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Abstract

An approach for composing a performance optimized computational code is suggested for the latest microprocessors. The 

concept of the code optimization, termed localization, is maximizing the utilization of the second level cache that is common 

to all the latest computer systems, and minimizing the access to system main memory. In this study, the localized optimization 

of the LU-SGS (Lower-Upper Symmetric Gauss-Seidel) code for the solution of fluid dynamic equations was carried out in 

three different levels and tested for several different microprocessor architectures widely used these days. The test results 

of localized optimization showed a remarkable performance gain of more than two times faster solution than the baseline 

algorithm for producing exactly the same solution on the same computer system.
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1. Introduction

For the last decade, the performance of a single microprocessor 

has become as powerful as a vector computer of the previous 

generation. Thus, the parallel computing based on the 

cluster of a microprocessor system such as workstations 

or personal computer (PC) has become the mainstream of 

high-performance computing replacing vector computing. 

However, the change of processor architecture necessitates a 

new programming paradigm in addition to the vectorization 

or the parallelization in high-performance computing areas 

including computational fluid dynamics (CFD), where a large 

memory capacity, a lot of access to the memory devices and a 

huge number of computational operations are necessary.

Two of the major changes in the latest microprocessors are 

super-scalar architecture and memory hierarchy employing a 

large amount of high-speed data caches. Thus, the utilization 

of these two factors is the key point of maximizing the 

processor capability, which can be achieved by programming 

approaches such as the blocking method [1].  However, the 

blocking method is quite complex and difficult for general 

use and existing codes should be rewritten completely, even 

with the use of BLAS (Basic Linear Algebra Subprogram) a 

functional library for the blocking method [1,2]. 

In the present paper an introduction to the latest 

microprocessor systems and the concept of acceleration will 

be given first, and the way of optimizing a computational 

code, called here as ‘localization’, is described for a 

compressible fluid dynamics code using the LU-SGS (lower-

upper symmetric Gauss-Seidel) solution algorithm [3]. 

The LU-SGS algorithm is considered since it is one of the 

simplest and most efficient quasi-implicit iterative matrix 

solution algorithms widely used these days. The localization 

technique has been suggested by Choi et al. to maximize the 

code performance without an additional subprogram, but 

by minor changes in the iterative solution algorithm [4]. It 

has been tested for Pentium III and 4 processors previously, 

but has been tested to confirm the effectiveness for modern 

processor architectures having significant advances during 

the last decade. The localization is applied at several levels, 

and the performance gains at each level are tested for several 

of the latest microprocessor systems generally used nowadays.
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2. Processor Architecture and Memory Hier
     archy

From the last decades, Moore’s law, the doubling 

of transistors every couple of years, has governed the 

performance increase of micro-processors [5]. The typical 

circuit width in the microprocessors becomes less than 

100nm and it is thought that they will face a limitation in 

the near future in comparison with the size of molecules. 

However, the current pace of the performance increase 

is expected to continue for the time being based on the 

development of the circuit design technology and the 

manufacturing technology, such as photolithography. The 

number of transistors was around 3 million in the Pentium® 

processor, but becomes greater than 40 million in the 

Pentium® 4 Processors, and currently stands at 1.5billion. 

Owing to such a tremendous integrity, a super-scalar 

architecture, such as the pipelines and the vector processing 

used in supercomputers previously, can be embodied in 

a single microprocessor to handle several instructions 

at a time. In addition, the operating speed of the newest 

microprocessor becomes greater than 3GHz, which implies 

that GFlops (Giga-floating-point operations per second), 

which was only possible with a supercomputer, would be 

feasible with a single processor [6-9].

Meanwhile, the peripheral devices, including system’s 

main memory are developed further not only for the capacity 

but also for the operating speed and the data bandwidth. 

SDRAM (synchronous dynamic random-access memory), 

RDRAM (Rambus dynamic random-access memory) and 

DDR SDRAM (Double Data Rate Synchronous Dynamic 

Random-Access Memory) are examples of the high-speed 

memory devices employed in the latest computer systems. 

However, the data processing speed of the memory 

devices is still slower than the internal processing speed 

of microprocessors, and the time consumed during the 

communication with the system’s main memory and other 

external devices take a large portion of overall computational 

time, rather than the computation itself.

Therefore, a cache, a high-speed temporary storage 

device for the frequently used data and instructions, has 

been employed to fill the gap between the main memory 

and the microprocessor, since the development of 32 bit 

microprocessors. The cache has been employed in two 

levels. The first level (L1) cache was included inside the 

microprocessor for the frequently used instructions, and 

a small amount of data used most often. The second level 

(L2) cache has been employed outside the microprocessor 

for the large amount of frequently used data using the high-

speed memory device, such as SRAM (static random-access 

memory). The Pentium processor had the L2 cache outside 

the processor, but further performance improvement was 

limited since the cache performance was limited by the 

speed limit of the system’s data bus (called as front-side-

bus, FSB) connecting the processor and other peripherals. 

The Pentium II processors employed an independent cache 

bus (called as back-side-bus, BSB) that can be operated at 

the half speed of the processor. Fig. 1 shows the schematics 

of the data bus architectures for modern microprocessors. 

After the Pentium III processors, on-die L2 cache, which 

operates at the same speed of the processor, is included in 

many of the microprocessors, such as Intel Pentium 4, AMD 

Athlon processors. The Pentium 4 Processor operating at 

1.7GHz having the data transfer rate to the system’s main 

memory is limited to 3.2 GB/s using RDRAM and to 1.03 

GB/s using SDRAM. However, the data transfer rate between 

the processor and L2 cache is 54 GB/s, which is 17 to 50 times 

faster than the main memory [10,11]. Thus, the third-level 

cache is considered for next-generation systems though not 

common yet. These characteristics of the memory hierarchy 

are quite common to many of the latest microprocessor 

systems though their architectures are different. The amount 

of L2 caches ranges from 64KB to 4MB, but 128, 256 or 512 

KB on-die L2 cache is common these days. The amount of 

256 KB is equivalent to 32,768 8Byte (64bit or 32 bit double 

precision) real variables, which is equivalent to 3,276 

computing nodes having 10 variables per node. Thus, the 

utilization of the high-speed L2 cache has the key-role for the 

performance of the computational codes.

3. Acceleration of Computing Codes 

The way of accelerating the computational codes can 

be classified in two categories: 1) active utilization of 
Fig. 1. �A schematic diagram of processor and memory architecture of 

modern processors.
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super-scalar architectures and 2) efficient utilization of 

memory hierarchy. Super-scalar is computer processor 

architecture that can execute multiple operations at a 

time. Pipelining and vector processing are the examples 

of super-scalar architectures previously used for vector-

type supercomputers. Multiple data can be processed 

simultaneously and sequentially without interruption 

through a number of pipelines. A tremendous number of 

transistors needed for the super-scalar architectures can be 

integrated within a single microprocessor nowadays owing 

to the modern semiconductor integration technologies. 

The super-scalar architecture is embodied as several 

different technologies depending on the systems such as 

SSE2 (Streaming SIMD (Single instruction multiple data) 

Extension 2) for Intel Pentium 4, 3DNow! for AMD Athlon 

and Velocity Engine for Apple Macintosh.

The utilization of these technical characteristics means 

the optimization of data control within the loops of the code. 

However, it is not only difficult to compose a code optimized 

for specific machine architecture with a high-level language 

such as Fortran, but also not so meaningful to compose 

an optimized code for a specific architecture considering 

the continuously changing computing environment. Thus, 

the utilization of super-scalar architecture is limited to 

maintaining the general characteristics of vector processing 

when developing a computing code using a high-level 

language, and it is desirable to use compilers that can 

produce an optimized execution code for specific machine 

architecture. For example, Intel Fortran compiler v.5.0 is 

developed to be able to generate an optimized code for 

SSE2 technology of Pentium 4 processors. Nevertheless, the 

optimization by a compiler is limited to a part of the code, 

and the overall structure of the code and its efficiency is 

dependent on the developer [12,13].

The second issue for accelerating the code is the utilization 

of memory hierarchy, which implies maximizing the 

utilization of data cache. By increasing the hit-ratio  of dada 

cache, the processor can be operated much more efficiently 

by reducing the latency time for waiting data from the 

memory. In other words, data taken from the main memory 

should be used efficiently to reduce the total number of 

access to the main memory. However, this is not related to 

the local process but to the overall structure of the code.

One way of composing an efficient computational code by 

maximizing the utilization of microprocessor architecture is 

the use of BLAS. Level-one and -two BLAS were developed 

for utilization of super-scalar architecture and BLAS level-

three is developed for maximizing the cache efficiency by 

employing the block method [1,2]. The blocking method 

is the technique of making a block of variables related to 

a process. By reading the block of the variables at once, 

the number of access to the main memory can be reduced 

and the efficiency of cache can be increased. Level-three 

BLAS is the linear algebra sub-programs, which manipulate 

the variables as the vector or matrix block of the size L2 

data cache. Thus, the BLAS is dependent on the processor 

architecture, and most of the processor makers supply the 

BLAS library optimized for their processor. Also, ATLAS 

(Automatically Tuned Linear Algebra Software) may be used 

instead of BLAS [1,14]. A lot of linear algebra algorithms has 

been developed using BLAS and distributed as mathematical 

libraries such as LAPACK [15]. However, most of the linear 

algebra algorithms used in nonlinear fluid dynamics codes 

are not included in the mathematical libraries, and the 

blocking method is quite complex and difficult for general 

use [1,2]. If BLAS is used in a fluid dynamics code, the linear 

algebra subprograms should be used instead of arithmetic 

operations, which implies completely rewriting the existing 

code. 

Therefore, the purpose this study is to suggest a way of 

reducing the computational time by only minor changes in the 

overall structure of the code without the complexity of using 

the additional libraries. Once a variable for a computational 

node is taken from a main memory, maximizing the use of 

variables can increase the efficiency of the processor. This 

approach, known as ‘localization’ of a code, implies that the 

increase of the cache hit-ratio by reducing the number loops, 

consequently. Rather than vector-type supercomputers with 

hundreds of pipelines, the localization may be effective for 

the latest microprocessor architectures having relatively 

slow memory, fast data cache and several long pipelines. 

Also, it will be useful for parallel computer systems based on 

microprocessors.

4. Simulation a nd Analysis

4.1 �Governing Equations and Review of Solution Algo-
rithm

A fluid dynamics solution algorithm considered in this 

study is the LU-SGS scheme for compressible flow since it 

is one of the simplest forms of the fluid dynamics algorithm 

widely used nowadays. Also, the localization concept can be 

easily applied owing to its quasi-implicit iterative solution 

strategy. The conservative form of two-dimensional Euler 

equations, the governing equations of inviscid compressible 

flows, can be summarized in a vector notation as equation 

(1) for a generalized  curvilinear coordinate.

(1)
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Where t is time and q is the vector of conservative variables; 

density, momentum in each direction and total energy per 

unit volume. f and g are flux vectors in each direction. By 

applying the time-marching numerical approximation, the 

governing equations can be rewritten as equation (2).

(2)

Where, n is the iteration step and imax and jmax is the 

number of computational grids in each direction. The 

residual vector  and the diagonal vector  are defined 

for internal grid point as,

(3)

and

(4)

For steady-state problems, the algorithm can be recovered 

to Newton’s method applied for nonlinear elliptic partial 

differential equations by neglecting the first term of the 

right-hand side of equation (4) as an approximation using an 

infinitely large time step. However, the term is not neglected 

generally for the diagonal dominance of the matrix solution 

algorithms.

The equation (2) constitutes a closed set of linear 

algebraic equations Ax=b for (4×imax×jmax) variables. 

The matrix A is a block penta-diagonal matrix composed 

of (4×4) block matrices and strides of imax and jmax. The 

general procedure for the solution of the linear equations is 

1) construct a vector b, 2) construct the matrix A and 3) put 

A and b into the solver of linear algebraic equations. Thus, a 

good way of constructing a performance optimized code is 

1) construct A and b with BLAS and 2) put A and b into the 

solver composed with BLAS. However, there is no numerical 

library for the solution of block penta-diagonal matrices 

having of arbitrary stride, because the iterative methods can 

be efficient in this case instead of an exact solver. Moreover, 

the exact solver is not always necessary, because the matrix 

A is a temporarily assumed value, and the iterative method 

is inevitable due to the inherent nonlinearity of the fluid 

dynamic equations. 

The first candidate of the iterative method is the ADI 

(Alternating Direction Implicit) method. By applying Beam-

Warming approximation, the penta-diagonal equations can 

be replaced by a number of tri-diagonal equations in each 

direction. The ADI method is widely used because of the 

existence of an efficient solution algorithm for tri-diagonal 

equations. Although the ADI method is one of the iterative 

and approximate methods, sub-iterations are rarely used 

between iterations even in case of unsteady problems 

because of the relatively small approximation error. 

Therefore, the ADI method would be a good choice for the 

solution of fluid dynamic equations if there were optimized 

libraries for the tri-diagonal equations. For incompressible 

flows, the SIMPLE (semi-implicit method for pressure 

linked equations) algorithm with the ADI method can be a 

good choice for constructing an efficient code, because all 

the fluid equations are segregated and a tri-diagonal solver 

developed with BLAS and included in LAPACK [15], can 

be used directly. However, the coupled method used for 

compressible flows results in a block-tri-diagonal system, for 

which an efficient solver is not yet developed using BLAS.

In the meantime, other iterative methods such as the 

Jacobi method or Gauss-Seidel’s methods are used in 

CFD. The Jacobi method has been used for its simplicity 

in vectorization, but Gauss-Seidel’s method is used more 

widely for better convergence. The LU-SGS scheme is an 

improved version of Gauss-Seidel’s method, which has 

been widely used for the last decade. The procedure of the 

LU-SGS scheme can be summarized as the following lower 

and upper sweeps by alternating the direction of the Gauss-

Seidel sweeps.

Do i=1,imax,  j=1,jmax

(5)

Do i=imax,1,-1, j=jmax,1,-1

(6)

Equations (5) and (6) cannot be vectorized and the (4×4) 

matrix should be inverted locally. However, those equations 

can be vectorized if an approximate splitting of the flux 

Jacobian matrix is applied using spectral radius, a maximum 

Fig. 2. �Comparison of convergence history
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eigenvalue of the Jacobian matrix. 

(7)

Then the left-hand sides of equation (5) and (6) become a 

scalar value, and the vectorization can be carried out using 

the list index along the diagonal direction of computational 

grid. The LU-SGS algorithm had been developed originally for 

vector-type supercomputers, but has also been used widely 

on microprocessor-based systems, including workstations 

and PCs because of its simplicity and good convergence. The 

present study will suggest a way of optimizing the LU-SGS 

method for the architecture of microprocessor systems.

4.2 Basic LU-SGS Solution Procedure

The elementary procedure for the solution of algebraic 

equations is 1) evaluation of the residual vector and 

coefficient matrix and 2) put them into the solution library. 

However, in fluid dynamics, the coefficient matrix is 

evaluated when it is necessary, because the storage of the 

block penta-diagonal coefficient matrix is quite large. In case 

of the LU-SGS algorithm the coefficient matrix is evaluated 

locally and the solution procedure can be summarized as the 

following five loops for global variables. 

Algorithm Level 0  

A) Residual vector construction in i- direction

Do j=1,jmax

Do i=0,imax

B) Residual vector construction in j- direction

Do i=1,imax

Do j=0,jmax

 

C) Lower-sweep

Do i=1,imax, j=1,jmax

 

D) Upper-sweep

Do i=imax,1, j=jmax,-1

 

E) Solution Update

Do i=1,imax, j=1,jmax

 

The first and second steps are the construction steps of the 

residual vector from primitive variables. The numerical fluxes 

are calculated at the surfaces, and summed as a residual. The 

numerical fluxes are added to both sides of residual vectors. 

These steps require a lot of numerical operations and take a 

lot of computing time, because the interpolation of variables, 

limiter functions and eigenvalue corrections are necessary 

in addition to the calculation of numerical flux functions. 

The next step is the lower sweep. This step can be done 

easily by scalar-inversion, after calculating the product of the 

split Jacobian matrix and the difference of the conservative 

variable vector. This procedure can be simplified, and a lot 

of computing time can be saved by using an analytic form of 

the product [16]. The upper sweep can be done similarly to 

the lower sweep in opposite direction. The final step is for the 

calculation of new conservative variables from the variations 

and the evaluation of new values of primitive variables from 

the conservative variables.

4.3 Localization Concept

The localization, an approach of increasing the utilization 

of variables read from the main memory, results in reducing 

the number of loops for global variables. For example, if 

there were several loops requesting global variables and 

the size of the array for the global variables is quite large in 

comparison with the size of data cache, a variable cannot be 

stored in the cache when it is necessary in a next loop, and 

the variable should be taken from the main memory. Since 

there is latency in taking a variable from the relatively slow 

main memory, the processor becomes idle during that time 

and the time is not necessarily wasted.

However, if the number of loops can be reduced while 

maintaining the same results, i.e., maximizing the use of a 

variable read from the main memory, then the number of 

access to the main memory can be reduced, and the wasting 

time can be saved. Therefore, the localization is equivalent 

to reducing the number of loops, and the overall structure of 

the code is changed into the computation for local variables 

with a minimum number of loops. Reduction of the five 

loops in Algorithm Level 0 will be discussed in the following.

Algorithm Level 1

A,B) Residual vector construction

Do j=1,jmax

Do i=0,imax

 

C), D) and E) Same as Algorithm Level 0
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4.4 Localization Algorithm Level 1

As a first step of reducing the global loops, the merge of 

step A) and B) can be considered. For A) and B) steps, a 

variable at a grid point is called twice. However, these two 

loops can be merged into a single loop by calculating the 

right and upper numerical fluxes at a time. After that the 

numerical fluxes should be stored temporarily for the next 

use. If the i-direction is the inner loop while j is the outer, 

the right numerical flux is used as the left numerical flux for 

the next grid point and only four real variables (1×4×8=32 

Byte) are necessary. However, the upper numerical fluxes 

of entire grid points in j-th row should be stored for a while 

before it can be used as a lower numerical flux for the upper 

grid point. Although the size of memory is dependent on the 

I-directional grid point, it is relatively small in comparison 

with a typical cache size of 256KB. Since a 32 Byte is 

necessary for a numerical flux, it is thought that more than 

1,000 numerical fluxes can be stored for next use, while even 

considering the other variables. Thus, the number of access 

to the main memory can be reduced, and some amount of 

time can be saved as such. Also, it is inevitable to proceed 

to the next step. The localization algorithm level 0 can be 

summarized as follows.

4.5 Localization Algorithm Level 2

The second step of localization is the merge of the 

residual construction step and lower sweep as algorithm 

level 2. Since the residual vector is no longer necessary after 

the lower sweep, it is not necessary to store the residual 

vector as global variables, but the residual can be stored 

as only four temporary variables. Thus, a large amount of 

memory, corresponding to imax×jmax×32 Byte or 20 to 30 

% of overall memory, can be saved as an additional effect. 

As major effects, 1) it does not become necessary to access 

the residual vector and primitive variables stored in main 

memory for the lower sweep, and 2) the available cache size 

can be significantly increased by removing the unnecessary 

storage of the residual vector in data cache.

Algorithm Level 2

A,B and C) 

Residual vector construction and Lower-Sweep

Do j=1,jmax

Do i=0,imax

 

 

D) and E) Same as Algorithm Level 0

4.6 Localization Algorithm Level 3

As a next step, the upper-sweep and the solution update 

procedure can be merged as algorithm level 3. All the 

numerical procedure for a grid point is terminated after 

the upper-sweep, and a new solution can be reconstructed 

immediately after the upper sweep. Thus, the merge of the 

upper sweep and the solution update procedure is aimed 

to reduce the time for taking a variation of a conservative 

variable from the main memory for reconstruction of 

new variables. In this case, the solution reconstruction is 

done in the opposite direction of the lower-sweep since 

the upper-sweep proceeds in the opposite direction of the 

lower sweep.

However, the upper-sweep of the original LU-SGS 

scheme in equation (6) is changed to equation (8), because 

the variables used for the calculation of the split Jacobian 

matrix for the next grid point is already updated. Thus, there 

is a possibility of changing the convergence characteristics, 

but its effect would always be negative, because the basic 

concept of Gauss-Seidel’s method is the use of recently 

updated variables for the calculation of the coefficient 

matrix.

(8)

Following the localization procedures, the five loops in 

the algorithm level 0 are reduced to only two loops in the 

algorithm level 3. Thus, the access to the main memory can 

be reduced and the utilization of a variable taken from a 

main memory can be increased. In other words, the cache 

hit-ratio can be increased by the frequent use of a variable 

that is stored in a high-speed temporary location. The next 

chapter will show the efficiency of the localization algorithms 

for several problem sizes.

Algorithm Level 3

A,B and C) 

Residual vector construction and Lower-Sweep

Do j=1,jmax

Do i=0,imax

 

 

D) and E) Upper-sweep and Solution Update

Do i=imax,1, j=jmax,-1
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5. Application of Localization Algorithms

5.1 Test Problems and Environments

For the examination of the localization algorithms, an 

inviscid compressible flow problem was considered. The test 

problem is the numerical solution of Mach number 3 flows 

over a two-dimensional wedge of a 10 degree turning angle 

exhibiting an oblique shock wave and expansion waves. Since 

most of the numerical algorithms can produce sufficiently 

good solutions, only the convergence characteristic and the 

time efficiency were examined. In this study, influences by 

the size of the problem, processor type and compiler was 

investigated. The sizes of problems were summarized in 

Table 1. 

Fig. 3 is the convergence history up to the machine 

accuracy for a small problem showing the convergence 

characteristics. Solution by the AF-ADI method is also 

included for comparison. Since the algorithm level 0, 1 and 

2 are mathematically identical the convergence histories are 

exactly the same, as well as the solutions. Only the algorithm 

3 is slightly different, as described in equation (8), but Fig. 

3 does not show any noticeable differences. There is only a 

slight difference after the machine accuracy is attained. Also, 

the number of mathematical operations is exactly the same 

for all the algorithms.

The time consumed for the iterations in Table 1 is 

measured without the console and disk output. The 

computing time is measured by using the intrinsic functions 

such as CPU_TIME() or SECNDS(). All the specifications of 

the tested computers are summarized in Table 2 including 

the processor type, cache size, main memory, main board/

chipset, operating system, compiler and compile options. 

“Q6600”, “P9700” and, etc. are the abbreviation of each system 

based on the model number of the processor. The time of 

the processor launch is listed below the title of the system 

to reflect the advances in processor architectures. Optimal 

compile options for various systems have been used by the 

Polyhedron Inc. for the compiler comparison(Unclear) [17].

The computing time by the localization algorithms were 

examined for three problems on several systems. The results 

of AF-ADI methods are included for ‘Small’ and ‘Medium’ 

problems for comparison, but cannot be done for large 

problem since the method requires much larger memory 

than the LU-SGS scheme. Speed-Up is the ratio of computing 

time compared to algorithm level 0, and is summarized in 

Table 3 to 5, as well as the computing time. The performance 

of each system is compared visually in Fig. 4 to 6 by using 

relative speed. Relative speed is the ratio of computing time 

compared to algorithm level 0.

5.2 Test Results for ‘Small’ Problems

Various analyses may be possible from the results in 

Fig. 4 to 6 and Table 3 to 5, but the primary one will be the 

comparison of algorithms depending on the problem size. 

The ‘Small’ problem uses a relatively small grid, which 

requires 1.2 MB of memory. The 1.2 MB memory is very 

small in comparison with the overall size of main memory 

and is smaller than the cache memory of the tested systems. 

Fig. 3. �Relative speed for the Small problem.

Table 1. Test problems

Table 2. Specification of test systems and compilers with compile 
                 options
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Referring to Fig. 4 and Table 3, the computing time of LU-SGS 

algorithm is about half of the AF-ADI method depending 

on each system. For Q6600 systems, the speed-up by the 

algorithm change is limited to 6% maximum, but the E5520 

system shows about a 70% improvement. A point to notice 

is that the recent processors show much more performance 

gains, though there is a dependency on each system. This 

implies inversely that new processor architectures show 

improved performance gain by the algorithm optimization. 

However, overall, the performance gain is not as big as 

expected from the previous studies [4]. It is because the speed 

of memory becomes several times faster than before, but the 

clock speed of the processors is maintained around 2~3 GHz. 

Nonetheless, the present results for a small problem does 

not fully reflect the advantage of the localization techniques, 

since the problem size is too small and the cache hit ratio 

would be quite high for most of the systems, i.e. the problem 

could be handled with the capacity of cache memory.

5.3 Test Results for ‘Medium’ Problem

The medium problem asks for 10.8 MB memory, which 

is greater than the typical cache size of tested systems. The 

results for the medium problem are summarized in Fig. 

5 and Table 4. The results clearly show the advantage of 

the localization technique for all the systems. Among the 

various levels, the advantage of the Level 2 algorithm is most 

Table 3. Computing time [s] and Speed-Up for Small problem

Table 4. Computing time [s] and Speed-Up for Medium problem

Table 5. Computing time [s] and Speed-Up for Large problem

Fig. 4. �Relative speed for the Medium problem. Fig. 5. �Relative speed for the Large problem



DOI:10.5139/IJASS.2013.14.2.112 120

Int’l J. of Aeronautical & Space Sci. 14(2), 112–121 (2013)

significant. It is reasoned that the advantage comes from 

two factors. The first one is that the storage of the residual 

vector is no longer necessary as a global variable, which 

results in the significant reduction of memory requirement 

and the increase of cache hit ratio by the availability of 

cache capacity. The second is that the residual is used for 

the lower sweep as soon as it is computed, rather than stored 

for later use in a separate lower sweep, as is for the level 0 

and 1. The maximum performance gain is greater than twice 

that obtained for the latest systems. It is considered that the 

advantage of the algorithm is greater for the latest systems 

which have a higher maximum frequency.

5.4 Test Results for ‘Large’ Problem

Fig. 6 and Table 5 show the test results for a large problem. 

This problem requires 120 MB of memory which is much 

larger than the cache capacity of all the systems tested. 

The trend is similar to that of a medium problem, but the 

advantage of the localization is much greater. The advantage 

of the level 3 algorithm is also shown clearly in these results. 

Thus, it is considered that the reduction of the global loop 

is advantageous to improve the computing performance by 

reducing the access to main memory while increasing the 

cache hit-ratio. The maximum performance gain by the level 

3 algorithm was 2.34 times the level 0 algorithm to obtain 

the identical solution by the E5-2670 system. It is also shown 

that the localization technique is advantageous to the latest 

processors for which the difference of clock speed between 

the memory and processor is larger. 

5.5 Summary of the Effect of Algorithm Improvements

The results in Fig. 4-6 and Table 3-5 show the overall 

performance improvement according to the increasing the 

level of localization, even though the amount of performance 

improvements is dependent on the problem size and system 

characteristics. Overall, there is no big improvement in 

level 1 compared to level 0. The performance improvement 

comes from reducing the number of access to the primitive 

variables and the residual vector. Level 2 shows significant 

improvement compared to level 1. Since the change from 

level 1 to level 2 has combined effects; 1) accessing the 

residual vector and primitive variables stored in main 

memory for the lower sweep becomes unnecessary, and 

2) the available cache size can be significantly increased 

by removing the unnecessary storage of the residual vector 

in data cache. A simple correction level 3 has a relatively 

significant improvement due to the small overall computing 

time, although the absolute saving is quite comparable to that 

of level 1 from level 0. These results support the reasoning of 

developing the localization algorithms.

In addition to the algorithms, characteristics of the 

computing systems can be understood as well, and the 

comparison between the computing systems is feasible. The 

latest processor architectures show the strong dependency 

on algorithm optimization. However, Q6600, relatively 

old processor architecture, was less sensitive to algorithm 

optimization, although there is a dependency on problem 

size.

 

6. Conclusions

The latest microprocessor systems have a large performance 

gap between the microprocessor, and the main memory, and 

high-speed cache is employed to cover the gap. Therefore, 

the performance of a numerical code is dependent on the 

algorithms that can maximize the utilization of variables 

taken from main memory while reducing the access to the 

main memory. This is equivalent to reducing the number of 

loops for global variables and has the effect of increasing the 

cache hit-ratio. 

In the present study, methods for improving the performance 

of a code for the LU-SGS scheme were verified in several 

levels based on the reasoning of the latest microprocessor 

architectures. The improvements of the algorithms were 

examined for several of the latest micro processor systems 

regarding numerous problem sizes. The results exhibit clear 

performance improvement by the code optimization, called 

here as localization. Although the magnitude of improvement 

is dependent on problem size and system architectures, the 

performance improvement was monotone according to the 

level of localization, regardless of system architectures. A 

solution more than twice as fast was obtained at the same 

computer system (Unclear) for producing the exact same 

solution with the same number of floating-point operations.

From the present results, it is shown that the latest 

microprocessors having higher operation speeds are much 

more sensitive to localized algorithms. Also, it is shown 

that the processor speed does not guarantee the higher 

performance, unless the computational code is optimized 

for the memory hierarchy. Therefore, it is concluded that 

the code optimization on the memory hierarchy of the 

latest microprocessors is no longer a matter of choice, but a 

compulsory subject.
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