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Abstract

The time implicit point SGS scheme is applied to compute hypersonic viscous
flows in thermochemical nonequilibrium. The performance of the point SGS scheme
is then compared with those of the line SGS and the LU-SGS schemes.
Comparison of convergence histories with the effect of multiple forward and
backward sweeps are made for the flow over a 2D cylinder experimentally studied
by Hornung and the flow over a hemisphere at conditions corresponding to the
peak heating condition during the reentry flight of an SSTO vehicle. Results
indicate that the point SGS scheme with multiple sweeps is as robust and efficient
as the line SGS scheme. For the point SGS and the LU-SGS scheme, the rate of
improvement in convergence is largest with two sweep cycles. However, for the
line SGS scheme, it is found that more than one sweep cycle deteriorates the
convergence rate.

Key Word : thermochemical nonequilibrium, Navier-Stokes equations, symmetric
Gauss-Seidel, multiple sweeps

Introduction

The flowfield around a hypersonic vehicle is characterized by a strong bow shock, steep
gradients of velocity and temperature in the boundary layer, and thermochemical nonequilibrium
processes due to high temperature. In the process of time integration of governing equations
for such flows, stiffness problem often arise owing to chemical reactions. Stiffness can be
interpreted as a disparity between the characteristic time scales of chemical source terms and
the characteristic time scales of convective and diffusion terms.

Many researchers have made efforts to develop robust and efficient implicit schemes to
overcome the stiffness problem of chemically reacting flows [1-5]. Relaxation schemes based
on Gauss-Seidel method turned out to be robust and efficient, since strong diagonally dominant
solution matrices could be achieved with upwind schemes. The line symmetric Gauss-Seidel
(line SGS) scheme of Candler and MacCormack [1] is known as one of the most efficient
implicit schemes, and has been widely used for chemically reacting flows as well as perfect
gas flows. The lower-upper symmetric Gauss-Seidel (LU-SGS) scheme with the diagonal
approximation of chemical source Jacobian by Eberhardt and Imlay [3] accomplishes much less
CPU load per iteration and reduction in memory because it requires only scalar diagonal matrix
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inversion. However, this scheme has some problems associated with the diagonal approximation
of chemical source Jacobian. Hassan et al. [4] pointed out that the diagonal approximation of
Eberhardt and Imlay was not appropriate to represent the chemical time scale of each species,
and proposed an alternative method while it requires the changes of equations set to include
elemental densities. The point symmetric Gauss-Seidel (point SGS) scheme has demonstrated
several desirable features for perfect gas flows. It has been found to be more efficient than the
line SGS scheme for incompressible flows [6], and easy to extend to three dimensions without
factorization error for compressible flows [7]. Further, the point SGS scheme can be vectorized
in any dimension and is a good candidate for massively parallel computing [6].

In this work, we examine the performance of the point SGS scheme in comparison with
the line SGS and the LU-SGS scheme for hypersonic viscous flows with nonequilibrium
chemistry and vibrational excitation. The three implicit schemes for time integration are
incorporated into the present code to yield computational results for adequate comparison.
Numerical simulations are performed for hypersonic flows over blunt bodies at relatively low
and high Mach numbers. Results of convergence history are compared for the three implicit
schemes with the effect of multiple sweep cycles. '

Governing Equations and Physical Models

The set of governing equations for the present nonequilibrium flow is composed of
species mass conservation, momentum conservation, total energy conservation, and vibrational
energy conservation. The extended Navier-Stokes equations for two dimensional or
axisymmetric flows can be written as
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where a=( for two dimensional and «=1 for axisymmetric flows. The components of
conserved variables vector @, inviscid flux vectors F and G, viscous flux vectors F,

and G, source vectors for axisymmetric geometry H and H, and source vector for

thermochemistry W are given as follows:
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where p, is the density of species s, p is the mixture density, p= 2‘93, u and v are the
velocity components in the x and y directions, respectively, p is the pressure, E is the total
energy per unit mass, E, is the vibrational energy per unit mass, w, is the mass production
rate of species s, and w, is the production rate of vibrational energy. The diffusion mass flux
for species s, /., is given by Fick's law with a single diffusion coefficient. The heat fluxes
are composed of conduction and diffusion components as

aT, do,
a.=— ket k)SL — —pg“p =% b, 3)

The viscosity and thermal conductivity (translational, rotational, and vibrational) are
determined from the procedures of Reference 1. The mass diffusion coefficient is taken to be the
same for all species and calculated assuming a constant Schmidt number of 0.5. The translational
and rotational energy modes are assumed to be in equilibrium and described by the translational
temperature 7. The vibrational energy is determined by assuming a harmonic oscillator and
characterized by a single vibrational temperature 7T, . A simple non-ionized reacting air model

with five species (N, Oy, NO,N,O) is considered. For this model, there are three dissociation
reactions for the molecules and two exchange reactions involving NO as follows:

Ny+ M, & 2N+ M,
0y+ M, & 20+ M,

NO+ M, & N+ O+ M, (4)
N+ 0 NO+N
NO+0 & 0,+N

For the reaction rate coefficients, the two-temperature model of Park [8] is employed. In
the modeling of vibrational relaxation, the vibration-translation energy exchanges described by
the Landau-Teller model and the vibration-dissociation energy exchanges are taken into

account as
eq
ﬁ € —@
Wy= psM T+ f\ Ws€ s (5)
s= Tys 5=

where the terms e and e, are the vibrational energy of species at the translational and
vibrational temperatures, respectively. The vibrational relaxation time of species, 7, 1is

determined from the corrected Millikan and White formula by Park [9].
At the body surface, no-slip condition for velocity, constant temperature( 7= T,= T, ),

and zero normal pressure gradient (dp/dn=0) are imposed.

Numerical Methods

Equation (1) is transformed into a generalized coordinate system, (&, 7), where & is the
direction along the body surface, 7 is the direction normal to the body surface. Using the
finite volume method, we obtain a semi-discrete conservation approximation of Eq. (1) with
unit spacing, 4&é=A4p=1, as follows:
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The dependent variables are defined at the cell center (7,7), and the metric terms are
defined at the cell interfaces. A tilde denotes numerically approximated flux at the cell
interface. Equation (6) provides a set of coupled ordinary differential equations with respect to
time. Application of the implicit Euler backward scheme and the time linearization of the
nonlinear terms result in
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n+1

where 4 Q"= Q" — Q”. The residual vector R(Q) is given as
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For the evaluation of inviscid numerical fluxes, F , E, in the explicit part (right-hand
side), we adopt the modified low-diffusion flux-splitting scheme [10] which ensures monotone
shock capturing and accuracy in the viscous shear layers. The inviscid numerical flux in the &
direction is given by

Fion=5(C 0,00+ Cax0s) + 154 B(D* 5+ D7p) ©)
where,
O=(01,02.",0 s, 0%,00,0h,0E)T ., ¥=(0,0,--,0, &, &,,0,0)" (10)

In Eq. (9), subcripts L and R represent the left and right state of the cell interface

respectively, a the frozen speed of sound, C~* the split Mach numbers, and D~ the split
pressures. Detailed descriptions of the split Mach numbers and the split pressures can be found
in Reference 9. To get higher-order accuracy in space, we employ the MUSCL approach [11]
which uses the interpolation of primitive variables, , for the construction of the left and right
state of conserved variables. The Van Albada limiter function is used to eliminate oscillations
in the shock region.

In the implicit part (left-hand side), the firsr-order Van Leer flux vector splitting (FVS)
scheme is used for the inviscid flux because it is simple for the construction of flux Jacobian
and because the modified LDFSS adopted in discretizing the explicit part is based on FVS. For
example, the Jacobian of inviscid flux in the & direction at point (z,7) is calculated as

~+
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where the symbol I';,,.; represents the metric terms at the cell interface where the numerical flux

is to be evaluated and C?%; the split Mach number of Van Leer. We retain only viscous flux terms

of non-mixed derivative. Thus, the residual vector in the implicit part is dependent on the states
of five grid point stencil. The Jacobian of thermochemistry source vector is evaluated as follows.
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The resulting matrix equation with the Jacobians of inviscid fluxes, viscous fluxes, and
thermochemistry source term can be written at a point (7,7) as

Ci4Q};+ CAQ 1 j+ C34Q} -+ CidQF 1+ Cs4QT 1 =— RE; (13)
where each of coefficients is a 9x9 matrix and has the following form:
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Ci= A (Qu1iTinp)— Av(QivriiTisi)

Cs= B (Qijs1.Tijrn)— Bul(Qijur,Tijri)

Point symmetric Gauss-Seidel scheme

For the point SGS scheme, terms with coefficients Cs,,::+, Cs in the left-hand side of Eq.

(13) are moved to the right-hand side, and hence only the inversion of C; becomes necessary.

For time advancement, the computation is carried out in forward and backward sweeps. For a
forward sweep, the calculation domain is swept from lower left to upper right via

—_—~ e~

Ci4Q};=—Rl;— C, 4Q}-,;— C3 4Q}; \— Cy 4Q}+1,;— C5 4@} j+: (15)

For a backward sweep, the calculation domain is swept from upper right to lower left.

—_—~— e~

Ci4Q} ;== R:;— Co 4Q}_1,;— C3 4Q};—1— C44Q7+1,;— G547 j+1 (16)

In the above, —Af) represents the intermediate solution updated as the forward sweep
proceeds, 21\() is the solution available which is not yet updated. 49 is normally taken to be
zero at the first cycle. 4Q is the solution from the backward sweep. The forward and
backward sweep processes can be repeated to better update 4@ with 49 computed from
previous sweep. Note that the coefficient matrices, Cj, -, C;, remain unchanged during the
sweep. As we shall see multiple sweeps with fixed 4t can improve convergence property.

Line symmetric Gauss-Seidel scheme

Equation (13) can be solved using the line SGS scheme with the same coefficient
matrices for the point SGS scheme. The domain is swept in forward and backward along one
coordinate direction. A block tridiagonal matrix equation is solved at each line perpendicular to
the sweep direction. If the & direction is chosen as a sweep direction, the forward and
backward sweep processes can be written as
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Lower-Upper symmetric Gauss-Seidel scheme

The LU-SGS scheme [2] approximates as follows the split Jacobian matrices of inviscid
fluxes to guarantee diagonal dominance.

A =LA D] (19)
B = L[ Brg A B (20)

where 7 A) and #B) are the spectral radii of the flux Jacobians A and B corresponding
to the & and 7 directions, respectively, and B; is a relaxation parameter larger than one.
The coefficient matrices of Eq. (13) constructed according to these algorithms can be written
as

=7 ]At +[ A+ A B,,)]1+ Z;,

~ ~t (21)
C= —A C;= — B ;-
Cy= X_H-l.;‘ Cs= E_.',jﬂ

With these coefficient matrices, Eq. (13) is solved by the following two sweeps as in
the case of point SGS scheme. The forward sweep process is written as

—_—~—

C4Q:;i=—R;;— C, 4Q7-1,;— C3 4Q%j—1— C4 4Q711,;— Cs5 4Q7 ;41 (22)
and the backward sweep process is written as
Ci4Q} ;== Rl;— C; 4Q}-1,— C3 4Q} ;-1 — C1dQ}s1;— Cs4Q i1y (23)

In Eq. (20), the coefficient C; is a block matrix because of the presence of

thermochemical source Jacobian Z . Thus the inversion of block matrix C; is required in the
forward and backward sweep processes.

Results and Discussions

The algorithms discussed above were applied to solve the flowfields of two cases of
hypersonic nonequilibrium flows over blunt body. The first case is the flow over 2D cylinder
experimentally studied by Hornung [12] and the second case is the flow over hemisphere at
conditions corresponding to the peak heating condition during reentry flight of an SSTO vehicle
[13]. The performances of three implicit schemes, point SGS, line SGS, and LU-SGS, against
these two flow cases were compared.
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Hornumg’s Experiment

Hornung [12] studied experimentally a partially dissociated nitrogen gas flow around a
two-dimensional cylinder with a radius of 2.54cm. The freestream conditions of the experiment
are:

Ve=05.59 km/s , 00=5.349%x10"° kg/m® . T=1833° K, T,.=1833° K, c;p=0.927, cxy=0.073

The freestream Mach number is 6.13 and the Reynolds number based on the body radius
is 12000. In the present computation, the wall was assumed to be noncatalytic and its
temperature was set to 1833 °K . The computational domain included half of the body, and
calculations were performed on three grid resolutions: 20x40 , 30x60 , and 40x80 grid points
in the direction along the surface and normal to the surface, respectively. We used fixed time

step with the maximum CFL number of 30 for
all computations. In order to avoid computational
instability caused by a sudden variation of flow
variables during the initial phase of computation,
the CFL number was increased from the initial
value of 0.1 to the final value of 30 by using a
cubic polynomial function of the fractional
iteration number, #/N . N is the iteration number
at which the final value is attained and 7 is the
current iteration number. For the point SGS and
line SGS scheme, N was set to 300. The
LU-SGS scheme required slower increment of the
CFL number than the point SGS and the line
SGS scheme for stable computation. For this
case, N was set to 500.

Figures 1, 2, and 3 show respectively the
plots of convergence histories of L, norm of

density residual versus CPU seconds on a
DIGITAL workstation 433a for the 20x40 ,30x60
and 40x80 grid system. The number on the line
of the plot designates the number of forward and
backward sweep cycles. Comparison of the plots
points out that the line SGS scheme takes least
CPU time for converged solution and the
LU-SGS scheme longest CPU time for all the
grid systems. The point SGS scheme requires
slightly longer CPU time than the line SGS
scheme. Convergence is considerably improved by
the multiple sweeps for both the point SGS and
the LU-SGS scheme. For the point SGS scheme
(Figures 1(a), 2(a), and 3(a)), the convergence
becomes faster up to three sweep cycles but
becomes slightly slower for the case of four
sweep cycles. For the LU-SGS scheme (Figures
1(c), 2(c), and 3(c)), the convergence becomes
faster as the number of sweep cycles increases.
For both schemes, the rate of improvement is

L, norm of density residual
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Fig. 1. Convergence history for the flow
over 2D cylinder (20 x40 grid)
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Fig. 3. Convergence history for the flow
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seen to be largest when two sweep cycles are taken. On the contrary, for the line SGS scheme,
the convergence becomes slower when we adopt more than one sweep cycle as illustrated in
Figures 1(b), 2(b) and 3(b). From these results, we see that multiple sweep cycles for the point
SGS and LU-SGS schemes help the propagation of updated solutions in the computational domain.

In Figure 4, computed pressure and translational temperature distributions along the
stagnation grid comparison with the experimental one of Hornung. The present result is seen to
be in agreement with the experimental data in both shock shape and fringe patterns.
Computations with the point SGS, the line SGS, and the LU-SGS schemes yielded the same
computational data.streamline are illustrated for three grid resolutions. The solutions at the shock
become more refined as the grid is refined. Figure 5 depicts the numerical interferogram
constructed from the density and mass fraction of atomic nitrogen for the 30x60 grid comparison
with the experimental one of Hornung. The present result is seen to be in good agreement with
the experimental data in both shock shape and fringe patterns. Computations with the point SGS,
the line SGS, and the LU-SGS schemes yielded the same computational data.
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SSTO Reentry Condition and compulation

The second case is an axisymmetric flow over a hemisphere with nose radius
Ry=1.38m at an altitude of 65km. The freestream conditions are:

Ve=5700 m/s , p=1.641x10"" kg/m® . T=233" K, T, =233° K, c;p=0.7381, cz=0.2619

The freestream Mach number is 18.6 and the Reynolds number based on the body
radius is 85500 . This condition corresponds to the peak heating condition of SSTO reentry
[13]. The wall was assumed to be noncatalytic and the temperature was fixed at 1000 ‘K .
Calculations were performed again on a 30x60 grid. The flow in this case has thinner
boundary layer and thinner shock layer than the first case due to high Mach number, high
Reynolds number, and axisymmetric geometry. The grid system near the wall was therefore
highly clustered in the normal direction to resolve the boundary layer. We used the maximum
CFL number of 10 for this case. The CFL number was increased from the initial value of 0.1
to the final value of 10 in the same manner as was done for the first case. However, the
LU-SGS scheme required much lower value of CFL number for stable calculation in the initial
phase of iteration. Many attempts were made to get the converged solution. Among those
trials, the following way of setting up CFL number yielded the converged solution. The CFL
number was increased from 0.1 to 2 with N=100 . Then the CFL number of 2 was used
up to the 1000#% iteration. After the 1000# iteration, the CFL number was increased from 2 to
10 with N=1500 .

Figures 6(a), 6(b), and 6(c) show the convergence histories of the point SGS, the line
SGS, and the LU-SGS scheme respectively. The point SGS scheme takes least CPU time and
the LU-SGS scheme longest CPU time. The line SGS scheme turns out to be slightly slower
than the point SGS scheme for this case. For the point SGS scheme, the convergence is faster
with two sweep cycles than three sweep cycles (Figure 6(a)). For the LU-SGS scheme, both
two and three sweep cycles result in similar convergence history (Figure 6(c)). As for the first
case, multiple sweeps do not improve the convergence for the line SGS scheme (Figure 6(b)).
Mass fraction distributions of the five species along the stagnation streamline are shown in
Figure 7. We see that in the shock layer, the dissociation of oxygen molecules is almost
complete while the dissociation of nitrogen molecules is incomplete. In Figure 8, the profiles of
translational and vibrational temperatures along the stagnation streamline are presented. The
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translational temperature increases very rapidly to a peak of about 13000K past the shock.
The vibrational temperature also increases rapidly, but slow than the translational temperature
past shock and equilibrates with the translational temperature afterwards.

Conclusions

To compare the performances of implicit schemes, point SGS, line SGS, and LU-SGS
schemes, numerical simulations were carried out for nonequilibrium hypersonic flows: the
dissociated nitrogen gas flow over 2D cylinder and the air flow over hemisphere at an SSTO
reentry condition. Comparison of the convergence histories with respect to CPU time indicated
that the point SGS scheme with multiple forward and backward sweeps was as robust and
efficient as the line SGS scheme. For the point SGS and the LU-SGS scheme, multiple sweep
strategy was found to improve the convergence. The rate of improvement was largest with
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two sweep cycles for both schemes. On the contrary, for the line SGS scheme, multiple sweeps
deteriorated the convergence property.
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