact, the choice of 10 B4 elements yields a good 

evaluation of displacements for all the points of the structure, as detailed in [32, 34], where a similar 

structural case in terms of wing configuration and applied aerodynamic loads was studied via the 

present structural model and successfully assessed with a commercial FE solid model.  

The aeroelastic analysis is now carried out following the iterative coupled procedure CUF-XFLR5 de-

scribed in Fig. 1 and varying N. The convergence process on the lifting and moment coefficients is 

drawn in Fig. 5a by means of a dimensionless parameter  and in Fig. 5b, respectively. 

 is the final convergent value of the lifting coefficient which is different for each expansion or-

der employed as well as the final convergent moment coefficient , as reported in Table 2. 

Hence, a different choice of N influences the structural response of the wing to the aerodynamic loads 

and consequently affects also the aerodynamic analysis, due to the aeroelastic coupling. The higher 

the expansion order employed the more difference appears between  ( ) and the initial 

value  ( ) evaluated for the undeformed wing. For the cases presented in this work, the number 

of iterations required to achieve the convergence of the lifting coefficient is the same as that one re-

quired to achieve the convergence of the moment coefficient. It can be seen that the increase of N cor-

responds to an increasing number of iterations  required to achieve the convergence of 

, and in Fig. 5b, 
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(b) Airfoil lower surface 

Fig. 4. Percent error obtained by different 1D CUF models in the computation of the distortion along 

the airfoil (a) upper, and (b) lower surfaces, at the wing tip cross-section (  m). Structural as-

sessment: static wing response to a variable pressure distribution. Reference solution: Nastran solid. 

 (a) Relative lifting coefficient                    (b) Moment coefficient 

Fig. 5. Convergence of lifting and moment coefficients in the iterative aeroelastic analysis, for struc-

tural models with different accuracy. Aerodynamic method: 3D Panel. .

                                                      (a) Relative lifting coefficient                                                                                (b) Moment coefficient

Fig. 5.  Convergence of lifting and moment coefficients in the iterative aeroelastic analysis, for structural models with different accuracy. Aerody-
namic method: 3D Panel. 
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Table 1. Pressure distribution on the wing along the spanwise direction for the structural assessment. 

�� � ������, ��� � �������� ��⁄ , ���� � �
� ����� � ���������.

y [m] ������
���� � � � ���� 1.00 

���� � � � ���� 0.75 

���� � � � ���� 0.50 

���� � � � ���� 0.25 

=30m/s.

Table 2.  Convergent values of lifting coefficient 
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Table 2. Convergent values of lifting coefficient ������ and moment coefficient ������ for different 

structural models. �� = 30 m/s, ���� = 0.4637, ���� = - 0.1629. 

Model ������ ������ �����
���� ���� DOFs 

N = 1 0.4643 - 0.1633 2 279 

N = 4 0.4641 - 0.1634 2 1,395 

N = 8 0.4667 - 0.1659 3 4,185 

N = 9 0.4877 - 0.1823 6 5,115 

N = 10 0.4953 - 0.1886 8 6,138 

N = 12 0.5034 - 0.1950 9 8,463 

N = 14 0.5090 - 0.1994 10 11,160 
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Table 1. Pressure distribution on the wing along the spanwise direction for the structural assessment. 
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Table 2. Convergent values of lifting coefficient ������ and moment coefficient ������ for different 

structural models. �� = 30 m/s, ���� = 0.4637, ���� = - 0.1629. 

Table 3. Convergence of the average distortion �� [mm] in the iterative aeroelastic analysis for different 

structural models. Airfoil cross-section at � � � m. ��= 30 m/s. 

“-“ : convergence achieved with a tolerance ���� � ����.

Model ������ ������ �����
���� ���� DOFs 

N = 1 0.4643 - 0.1633 2 279 
N = 4 0.4641 - 0.1634 2 1,395 
N = 8 0.4667 - 0.1659 3 4,185 
N = 9 0.4877 - 0.1823 6 5,115 

N = 10 0.4953 - 0.1886 8 6,138 
N = 12 0.5034 - 0.1950 9 8,463 
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Model 
Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 
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This section focuses on the results regarding the equilibrium aeroelastic response of a wing exposed to 

a free stream velocity  via the iterative CUF-XFLR5 procedure. This analysis aims at 

evaluating the influence of CUF expansion order N on the aeroelastic behavior of the structure, as the 

accurate description of the cross-section distortion depends on N. The same material and straight wing 

configuration as those considered in the previous assessment are employed here, see Fig. 2a. In this 

case the cross-section is the NACA 2415 airfoil depicted in Fig. 2b. The spar thickness  is constant 

and equal to 2 mm whereas the skin thickness of upper and lower surfaces varies gradually from 2 

mm (  in Fig. 2b) to 1 mm (  in Fig. 2b) in the zone between the 40% and the 45% of the chord. 

This particular choice is coherent with the purpose of studying a high-deformable nonclassical cross-

section.  

The 1D structural mesh consists of 10 B4 elements. For the sake of brevity, a convergent study on the 

number of mesh elements is not reported here. In fact, the choice of 10 B4 elements yields a good 

evaluation of displacements for all the points of the structure, as detailed in [32, 34], where a similar 

structural case in terms of wing configuration and applied aerodynamic loads was studied via the 

present structural model and successfully assessed with a commercial FE solid model.  

The aeroelastic analysis is now carried out following the iterative coupled procedure CUF-XFLR5 de-

scribed in Fig. 1 and varying N. The convergence process on the lifting and moment coefficients is 

drawn in Fig. 5a by means of a dimensionless parameter  and in Fig. 5b, respectively. 

 is the final convergent value of the lifting coefficient which is different for each expansion or-

der employed as well as the final convergent moment coefficient , as reported in Table 2. 

Hence, a different choice of N influences the structural response of the wing to the aerodynamic loads 

and consequently affects also the aerodynamic analysis, due to the aeroelastic coupling. The higher 

the expansion order employed the more difference appears between  ( ) and the initial 

value  ( ) evaluated for the undeformed wing. For the cases presented in this work, the number 

of iterations required to achieve the convergence of the lifting coefficient is the same as that one re-

quired to achieve the convergence of the moment coefficient. It can be seen that the increase of N cor-

responds to an increasing number of iterations  required to achieve the convergence of 

 is the final convergent value of the lifting 

coefficient, which is different for each expansion order 

employed, as well as the final convergent moment coefficient  
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aerodynamic coefficients. This tendency will be clearly explained afterwards as a consequence of the 

introduction of higher-order terms in the model formulation which enriches the displacement field.  

An average cross-section distortion �� is now introduced in order to evaluate the aeroelastic deforma-

tion of the cross-section shape along the wing span. Given an airfoil cross-section, the average distor-

tion �� is defined as: 

�� � � � � ��
� �� (18)

where � is the curvilinear coordinate along the external airfoil surface and � is the distortion of the 

single point of the external airfoil surface defined in Eq. 12. It is noteworthy that � is a positive 

quantity and a null value for the average distortion �� means no distortion. Figure 6 plots the trend of 

the average distortion along the wing span showing which are the most in-plane deformed airfoil 

cross-sections in the static aeroelastic equilibrium response. A remarkable variation in the trend of the 

average distortion appears depending on the accuracy of the structural model chosen. Models with an 

expansion order higher than 9 reveal that the section at � � � m appears to be the most distorted sec-

tion. 

For this cross-section, Table 3 presents the numerical values of average distortion �� in the iterative 

aeroelastic analysis for different structural theories. As occurred for the convergence of aerodynamic 

coefficients, the number of iterations ��������� � required to achieve the convergence of �� increases as 

N, and consequently DOFs, increases. In fact, increasing the expansion order N, the structural model 

becomes in general more deformable approaching the real structural behavior. It means that a com-

plete three-dimensional displacement field as well as local effects are evaluated with an increasing ac-

curacy, especially for structures with high-deformable cross-sections, see Figs. 4a and 4b. Since the 

model accuracy increases, the structural deformation is therefore more sensitive to the variations of 

aerodynamic loads, which are different for each iteration following the convergent trend in Figs. 5a 

and 5b, leading to an increasing ��������� �. Numerical results in Table 3 highlight that, given an expan-

sion order, a higher number of iterations is necessary to achieve convergence on structural distortion 
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distortion 

14 

aerodynamic coefficients. This tendency will be clearly explained afterwards as a consequence of the 

introduction of higher-order terms in the model formulation which enriches the displacement field.  

An average cross-section distortion �� is now introduced in order to evaluate the aeroelastic deforma-

tion of the cross-section shape along the wing span. Given an airfoil cross-section, the average distor-

tion �� is defined as: 

�� � � � � ��
� �� (18)

where � is the curvilinear coordinate along the external airfoil surface and � is the distortion of the 

single point of the external airfoil surface defined in Eq. 12. It is noteworthy that � is a positive 

quantity and a null value for the average distortion �� means no distortion. Figure 6 plots the trend of 

the average distortion along the wing span showing which are the most in-plane deformed airfoil 

cross-sections in the static aeroelastic equilibrium response. A remarkable variation in the trend of the 

average distortion appears depending on the accuracy of the structural model chosen. Models with an 

expansion order higher than 9 reveal that the section at � � � m appears to be the most distorted sec-

tion. 

For this cross-section, Table 3 presents the numerical values of average distortion �� in the iterative 

aeroelastic analysis for different structural theories. As occurred for the convergence of aerodynamic 

coefficients, the number of iterations ��������� � required to achieve the convergence of �� increases as 

N, and consequently DOFs, increases. In fact, increasing the expansion order N, the structural model 

becomes in general more deformable approaching the real structural behavior. It means that a com-

plete three-dimensional displacement field as well as local effects are evaluated with an increasing ac-

curacy, especially for structures with high-deformable cross-sections, see Figs. 4a and 4b. Since the 

model accuracy increases, the structural deformation is therefore more sensitive to the variations of 

aerodynamic loads, which are different for each iteration following the convergent trend in Figs. 5a 

and 5b, leading to an increasing ��������� �. Numerical results in Table 3 highlight that, given an expan-

sion order, a higher number of iterations is necessary to achieve convergence on structural distortion 

 means no distortion. Figure 6 plots the trend of 

the average distortion along the wing span, showing which 

are the most in-plane deformed airfoil cross-sections in 

the static aeroelastic equilibrium response. A remarkable 

variation in the trend of the average distortion appears, 

depending on the accuracy of the structural model chosen. 

Models with an expansion order higher than 9 reveal that 

the section at y=4 m appears to be the most distorted 

section.

For this cross-section, Table 3 presents the numerical 

values of average distortion 

14 

aerodynamic coefficients. This tendency will be clearly explained afterwards as a consequence of the 

introduction of higher-order terms in the model formulation which enriches the displacement field.  

An average cross-section distortion �� is now introduced in order to evaluate the aeroelastic deforma-

tion of the cross-section shape along the wing span. Given an airfoil cross-section, the average distor-

tion �� is defined as: 

�� � � � � ��
� �� (18)

where � is the curvilinear coordinate along the external airfoil surface and � is the distortion of the 

single point of the external airfoil surface defined in Eq. 12. It is noteworthy that � is a positive 

quantity and a null value for the average distortion �� means no distortion. Figure 6 plots the trend of 

the average distortion along the wing span showing which are the most in-plane deformed airfoil 

cross-sections in the static aeroelastic equilibrium response. A remarkable variation in the trend of the 

average distortion appears depending on the accuracy of the structural model chosen. Models with an 

expansion order higher than 9 reveal that the section at � � � m appears to be the most distorted sec-

tion. 

For this cross-section, Table 3 presents the numerical values of average distortion �� in the iterative 

aeroelastic analysis for different structural theories. As occurred for the convergence of aerodynamic 

coefficients, the number of iterations ��������� � required to achieve the convergence of �� increases as 

N, and consequently DOFs, increases. In fact, increasing the expansion order N, the structural model 

becomes in general more deformable approaching the real structural behavior. It means that a com-

plete three-dimensional displacement field as well as local effects are evaluated with an increasing ac-

curacy, especially for structures with high-deformable cross-sections, see Figs. 4a and 4b. Since the 

model accuracy increases, the structural deformation is therefore more sensitive to the variations of 

aerodynamic loads, which are different for each iteration following the convergent trend in Figs. 5a 

and 5b, leading to an increasing ��������� �. Numerical results in Table 3 highlight that, given an expan-

sion order, a higher number of iterations is necessary to achieve convergence on structural distortion 

 in the iterative aeroelastic 

analysis, for different structural theories. As occurred for 

the convergence of aerodynamic coefficients, the number 

33 

Fig. 6.  Spanwise distribution of the average distortion 
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Fig. 6. Spanwise distribution of the average distortion  of the airfoil cross-sections for different 

structural models. .

 of the airfoil 
cross-sections, for different structural models. 
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Table 1. Pressure distribution on the wing along the spanwise direction for the structural assessment. 

�� � ������, ��� � �������� ��⁄ , ���� � �
� ����� � ���������.

y [m] ������
���� � � � ���� 1.00 

���� � � � ���� 0.75 

���� � � � ���� 0.50 

���� � � � ���� 0.25 

=30m/s.
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Fig. 6. Spanwise distribution of the average distortion  of the airfoil cross-sections, for different 

structural models. .

Fig. 7.  Deformation of the airfoil cross-section at y=4m, computed for 
structural models with different accuracy. 
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Table 3.  Convergence of the average distortion 
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Table 3. Convergence of the average distortion  [mm] in the iterative aeroelastic analysis for different 

structural models. Airfoil cross-section at  m. = 30 m/s. 

Model 
Iteration

1 2 3 4 5 6 7 8 9 10 11 12 13 

N = 1 0.0402 0.0403 0.0403 - - - - - - - - - - 

N = 4 0.0135 0.0136 0.0136 - - - - - - - - - - 

N = 8 0.1729 0.1816 0.1820 0.1821 0.1821 - - - - - - - - 

N = 9 1.1441 1.4721 1.5624 1.5868 1.5934 1.5951 1.5956 1.5958 - - - - - 

N = 10 1.4177 1.9198 2.1159 2.1930 2.2234 2.2353 2.2400 2.2419 2.2426 2.2429 - - - 

N = 12 1.6738 2.2852 2.5542 2.6774 2.7340 2.7600 2.7719 2.7774 2.7799 2.7811 2.7816 2.7818 - 

N = 14 1.7925 2.4670 2.7867 2.9456 3.0250 3.0646 3.0844 3.0941 3.0990 3.1014 3.1027 3.1033 3.1035
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Table 1. Pressure distribution on the wing along the spanwise direction for the structural assessment. 
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of iterations 
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aerodynamic coefficients. This tendency will be clearly explained afterwards as a consequence of the 

introduction of higher-order terms in the model formulation which enriches the displacement field.  

An average cross-section distortion �� is now introduced in order to evaluate the aeroelastic deforma-

tion of the cross-section shape along the wing span. Given an airfoil cross-section, the average distor-

tion �� is defined as: 

�� � � � � ��
� �� (18)

where � is the curvilinear coordinate along the external airfoil surface and � is the distortion of the 

single point of the external airfoil surface defined in Eq. 12. It is noteworthy that � is a positive 

quantity and a null value for the average distortion �� means no distortion. Figure 6 plots the trend of 

the average distortion along the wing span showing which are the most in-plane deformed airfoil 

cross-sections in the static aeroelastic equilibrium response. A remarkable variation in the trend of the 

average distortion appears depending on the accuracy of the structural model chosen. Models with an 

expansion order higher than 9 reveal that the section at � � � m appears to be the most distorted sec-

tion. 

For this cross-section, Table 3 presents the numerical values of average distortion �� in the iterative 

aeroelastic analysis for different structural theories. As occurred for the convergence of aerodynamic 

coefficients, the number of iterations ��������� � required to achieve the convergence of �� increases as 

N, and consequently DOFs, increases. In fact, increasing the expansion order N, the structural model 

becomes in general more deformable approaching the real structural behavior. It means that a com-

plete three-dimensional displacement field as well as local effects are evaluated with an increasing ac-

curacy, especially for structures with high-deformable cross-sections, see Figs. 4a and 4b. Since the 

model accuracy increases, the structural deformation is therefore more sensitive to the variations of 

aerodynamic loads, which are different for each iteration following the convergent trend in Figs. 5a 

and 5b, leading to an increasing ��������� �. Numerical results in Table 3 highlight that, given an expan-

sion order, a higher number of iterations is necessary to achieve convergence on structural distortion 
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highlight that, given an expansion order, a higher number of 

iterations is necessary to achieve convergence on structural 

distortion than convergence on aerodynamic coefficients 
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than convergence on aerodynamic coefficients ( ), although the tolerance em-

ployed is the same. 

For N>8 the displacement field becomes accurate enough to relevantly take into account a cross-

section distortion for the airfoil case considered, as can be seen also in Fig. 7. As previously explained, 

given a structural model the distortion is computed by comparing the deformed cross-section to the 

corresponding base section. For the sake of simplicity, only the base section for N=1 is plotted in Fig. 

7. 

As expected, low-order models provide a correct evaluation of the bending and torsional structural 

behavior, but a not exhaustive description of the in-plane deformation. This conclusion is confirmed 

by Fig. 8, where the airfoil distortion  computed by variable kinematic models is depicted along the 

upper surface at  m. The maximum distortion value is reached in the part of the cross-section 

next to the trailing edge since the stiffening effect due to the spar at 25% of the chord limits the cross-

section distortion. Nonetheless, the chordwise position of the maximum distortion points on the airfoil 

upper and lower surfaces changes depending on the accuracy of the structural model, see Table 4. As 

a consequence, it is worth pointing out that the increase of N is relevant not only for an accurate de-

tection of distortion values but also of the accurate shape-type deformation. 

In general, improvements of the structural theory yield more realistic deformations of the wing until a 

good convergence is achieved for N=14, according to the conclusions made for Figs. 4a and 4b in the 

structural assessment. In other words, the difference between the results obtained through the generic 

(N-1)-th and N-th expansion orders decreases and becomes minimal for N = 14. For this reason it is 

possible to consider the fourteenth-order model sufficiently accurate to describe the aeroelastic beha-

vior of the structure here considered. 

4.4 Free stream velocity influence 

This analysis aims at establishing the influence of the free stream velocity on the wing distortion. The 

wing configuration employed for this analysis is the same as the that one used in the previous study. 

According to the previous conclusion, the structural model considered is N = 14. The free stream ve-

locities considered are 25, 30, and 35 m/s. As in the previous analysis, the aerodynamic convergence 
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accurate shape-type deformation.

In general, improvements of the structural theory 

yield more realistic deformations of the wing, until a 

good convergence is achieved for N=14, according to the 

conclusions made for Figs. 4a and 4b in the structural 

assessment. In other words, the difference between the 

results obtained through the generic (N-1)-th and N-th 

expansion orders decreases and becomes minimal for N=14. 

For this reason, it is possible to consider the fourteenth-

order model sufficiently accurate to describe the aeroelastic 
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Fig. 7. Deformation of the airfoil cross-section at  m, computed for structural models with dif-

ferent accuracy. .

Fig. 8.  Distortion of the airfoil upper surface of the cross-section at 
y=4m, computed for different structural models. 
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Table 1. Pressure distribution on the wing along the spanwise direction for the structural assessment. 
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=30m/s.
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Fig. 8. Distortion of the airfoil upper surface of the cross-section at  m, computed for different 

structural models. .

       

         (a) Relative lifting coefficient                  (b) Relative moment coefficient 

Fig. 9. Convergence of lifting and moment coefficients in the iterative aeroelastic analysis, for differ-

ent free stream velocities. Structural model: N = 14. Aerodynamic method: 3D Panel. 

                                                 (a) Relative lifting coefficient                                                                                  (b) Relative moment coefficient

Fig. 9.  Convergence of lifting and moment coefficients in the iterative aeroelastic analysis, for different free stream velocities. Structural model: N 
=14. Aerodynamic method: 3D Panel.
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behavior of the structure here considered.

4.4 Free stream velocity influence

This analysis aims at establishing the influence of the free 

stream velocity on the wing distortion. The wing configuration 

employed for this analysis is the same as that used in the 

previous study. According to the previous conclusion, 

the structural model considered is N=14. The free stream 

velocities considered are 25, 30, and 35 m/s. As in the previous 

analysis, the aerodynamic convergence process is presented 

through the dimensionless parameter 

16 

process is presented through the dimensionless parameter , as illustrated in Fig. 9a. The 

convergence of the moment coefficient is also shown in Fig. 9b through the parameter .

In this case,  and  represent the final convergent values of the lifting and moment coef-

ficients for a given . As occurred for the previous aeroelastic analysis, the trends do not show any 

numerical problems such as oscillations. From Figs. 9a and 9b it is important to note that the number 

of iterations  required to achieve the aerodynamic convergence increases as  increases, 

and the final convergent values are much different from the initial values, as summarized in Table 4. 

The reason of this behavior is easily explained by the fact that an increasing free stream velocity 

means increasing aerodynamic loads, and consequently higher structural deformations, and lastly a 

more relevant coupling effect on the aeroelastic response of the wing. In fact, an increasing airfoil dis-

tortion for the most deformed cross-section at  m is obtained with  according to numerical 

results in Table 5 and airfoil deformed profiles in Fig. 10. Also for velocity values different from 

, a higher number of iterations is necessary to achieve convergence on structural distortion 

than convergence on aerodynamic lifting coefficient ( ), see Table 5. 

The limitation of distortion close to the airfoil leading edge due to the spar is enhanced for 

. The trends of distortion on the airfoil upper and lower surfaces, which are indicated as US 

and LS respectively, are depicted in Fig. 11 at  for different velocities. It is important to note 

that deformations of upper and lower surfaces remarkably differ also because of a different aerody-

namic pressure distribution. Table 6 shows that not only the maximum distortion values on the airfoil 

upper ( , ) and lower ( , ) surfaces changes as  varies, but also their cor-

responding chordwise positions. This aspect highlights the importance of higher-order models espe-

cially for an accurate evaluation of in-plane cross-section distortion of high-deformable structures. 

5. Conclusions 

Variable kinematic 1D finite elements were formulated on the basis of Carrera Unified Formulation 

(CUF) and coupled to an aerodynamic 3D panel method implemented in XFLR5. The aeroelastic stat-

ic response of a straight wing with a high-deformable airfoil cross-section was computed through a 

coupled iterative procedure for an increasing structural accuracy and for different free stream veloci-

, as illustrated 

in Fig. 9a. The convergence of the moment coefficient is also 

shown in Fig. 9b, through the parameter 
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Fig. 10. Deformation of the airfoil cross-section at  m, computed for different free stream ve-

locities. Structural model: N = 14.

Fig. 10.  Deformation of the airfoil cross-section at y=4m, computed 
for different free stream velocities. Structural model: N=14.
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Fig. 11. Distortion of the airfoil upper and lower surfaces of the cross-section at  m, computed 

for different free stream velocities. Structural model: N = 14.

Fig. 11.  Distortion of the airfoil upper and lower surfaces of the cross-
section at y=4m, computed for different free stream veloci-
ties. Structural model: N=14.

Table 4.  Convergent average distortion 

25 

Table 4. Convergent average distortion  [mm] of the cross-section at  = 4 m for different 

structural models. Values and chordwise position of the maximum distortions  [mm] and 

[mm] on airfoil upper and lower surfaces. = 30 m/s. 

Model DOFs 

N = 1 0.0403 3 0.0718 0.33 0.0439 0.24 279 

N = 4 0.0136 3 0.0103 0.33 0.0251 0.23 1,395 

N = 8 0.1821 5 0.5267 0.74 0.4797 0.75 4,185 

N = 9 1.5958 8 4.6073 0.74 4.1253 0.75 5,115 

N = 10 2.2429 10 6.9936 0.73 5.1626 0.79 6,138 

N = 12 2.7818 12 9.5341 0.73 5.7456 0.82 8,463 

N = 14 3.1035 13 10.7482 0.73 6.0178 0.82 11,160 
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Table 4. Convergent average distortion  [mm] of the cross-section at  = 4 m for different 

structural models. Values and chordwise position of the maximum distortions  [mm] and 

[mm] on airfoil upper and lower surfaces. = 30 m/s. 

Model DOFs 

N = 1 0.0403 3 0.0718 0.33 0.0439 0.24 279 
N = 4 0.0136 3 0.0103 0.33 0.0251 0.23 1,395 
N = 8 0.1821 5 0.5267 0.74 0.4797 0.75 4,185 
N = 9 1.5958 8 4.6073 0.74 4.1253 0.75 5,115 

N = 10 2.2429 10 6.9936 0.73 5.1626 0.79 6,138 
N = 12 2.7818 12 9.5341 0.73 5.7456 0.82 8,463 
N = 14 3.1035 13 10.7482 0.73 6.0178 0.82 11,160 

Table 5. Convergent values of lifting coefficient , moment coefficient , and average dis-
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upper ( , ) and lower ( , ) surfaces changes as  varies, but also their cor-
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5. Conclusions 

Variable kinematic 1D finite elements were formulated on the basis of Carrera Unified Formulation 

(CUF) and coupled to an aerodynamic 3D panel method implemented in XFLR5. The aeroelastic stat-

ic response of a straight wing with a high-deformable airfoil cross-section was computed through a 

coupled iterative procedure for an increasing structural accuracy and for different free stream veloci-

 varies, but 

also their corresponding chordwise positions. This aspect 

highlights the importance of higher-order models, in 

particular for an accurate evaluation of the in-plane cross-

section distortion of highly-deformable structures.

5. Conclusions

Variable kinematic 1D finite elements were formulated 

on the basis of the Carrera Unified Formulation (CUF) and 

coupled to an aerodynamic 3D panel method, implemented 

in XFLR5. The aeroelastic static response of a straight wing 

with a highly-deformable airfoil cross-section was computed 

through a coupled iterative procedure, for increasing 

structural accuracy and for different free stream velocities. 

An aerodynamic assessment confirmed that the 3D Panel 

Method provides a more realistic evaluation of the pressure 

distribution on the wing, than the Vortex Lattice Method 

(VLM). As far as the use of 1D higher-order models is 

concerned, the following main conclusions can be drawn:

1.  The introduction of higher-order terms in the 

displacement field is even more important for 

the aeroelastic analysis, due to the fluid-structure 

coupling.

2.  In the case that the wing is rather flexible, the in-plane 

cross-section deformation has a great impact on the 

alteration of the aerodynamic loadings.

3.  The higher the free stream velocity, the more marked 

the in-plane distortion effect.

As far as the present hierarchical one-dimensional 

approach is concerned, the results point out that:

a.  The CUF is an ideal tool to easily compare different 

higher-order theories, since the model accuracy is a 

free parameter of the analysis.

b.  The in-plane airfoil cross-section deformation is well-

described by the proposed 1D structural model, in 

good agreement with a three-dimensional FE solution, 

and with a remarkable reduction in terms of DOFs. 

c.  A convergent trend of displacements and aerodynamic 

coefficients is achieved as the structural model 

accuracy increases. This proves that the proposed 1D 

higher-order approach does not introduce additional 

numerical problems in the aeroelastic analysis of 

wings with arbitrary cross-section geometry.

d.  A higher number of iterations is necessary to achieve 

convergence on structural distortion than for 

convergence on aerodynamic coefficients.

These reasons make the future use of the proposed CUF-

XFLR5 approach appear promising for a versatile flight 

optimization tool.
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