
Copyright ⓒ The Korean Society for Aeronautical & Space Sciences
Received: December 04, 2012 Revised: March 28, 2013 Accepted: March 29, 2013

112 http://ijass.org pISSN: 2093-274x eISSN: 2093-2480

Paper
Int’l J. of Aeronautical & Space Sci. 14(2), 112–121 (2013)
DOI:10.5139/IJASS.2013.14.2.112

Optimization of LU-SGS Code for the Acceleration on the Modern Mi-
croprocessors

Keun-Jin Jang*, Jong-Kwan Kim*, Deok-Rae Cho** and Jeong-Yeol Choi***
Department of Aerospace Engineering, Pusan National University, Pusan 609-735, Korea

Abstract

An approach for composing a performance optimized computational code is suggested for the latest microprocessors. The

concept of the code optimization, termed localization, is maximizing the utilization of the second level cache that is common

to all the latest computer systems, and minimizing the access to system main memory. In this study, the localized optimization

of the LU-SGS (Lower-Upper Symmetric Gauss-Seidel) code for the solution of fluid dynamic equations was carried out in

three different levels and tested for several different microprocessor architectures widely used these days. The test results

of localized optimization showed a remarkable performance gain of more than two times faster solution than the baseline

algorithm for producing exactly the same solution on the same computer system.

Key words: Computer Code Optimization, Localization, LU-SGS (Lower-Upper Symmetric Gauss-Seidel) scheme, Microprocessors

1. Introduction

For the last decade, the performance of a single microprocessor

has become as powerful as a vector computer of the previous

generation. Thus, the parallel computing based on the

cluster of a microprocessor system such as workstations

or personal computer (PC) has become the mainstream of

high-performance computing replacing vector computing.

However, the change of processor architecture necessitates a

new programming paradigm in addition to the vectorization

or the parallelization in high-performance computing areas

including computational fluid dynamics (CFD), where a large

memory capacity, a lot of access to the memory devices and a

huge number of computational operations are necessary.

Two of the major changes in the latest microprocessors are

super-scalar architecture and memory hierarchy employing a

large amount of high-speed data caches. Thus, the utilization

of these two factors is the key point of maximizing the

processor capability, which can be achieved by programming

approaches such as the blocking method [1]. However, the

blocking method is quite complex and difficult for general

use and existing codes should be rewritten completely, even

with the use of BLAS (Basic Linear Algebra Subprogram) a

functional library for the blocking method [1,2].

In the present paper an introduction to the latest

microprocessor systems and the concept of acceleration will

be given first, and the way of optimizing a computational

code, called here as ‘localization’, is described for a

compressible fluid dynamics code using the LU-SGS (lower-

upper symmetric Gauss-Seidel) solution algorithm [3].

The LU-SGS algorithm is considered since it is one of the

simplest and most efficient quasi-implicit iterative matrix

solution algorithms widely used these days. The localization

technique has been suggested by Choi et al. to maximize the

code performance without an additional subprogram, but

by minor changes in the iterative solution algorithm [4]. It

has been tested for Pentium III and 4 processors previously,

but has been tested to confirm the effectiveness for modern

processor architectures having significant advances during

the last decade. The localization is applied at several levels,

and the performance gains at each level are tested for several

of the latest microprocessor systems generally used nowadays.

This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

	 	*	Graduate student
		 **	Postdoctoral Research Associate
	 ***	Professor, Corresponding author : aerochoi@pusan.ac.kr

113

Keun-Jin Jang Optimization of LU-SGS Code for the Acceleration on the Modern Microprocessors

http://ijass.org

2. Processor Architecture and Memory Hier
 archy

From the last decades, Moore’s law, the doubling

of transistors every couple of years, has governed the

performance increase of micro-processors [5]. The typical

circuit width in the microprocessors becomes less than

100nm and it is thought that they will face a limitation in

the near future in comparison with the size of molecules.

However, the current pace of the performance increase

is expected to continue for the time being based on the

development of the circuit design technology and the

manufacturing technology, such as photolithography. The

number of transistors was around 3 million in the Pentium®

processor, but becomes greater than 40 million in the

Pentium® 4 Processors, and currently stands at 1.5billion.

Owing to such a tremendous integrity, a super-scalar

architecture, such as the pipelines and the vector processing

used in supercomputers previously, can be embodied in

a single microprocessor to handle several instructions

at a time. In addition, the operating speed of the newest

microprocessor becomes greater than 3GHz, which implies

that GFlops (Giga-floating-point operations per second),

which was only possible with a supercomputer, would be

feasible with a single processor [6-9].

Meanwhile, the peripheral devices, including system’s

main memory are developed further not only for the capacity

but also for the operating speed and the data bandwidth.

SDRAM (synchronous dynamic random-access memory),

RDRAM (Rambus dynamic random-access memory) and

DDR SDRAM (Double Data Rate Synchronous Dynamic

Random-Access Memory) are examples of the high-speed

memory devices employed in the latest computer systems.

However, the data processing speed of the memory

devices is still slower than the internal processing speed

of microprocessors, and the time consumed during the

communication with the system’s main memory and other

external devices take a large portion of overall computational

time, rather than the computation itself.

Therefore, a cache, a high-speed temporary storage

device for the frequently used data and instructions, has

been employed to fill the gap between the main memory

and the microprocessor, since the development of 32 bit

microprocessors. The cache has been employed in two

levels. The first level (L1) cache was included inside the

microprocessor for the frequently used instructions, and

a small amount of data used most often. The second level

(L2) cache has been employed outside the microprocessor

for the large amount of frequently used data using the high-

speed memory device, such as SRAM (static random-access

memory). The Pentium processor had the L2 cache outside

the processor, but further performance improvement was

limited since the cache performance was limited by the

speed limit of the system’s data bus (called as front-side-

bus, FSB) connecting the processor and other peripherals.

The Pentium II processors employed an independent cache

bus (called as back-side-bus, BSB) that can be operated at

the half speed of the processor. Fig. 1 shows the schematics

of the data bus architectures for modern microprocessors.

After the Pentium III processors, on-die L2 cache, which

operates at the same speed of the processor, is included in

many of the microprocessors, such as Intel Pentium 4, AMD

Athlon processors. The Pentium 4 Processor operating at

1.7GHz having the data transfer rate to the system’s main

memory is limited to 3.2 GB/s using RDRAM and to 1.03

GB/s using SDRAM. However, the data transfer rate between

the processor and L2 cache is 54 GB/s, which is 17 to 50 times

faster than the main memory [10,11]. Thus, the third-level

cache is considered for next-generation systems though not

common yet. These characteristics of the memory hierarchy

are quite common to many of the latest microprocessor

systems though their architectures are different. The amount

of L2 caches ranges from 64KB to 4MB, but 128, 256 or 512

KB on-die L2 cache is common these days. The amount of

256 KB is equivalent to 32,768 8Byte (64bit or 32 bit double

precision) real variables, which is equivalent to 3,276

computing nodes having 10 variables per node. Thus, the

utilization of the high-speed L2 cache has the key-role for the

performance of the computational codes.

3. Acceleration of Computing Codes

The way of accelerating the computational codes can

be classified in two categories: 1) active utilization of
Fig. 1. �A schematic diagram of processor and memory architecture of

modern processors.

DOI:10.5139/IJASS.2013.14.2.112 114

Int’l J. of Aeronautical & Space Sci. 14(2), 112–121 (2013)

super-scalar architectures and 2) efficient utilization of

memory hierarchy. Super-scalar is computer processor

architecture that can execute multiple operations at a

time. Pipelining and vector processing are the examples

of super-scalar architectures previously used for vector-

type supercomputers. Multiple data can be processed

simultaneously and sequentially without interruption

through a number of pipelines. A tremendous number of

transistors needed for the super-scalar architectures can be

integrated within a single microprocessor nowadays owing

to the modern semiconductor integration technologies.

The super-scalar architecture is embodied as several

different technologies depending on the systems such as

SSE2 (Streaming SIMD (Single instruction multiple data)

Extension 2) for Intel Pentium 4, 3DNow! for AMD Athlon

and Velocity Engine for Apple Macintosh.

The utilization of these technical characteristics means

the optimization of data control within the loops of the code.

However, it is not only difficult to compose a code optimized

for specific machine architecture with a high-level language

such as Fortran, but also not so meaningful to compose

an optimized code for a specific architecture considering

the continuously changing computing environment. Thus,

the utilization of super-scalar architecture is limited to

maintaining the general characteristics of vector processing

when developing a computing code using a high-level

language, and it is desirable to use compilers that can

produce an optimized execution code for specific machine

architecture. For example, Intel Fortran compiler v.5.0 is

developed to be able to generate an optimized code for

SSE2 technology of Pentium 4 processors. Nevertheless, the

optimization by a compiler is limited to a part of the code,

and the overall structure of the code and its efficiency is

dependent on the developer [12,13].

The second issue for accelerating the code is the utilization

of memory hierarchy, which implies maximizing the

utilization of data cache. By increasing the hit-ratio of dada

cache, the processor can be operated much more efficiently

by reducing the latency time for waiting data from the

memory. In other words, data taken from the main memory

should be used efficiently to reduce the total number of

access to the main memory. However, this is not related to

the local process but to the overall structure of the code.

One way of composing an efficient computational code by

maximizing the utilization of microprocessor architecture is

the use of BLAS. Level-one and -two BLAS were developed

for utilization of super-scalar architecture and BLAS level-

three is developed for maximizing the cache efficiency by

employing the block method [1,2]. The blocking method

is the technique of making a block of variables related to

a process. By reading the block of the variables at once,

the number of access to the main memory can be reduced

and the efficiency of cache can be increased. Level-three

BLAS is the linear algebra sub-programs, which manipulate

the variables as the vector or matrix block of the size L2

data cache. Thus, the BLAS is dependent on the processor

architecture, and most of the processor makers supply the

BLAS library optimized for their processor. Also, ATLAS

(Automatically Tuned Linear Algebra Software) may be used

instead of BLAS [1,14]. A lot of linear algebra algorithms has

been developed using BLAS and distributed as mathematical

libraries such as LAPACK [15]. However, most of the linear

algebra algorithms used in nonlinear fluid dynamics codes

are not included in the mathematical libraries, and the

blocking method is quite complex and difficult for general

use [1,2]. If BLAS is used in a fluid dynamics code, the linear

algebra subprograms should be used instead of arithmetic

operations, which implies completely rewriting the existing

code.

Therefore, the purpose this study is to suggest a way of

reducing the computational time by only minor changes in the

overall structure of the code without the complexity of using

the additional libraries. Once a variable for a computational

node is taken from a main memory, maximizing the use of

variables can increase the efficiency of the processor. This

approach, known as ‘localization’ of a code, implies that the

increase of the cache hit-ratio by reducing the number loops,

consequently. Rather than vector-type supercomputers with

hundreds of pipelines, the localization may be effective for

the latest microprocessor architectures having relatively

slow memory, fast data cache and several long pipelines.

Also, it will be useful for parallel computer systems based on

microprocessors.

4. Simulation a nd Analysis

4.1 �Governing Equations and Review of Solution Algo-
rithm

A fluid dynamics solution algorithm considered in this

study is the LU-SGS scheme for compressible flow since it

is one of the simplest forms of the fluid dynamics algorithm

widely used nowadays. Also, the localization concept can be

easily applied owing to its quasi-implicit iterative solution

strategy. The conservative form of two-dimensional Euler

equations, the governing equations of inviscid compressible

flows, can be summarized in a vector notation as equation

(1) for a generalized curvilinear coordinate.

(1)

115

Keun-Jin Jang Optimization of LU-SGS Code for the Acceleration on the Modern Microprocessors

http://ijass.org

Where t is time and q is the vector of conservative variables;

density, momentum in each direction and total energy per

unit volume. f and g are flux vectors in each direction. By

applying the time-marching numerical approximation, the

governing equations can be rewritten as equation (2).

(2)

Where, n is the iteration step and imax and jmax is the

number of computational grids in each direction. The

residual vector and the diagonal vector are defined

for internal grid point as,

(3)

and

(4)

For steady-state problems, the algorithm can be recovered

to Newton’s method applied for nonlinear elliptic partial

differential equations by neglecting the first term of the

right-hand side of equation (4) as an approximation using an

infinitely large time step. However, the term is not neglected

generally for the diagonal dominance of the matrix solution

algorithms.

The equation (2) constitutes a closed set of linear

algebraic equations Ax=b for (4×imax×jmax) variables.

The matrix A is a block penta-diagonal matrix composed

of (4×4) block matrices and strides of imax and jmax. The

general procedure for the solution of the linear equations is

1) construct a vector b, 2) construct the matrix A and 3) put

A and b into the solver of linear algebraic equations. Thus, a

good way of constructing a performance optimized code is

1) construct A and b with BLAS and 2) put A and b into the

solver composed with BLAS. However, there is no numerical

library for the solution of block penta-diagonal matrices

having of arbitrary stride, because the iterative methods can

be efficient in this case instead of an exact solver. Moreover,

the exact solver is not always necessary, because the matrix

A is a temporarily assumed value, and the iterative method

is inevitable due to the inherent nonlinearity of the fluid

dynamic equations.

The first candidate of the iterative method is the ADI

(Alternating Direction Implicit) method. By applying Beam-

Warming approximation, the penta-diagonal equations can

be replaced by a number of tri-diagonal equations in each

direction. The ADI method is widely used because of the

existence of an efficient solution algorithm for tri-diagonal

equations. Although the ADI method is one of the iterative

and approximate methods, sub-iterations are rarely used

between iterations even in case of unsteady problems

because of the relatively small approximation error.

Therefore, the ADI method would be a good choice for the

solution of fluid dynamic equations if there were optimized

libraries for the tri-diagonal equations. For incompressible

flows, the SIMPLE (semi-implicit method for pressure

linked equations) algorithm with the ADI method can be a

good choice for constructing an efficient code, because all

the fluid equations are segregated and a tri-diagonal solver

developed with BLAS and included in LAPACK [15], can

be used directly. However, the coupled method used for

compressible flows results in a block-tri-diagonal system, for

which an efficient solver is not yet developed using BLAS.

In the meantime, other iterative methods such as the

Jacobi method or Gauss-Seidel’s methods are used in

CFD. The Jacobi method has been used for its simplicity

in vectorization, but Gauss-Seidel’s method is used more

widely for better convergence. The LU-SGS scheme is an

improved version of Gauss-Seidel’s method, which has

been widely used for the last decade. The procedure of the

LU-SGS scheme can be summarized as the following lower

and upper sweeps by alternating the direction of the Gauss-

Seidel sweeps.

Do i=1,imax, j=1,jmax

(5)

Do i=imax,1,-1, j=jmax,1,-1

(6)

Equations (5) and (6) cannot be vectorized and the (4×4)

matrix should be inverted locally. However, those equations

can be vectorized if an approximate splitting of the flux

Jacobian matrix is applied using spectral radius, a maximum

Fig. 2. �Comparison of convergence history

DOI:10.5139/IJASS.2013.14.2.112 116

Int’l J. of Aeronautical & Space Sci. 14(2), 112–121 (2013)

eigenvalue of the Jacobian matrix.

(7)

Then the left-hand sides of equation (5) and (6) become a

scalar value, and the vectorization can be carried out using

the list index along the diagonal direction of computational

grid. The LU-SGS algorithm had been developed originally for

vector-type supercomputers, but has also been used widely

on microprocessor-based systems, including workstations

and PCs because of its simplicity and good convergence. The

present study will suggest a way of optimizing the LU-SGS

method for the architecture of microprocessor systems.

4.2 Basic LU-SGS Solution Procedure

The elementary procedure for the solution of algebraic

equations is 1) evaluation of the residual vector and

coefficient matrix and 2) put them into the solution library.

However, in fluid dynamics, the coefficient matrix is

evaluated when it is necessary, because the storage of the

block penta-diagonal coefficient matrix is quite large. In case

of the LU-SGS algorithm the coefficient matrix is evaluated

locally and the solution procedure can be summarized as the

following five loops for global variables.

Algorithm Level 0

A) Residual vector construction in i- direction

Do j=1,jmax

Do i=0,imax

B) Residual vector construction in j- direction

Do i=1,imax

Do j=0,jmax

C) Lower-sweep

Do i=1,imax, j=1,jmax

D) Upper-sweep

Do i=imax,1, j=jmax,-1

E) Solution Update

Do i=1,imax, j=1,jmax

The first and second steps are the construction steps of the

residual vector from primitive variables. The numerical fluxes

are calculated at the surfaces, and summed as a residual. The

numerical fluxes are added to both sides of residual vectors.

These steps require a lot of numerical operations and take a

lot of computing time, because the interpolation of variables,

limiter functions and eigenvalue corrections are necessary

in addition to the calculation of numerical flux functions.

The next step is the lower sweep. This step can be done

easily by scalar-inversion, after calculating the product of the

split Jacobian matrix and the difference of the conservative

variable vector. This procedure can be simplified, and a lot

of computing time can be saved by using an analytic form of

the product [16]. The upper sweep can be done similarly to

the lower sweep in opposite direction. The final step is for the

calculation of new conservative variables from the variations

and the evaluation of new values of primitive variables from

the conservative variables.

4.3 Localization Concept

The localization, an approach of increasing the utilization

of variables read from the main memory, results in reducing

the number of loops for global variables. For example, if

there were several loops requesting global variables and

the size of the array for the global variables is quite large in

comparison with the size of data cache, a variable cannot be

stored in the cache when it is necessary in a next loop, and

the variable should be taken from the main memory. Since

there is latency in taking a variable from the relatively slow

main memory, the processor becomes idle during that time

and the time is not necessarily wasted.

However, if the number of loops can be reduced while

maintaining the same results, i.e., maximizing the use of a

variable read from the main memory, then the number of

access to the main memory can be reduced, and the wasting

time can be saved. Therefore, the localization is equivalent

to reducing the number of loops, and the overall structure of

the code is changed into the computation for local variables

with a minimum number of loops. Reduction of the five

loops in Algorithm Level 0 will be discussed in the following.

Algorithm Level 1

A,B) Residual vector construction

Do j=1,jmax

Do i=0,imax

C), D) and E) Same as Algorithm Level 0

117

Keun-Jin Jang Optimization of LU-SGS Code for the Acceleration on the Modern Microprocessors

http://ijass.org

4.4 Localization Algorithm Level 1

As a first step of reducing the global loops, the merge of

step A) and B) can be considered. For A) and B) steps, a

variable at a grid point is called twice. However, these two

loops can be merged into a single loop by calculating the

right and upper numerical fluxes at a time. After that the

numerical fluxes should be stored temporarily for the next

use. If the i-direction is the inner loop while j is the outer,

the right numerical flux is used as the left numerical flux for

the next grid point and only four real variables (1×4×8=32

Byte) are necessary. However, the upper numerical fluxes

of entire grid points in j-th row should be stored for a while

before it can be used as a lower numerical flux for the upper

grid point. Although the size of memory is dependent on the

I-directional grid point, it is relatively small in comparison

with a typical cache size of 256KB. Since a 32 Byte is

necessary for a numerical flux, it is thought that more than

1,000 numerical fluxes can be stored for next use, while even

considering the other variables. Thus, the number of access

to the main memory can be reduced, and some amount of

time can be saved as such. Also, it is inevitable to proceed

to the next step. The localization algorithm level 0 can be

summarized as follows.

4.5 Localization Algorithm Level 2

The second step of localization is the merge of the

residual construction step and lower sweep as algorithm

level 2. Since the residual vector is no longer necessary after

the lower sweep, it is not necessary to store the residual

vector as global variables, but the residual can be stored

as only four temporary variables. Thus, a large amount of

memory, corresponding to imax×jmax×32 Byte or 20 to 30

% of overall memory, can be saved as an additional effect.

As major effects, 1) it does not become necessary to access

the residual vector and primitive variables stored in main

memory for the lower sweep, and 2) the available cache size

can be significantly increased by removing the unnecessary

storage of the residual vector in data cache.

Algorithm Level 2

A,B and C)

Residual vector construction and Lower-Sweep

Do j=1,jmax

Do i=0,imax

D) and E) Same as Algorithm Level 0

4.6 Localization Algorithm Level 3

As a next step, the upper-sweep and the solution update

procedure can be merged as algorithm level 3. All the

numerical procedure for a grid point is terminated after

the upper-sweep, and a new solution can be reconstructed

immediately after the upper sweep. Thus, the merge of the

upper sweep and the solution update procedure is aimed

to reduce the time for taking a variation of a conservative

variable from the main memory for reconstruction of

new variables. In this case, the solution reconstruction is

done in the opposite direction of the lower-sweep since

the upper-sweep proceeds in the opposite direction of the

lower sweep.

However, the upper-sweep of the original LU-SGS

scheme in equation (6) is changed to equation (8), because

the variables used for the calculation of the split Jacobian

matrix for the next grid point is already updated. Thus, there

is a possibility of changing the convergence characteristics,

but its effect would always be negative, because the basic

concept of Gauss-Seidel’s method is the use of recently

updated variables for the calculation of the coefficient

matrix.

(8)

Following the localization procedures, the five loops in

the algorithm level 0 are reduced to only two loops in the

algorithm level 3. Thus, the access to the main memory can

be reduced and the utilization of a variable taken from a

main memory can be increased. In other words, the cache

hit-ratio can be increased by the frequent use of a variable

that is stored in a high-speed temporary location. The next

chapter will show the efficiency of the localization algorithms

for several problem sizes.

Algorithm Level 3

A,B and C)

Residual vector construction and Lower-Sweep

Do j=1,jmax

Do i=0,imax

D) and E) Upper-sweep and Solution Update

Do i=imax,1, j=jmax,-1

DOI:10.5139/IJASS.2013.14.2.112 118

Int’l J. of Aeronautical & Space Sci. 14(2), 112–121 (2013)

5. Application of Localization Algorithms

5.1 Test Problems and Environments

For the examination of the localization algorithms, an

inviscid compressible flow problem was considered. The test

problem is the numerical solution of Mach number 3 flows

over a two-dimensional wedge of a 10 degree turning angle

exhibiting an oblique shock wave and expansion waves. Since

most of the numerical algorithms can produce sufficiently

good solutions, only the convergence characteristic and the

time efficiency were examined. In this study, influences by

the size of the problem, processor type and compiler was

investigated. The sizes of problems were summarized in

Table 1.

Fig. 3 is the convergence history up to the machine

accuracy for a small problem showing the convergence

characteristics. Solution by the AF-ADI method is also

included for comparison. Since the algorithm level 0, 1 and

2 are mathematically identical the convergence histories are

exactly the same, as well as the solutions. Only the algorithm

3 is slightly different, as described in equation (8), but Fig.

3 does not show any noticeable differences. There is only a

slight difference after the machine accuracy is attained. Also,

the number of mathematical operations is exactly the same

for all the algorithms.

The time consumed for the iterations in Table 1 is

measured without the console and disk output. The

computing time is measured by using the intrinsic functions

such as CPU_TIME() or SECNDS(). All the specifications of

the tested computers are summarized in Table 2 including

the processor type, cache size, main memory, main board/

chipset, operating system, compiler and compile options.

“Q6600”, “P9700” and, etc. are the abbreviation of each system

based on the model number of the processor. The time of

the processor launch is listed below the title of the system

to reflect the advances in processor architectures. Optimal

compile options for various systems have been used by the

Polyhedron Inc. for the compiler comparison(Unclear) [17].

The computing time by the localization algorithms were

examined for three problems on several systems. The results

of AF-ADI methods are included for ‘Small’ and ‘Medium’

problems for comparison, but cannot be done for large

problem since the method requires much larger memory

than the LU-SGS scheme. Speed-Up is the ratio of computing

time compared to algorithm level 0, and is summarized in

Table 3 to 5, as well as the computing time. The performance

of each system is compared visually in Fig. 4 to 6 by using

relative speed. Relative speed is the ratio of computing time

compared to algorithm level 0.

5.2 Test Results for ‘Small’ Problems

Various analyses may be possible from the results in

Fig. 4 to 6 and Table 3 to 5, but the primary one will be the

comparison of algorithms depending on the problem size.

The ‘Small’ problem uses a relatively small grid, which

requires 1.2 MB of memory. The 1.2 MB memory is very

small in comparison with the overall size of main memory

and is smaller than the cache memory of the tested systems.

Fig. 3. �Relative speed for the Small problem.

Table 1. Test problems

Table 2. Specification of test systems and compilers with compile
 options

119

Keun-Jin Jang Optimization of LU-SGS Code for the Acceleration on the Modern Microprocessors

http://ijass.org

Referring to Fig. 4 and Table 3, the computing time of LU-SGS

algorithm is about half of the AF-ADI method depending

on each system. For Q6600 systems, the speed-up by the

algorithm change is limited to 6% maximum, but the E5520

system shows about a 70% improvement. A point to notice

is that the recent processors show much more performance

gains, though there is a dependency on each system. This

implies inversely that new processor architectures show

improved performance gain by the algorithm optimization.

However, overall, the performance gain is not as big as

expected from the previous studies [4]. It is because the speed

of memory becomes several times faster than before, but the

clock speed of the processors is maintained around 2~3 GHz.

Nonetheless, the present results for a small problem does

not fully reflect the advantage of the localization techniques,

since the problem size is too small and the cache hit ratio

would be quite high for most of the systems, i.e. the problem

could be handled with the capacity of cache memory.

5.3 Test Results for ‘Medium’ Problem

The medium problem asks for 10.8 MB memory, which

is greater than the typical cache size of tested systems. The

results for the medium problem are summarized in Fig.

5 and Table 4. The results clearly show the advantage of

the localization technique for all the systems. Among the

various levels, the advantage of the Level 2 algorithm is most

Table 3. Computing time [s] and Speed-Up for Small problem

Table 4. Computing time [s] and Speed-Up for Medium problem

Table 5. Computing time [s] and Speed-Up for Large problem

Fig. 4. �Relative speed for the Medium problem. Fig. 5. �Relative speed for the Large problem

DOI:10.5139/IJASS.2013.14.2.112 120

Int’l J. of Aeronautical & Space Sci. 14(2), 112–121 (2013)

significant. It is reasoned that the advantage comes from

two factors. The first one is that the storage of the residual

vector is no longer necessary as a global variable, which

results in the significant reduction of memory requirement

and the increase of cache hit ratio by the availability of

cache capacity. The second is that the residual is used for

the lower sweep as soon as it is computed, rather than stored

for later use in a separate lower sweep, as is for the level 0

and 1. The maximum performance gain is greater than twice

that obtained for the latest systems. It is considered that the

advantage of the algorithm is greater for the latest systems

which have a higher maximum frequency.

5.4 Test Results for ‘Large’ Problem

Fig. 6 and Table 5 show the test results for a large problem.

This problem requires 120 MB of memory which is much

larger than the cache capacity of all the systems tested.

The trend is similar to that of a medium problem, but the

advantage of the localization is much greater. The advantage

of the level 3 algorithm is also shown clearly in these results.

Thus, it is considered that the reduction of the global loop

is advantageous to improve the computing performance by

reducing the access to main memory while increasing the

cache hit-ratio. The maximum performance gain by the level

3 algorithm was 2.34 times the level 0 algorithm to obtain

the identical solution by the E5-2670 system. It is also shown

that the localization technique is advantageous to the latest

processors for which the difference of clock speed between

the memory and processor is larger.

5.5 Summary of the Effect of Algorithm Improvements

The results in Fig. 4-6 and Table 3-5 show the overall

performance improvement according to the increasing the

level of localization, even though the amount of performance

improvements is dependent on the problem size and system

characteristics. Overall, there is no big improvement in

level 1 compared to level 0. The performance improvement

comes from reducing the number of access to the primitive

variables and the residual vector. Level 2 shows significant

improvement compared to level 1. Since the change from

level 1 to level 2 has combined effects; 1) accessing the

residual vector and primitive variables stored in main

memory for the lower sweep becomes unnecessary, and

2) the available cache size can be significantly increased

by removing the unnecessary storage of the residual vector

in data cache. A simple correction level 3 has a relatively

significant improvement due to the small overall computing

time, although the absolute saving is quite comparable to that

of level 1 from level 0. These results support the reasoning of

developing the localization algorithms.

In addition to the algorithms, characteristics of the

computing systems can be understood as well, and the

comparison between the computing systems is feasible. The

latest processor architectures show the strong dependency

on algorithm optimization. However, Q6600, relatively

old processor architecture, was less sensitive to algorithm

optimization, although there is a dependency on problem

size.

6. Conclusions

The latest microprocessor systems have a large performance

gap between the microprocessor, and the main memory, and

high-speed cache is employed to cover the gap. Therefore,

the performance of a numerical code is dependent on the

algorithms that can maximize the utilization of variables

taken from main memory while reducing the access to the

main memory. This is equivalent to reducing the number of

loops for global variables and has the effect of increasing the

cache hit-ratio.

In the present study, methods for improving the performance

of a code for the LU-SGS scheme were verified in several

levels based on the reasoning of the latest microprocessor

architectures. The improvements of the algorithms were

examined for several of the latest micro processor systems

regarding numerous problem sizes. The results exhibit clear

performance improvement by the code optimization, called

here as localization. Although the magnitude of improvement

is dependent on problem size and system architectures, the

performance improvement was monotone according to the

level of localization, regardless of system architectures. A

solution more than twice as fast was obtained at the same

computer system (Unclear) for producing the exact same

solution with the same number of floating-point operations.

From the present results, it is shown that the latest

microprocessors having higher operation speeds are much

more sensitive to localized algorithms. Also, it is shown

that the processor speed does not guarantee the higher

performance, unless the computational code is optimized

for the memory hierarchy. Therefore, it is concluded that

the code optimization on the memory hierarchy of the

latest microprocessors is no longer a matter of choice, but a

compulsory subject.

Acknowledgement

This work was supported by a 2-Year Research Grant of

Pusan National University.

121

Keun-Jin Jang Optimization of LU-SGS Code for the Acceleration on the Modern Microprocessors

http://ijass.org

References

[1] Schreiber, R., and Dongarra, J., “Automatic Blocking of

Nested Loops”, University of Tennessee Computer Science

Technical Report, CS-90-108, 1990.

[2] Dongarra, J. J., Du Croz, J., Duff, I. S., and Hammarling,

S., “A Set of Level 3 Basic Linear Algebra Subprograms”, ACM

Trans. Math. Soft., Vol. 16, Issue 1, 1990, pp. 1-17.

[3] Yoon, S., and Jameson, A., “Lower-Upper Symmetric-

Gauss-Seidel Method for the Euler and navier-Stokes

Equations”, AIAA Journal, Vol. 26, No. 9, 1988, pp. 1025-1026.

[4] Choi, J.-Y., and Oh, S., “Acceleration of LU-SGS Code

on Latest Microprocessors Considering the Increase of Level

2 Cache Hit-Rate”, Journal of KSAS, Vol. 30, No. 7., 2002, pp.

68-80.

[5] Moore, G.E., “Cramming more components onto

integrated circuits”, Electronics, Vol. 38, No. 8, 1965, pp. 114-117.

[6] Crandall, R.E., “PowerPC G4 for Engineering,

Science, and Education”, Apple Computer, Inc., Oct. 2000,

URL : http://www.apple.com/powermac/pdf/PowerPC-

G4velocityengine.pdf.

[7] Tendler, J.M., Dodson, S., Fields, S., Le, H., and

Sinharoy, B., “Power 4 System Micro architecture”, IBM

Corp., Oct. 2001.

[8] Intel Corp., “The Xeon Processor MP Product

Overview”, Intel Corp., URL : http://www.intel.com/design /

Xeon/xeonmp/prodbref/index.htm.

[9] Johnson, J.J., “The AMD-760™ MPX Platform for the

AMD Athlon™ MP Processor”, White Paper PID# 25787A,

AMD Inc., Jan. 2002.

[10] Intel Corp., “Intel 850 Chipset: 82850 Memory

Controller Hub (MCH) Datasheet”, Intel Document Number

290691-001, Nov. 2000.

[11] Intel Corp., “Intel 845 Chipset: 82845 Memory

Controller Hub (MCH) for SDR Datasheet”, Intel Document

Number 290725-002, Jan. 2002.

[12] Intel Architecture Optimization Reference Manual,

Intel Corp., 1998-1999.

[13] Intel Pentium 4 and Xeon Processor Optimization

Reference Manual, Intel Corp., 1999-2001.

[14] URL : http://www.netlib.org/atlas/index.html.

[15] Anderson, E., et al., LAPACK Users’ Guide Third

Edition, SIAM 1999, Philadelphia, PA.

[16] Choi, J.-Y., Jeung, I.-S., and Yoon, Y., “Computational

Fluid Dynamics Algorithms for Unsteady Shock-Induced

Combustion, Part 1: Validation”, AIAA Journal, Vol. 38, No. 7,

2000, pp. 1179-1187.

[17] URL : http://www.polyhedron.co.uk.

