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Modeling and Simulation of Aircraft Motion on the Ground:
Part |. Derivation of Equations of Motion
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Abstract

Developed in these two series of paper is a complex dynamic model representing
the motion of aircraft on the ground and a computer program for numerical simulation.
The first part of paper presents the theoretical derivation of equations of motion of the
landing gear system based on the physical principle. Developed model is 'structured’ in
the sense that the undercarriage system is regarded as an assembly  of strut, tire, and
wheel, where each component is modeled by a separate module. These modules are
linked with two external modules - the aircraft and the runway characteristics - to carry
out dynamic analysis and numerical simulation of the aircraft motion on the ground.
Three sets of coordinate system associated with strut, wheel/tire and runway are defined,
and external loads to each component and response characteristics are examined.
Lagrangian formulation is used to derive the undercarriage equations of motion relative to
the moving aircraft, and the resultant forces and moments from the undercarriage are
transformed to aircraft body axes.
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NORMENCLATURE

Fp,Frpw - Earth-surfaced and Runway reference frames
Fg,Fy :  Body and Vehicle-carried-vertical reference frames
Fss,Fyy - Shock Strut and Wheel reference frames
Fyy : Wheel/Tire Velocity reference frames
B* : Origin of Body frame, Fjp
04X aYaZy: A Cartesian coordinates of reference frame, Fu

7 . Position vector from a point X to a point Y

e Velocity of point X in a reference frame Fy

?(y : Components expression of a vector in a cartesian coordinates of Fy

Yy -
T‘Z Derivative of a vector X in a reference frame Fy
Lyy :  Transformation matrix from a reference frame, Fy, to a reference frame, Fx
L,,L,,Ly : Matrices of three successive, simple rotation for a transformation matrix

(e.g. Euler angles transformation as defined in Reference 1)
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Introduction

The motion of aircraft on the ground is significantly different from that of airborne. It stems
from complex interactions among the dynamics of aircraft, the undercarriage system and the runway.
Developing a representative mathematical model involves quite a laborious process, especially for
the undercarriage system dynamics. The undercarriage system exhibits much faster dynamic
characteristics than the whole aircraft motion. It can be modeled to different levels of details, ranging
from a simple second order model for quantitative behavior to a sophisticated, modularized model
to study the complex ground handling qualities with parametric analysis of the system.

The appropriate model should be carefully developed by considering the task objective and
available computing resources for simulation. In case of training simulators, simple undercarriage
models are usually adopted because the majority of training is used for in—flight operations comparing
to a little time spent on the ground operations. However, these simple models are inadequate for
engineering simulation where the comprehensive ground handling characteristics and the system
acceptability must be tested and evaluated. In the real-time simulation environment such as a flight
simulator, the details of model are restricted by computing power so that the typical undercarriage
models used in the real-time simulation are functionally limited for use with an engineering
simulator.[2][3] Meanwhile, those models and simulation code used for engineering analysis and system
design[4][5] may not seem to be suitable for real-time operations due to their complexity.[6]

With the advent of high performance but low cost computing hardware and powerful software,
a real-time simulation has become a practical solution for the undercarriage system design and
the ground handling qualities study. Also, a standardized analytical modeling capabilities that are
comprehensive but not cumbersome are sought.[7] This paper presents a genuine work of developing
a dynamic model of aircraft undercarriage and the ground roll characteristics suitable for engineering
analysis and possibly for real-time simulation. The model developed is 'structured’ in the sense that
the undercarriage system is regarded as an assembly of strut, tire and wheel, where each component
is modeled by a separate module. This allows investigating the effects of component level changes,
such as tire pressure, strut damping, etc., upon the overall undercarriage system responses and the
ground handling properties.

Model Structure

Figure 1 shows a schematic diagram of the mathematical model of the aircraft motion on the
ground. The flow starts by importing input data from the aircraft module including the aircraft position,
height, ground velocities, attitude angles, and so on. Next, in the strut module, strut deflection and
rates are computed using the aircraft C.G. and in turn strut spring and damping forces are calculated.
In the runway module, runway properties such as surface conditions and slop can be introduced.
The tire module takes inputs from the strut and the runway module to compute forces in undercarriage
axes by using the longitudinal and lateral friction coefficients between the tire and the ground. Also,
the effects of braking and nose wheel steering forces may be introduced in this module. In the wheel
module, the computed forces in the tire module are transformed into the aircraft body axes and the
corresponding undercarriage moments are calculated. The resultant forces and moments are then
returned to the aircraft module.
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Model Structure

Model Development

The first step in mathematical modeling of a dynamic system is to define a set of axis
systems and notations. Two coordinate systems are defined associated with each
undercarriage system, one with the strut, denoted by Fg and the other with the wheel,

denoted by Fuy. The origin Oss of Fgs is at the hinge point of shock strut to the aircraft
body, Pss as shown in Figure 2, and OgsZss is directed downward along the shock strut axis,
Ogs X s is directed forward along the shock strut axis of rotation, and Ogs Yss is directed to
the right to the plane Cyx.z, to complete a Cartesian coordinate system. The origin Opy of
Fuy is at the hinge point of wheel to shock strut, Py, with OpyZyy directed downward
along the shock strut
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yPss

P

Fig. 2. Strut & Wheel Coordinates



Modeling and Simulation of Aircraft Motion on the Ground: Part I. Derivation of Equations of Motion 31

Xon

Fig. 3. Wheel Orientation Angles relative to Runway

axis, l.e. coinciding with OgZg, and OygXuy in the wheel plane directing forward
perpendicular to OwyZuy, and Owy Yuy directed along the wheel axis of rotation to complete a

Cartesian coordinate system. A coordinate system associated with the runway is also defined
and denoted by Fpy which differs by the runway heading angle ¥y from the local earth

frame, Fz Now, the angles for the orientation of the shock strut and the wheel can be
defined as shown in Figures 2 and 3, where

9 * Inclination angle between shock strut and OpZp axis, i.e. £ (0pZp OssZss)
¢ : Inclination angle between shock strut and the plane of symmetry Cy,z,
o - Nose wheel steering angle

Suwn> Ouns v+ Euler angles from Fgry to Fyuy

Using the angles defined above, the coordinate transformation matrices, L ss.py from Fyy to
Fss, Lss.p from Fp to Fss, and L yy.pw from Fgy to Fyuy, can be determined as follows:

L ss.yg= L1(0) L2(0) Ls( @ 1) = L3(@uun) (1.a)
L SS-B — Ll( - ¢SS)L2( (9ss)L3(0) = Ll( - ¢ss)L2( (953) (1b)
L. rw = Li(6un)Lo(0u)L3(¢un) (1.c)
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1. Kinematics

The kinematics of Pss, Py, and P,, ie. the point of contact between wheel and runway,

are of interests because these points are associated with the shock strut deflection and its rate,
and tire deflection. These quantities are used to compute forces and moments acting on the
strut and the wheel in the following section. The characteristic lengths shown in Figure 4

represents as follows:

ls.o : Length of uncompressed shock strut

du (or 7, ) : Wheel diameter (or radius)

X, : Oleo strut compression

Siire - Tire deflection

ha 1 Vertical distance between the ground and the hinge point of wheel P,
hen ¢ Vertical distance between the ground and the aircraft C.G.

Fig. 4. Definitions for Characteristic Lengths

— B'Pss — B'Py — B'P,

The position vectors R , R, R and their coordinates in Fg are defined as

PSS Pw PA

= B *os| = mP *o| = mp *p
Re == | ™|, Ra™"=|y>| . Rs '=| ™ )

Pgs Py P,

2 4 ¥4
and it is immediate that

RE™ = 100 (go—2x17 €)

Now, consider 2~ "= B"%+ 3%+ ™™ where B: is the C.G. position at the middle of

its range of variation. Expressing it in terms of Fj coordinate,
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Ry "=R5 +Re " +LpsR&" = R+ Ry ™+ LIOJL [(—o)R ™ 4)
Also, B*"= 2%+ %" and expressing it in terms of Fjy components,
_é gst = ﬁ +LEVLVBR gPu (5)
Substituting (4) into (5) leads to
Ry=RI+LIOLIOLIO{R P+ R+ L JOJL (—o )R &™) ©6)

It is evident that the z component of R 9ePv and R 95" are —hw and — k., respectively, so
that the z component of (6) can be represented as follows:

R = hem+ { (Axcg Comaet xP"") + (s, 0— xp) cOS @sin 19&‘} sin @—
{{4ve Cuast yP"") + (I, ,— *,)sin @} cos Osin @ — 7

{ (Azcg Conae T zp”) + (g, 0= %) COS P;COS (953} cos @cos @

From Figures 3 and 4, the tire deflection ¢y. can be expressed as

Yon— _hL 7 > hWh
—| ™= W\ cosBun |7\ cos B

hwh
0, Yw;,< (_—COS ¢wh-)

®

aﬁre = Tuwh

It is of interest to compute the angle, ¢,, in terms of known angles including ¢, 9, Pun

and the aircraft attitude angles, @, ®, ¥ . This can be obtained from the following relation.
Lyy.gw= Lwn.ssLss.s Lp.vLy.gw 9

Assuming that the runway heading angle ¥Ry equals to zero such that L y.zp= I (i.e. runway
is heading the North), and expanding and extracting the /3, /i3 elements of the equation (9)

results in the following relations.

—sinf,, = —(cos @,,cos I+ sin @,,;sin @gsin J) sin @
— sin @,,cos @4 sin Pcos O (10.a)
+ (— cos @,5in 94+ sin @,,5in @cos b) cos Pcos O

COS ¢, COS B, = — €OS @ sin Isin O+ sin @,,,sin Ocos @+ cos @ cos b) cos Pcos @ (10.b)

Computing (10.a) and (10.b) sequentially finds the value of cosé,, which enables to compute
the tire deflection by (8). After computing the tire deflection, the position vector from the
aircraft C.G. to the wheel/ground contact point can be obtained. It will be shown in the
following section that this position vector is used to compute the applied moment to the
aircraft C.G. by the contact forces between the landing gear and the ground. From (8), it can

be recognized that the magnitude of }BP"P'* can be expressed as ( 7,,— 84.) While its direction
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is along OgwZ gw, Which is the z-axis of the second intermediate frame of the transformation

. . — B — B'Py — P . .
matrix L wy.gw. Therefore, from the vector relation of R%4=TR i + R “A, and representing it

in terms of Fjp coordinate leads to the following equation.

Py
P,

0
+LB-SSLSS'WHL1(¢wh){ 0 ] (11)

7wh— Otire

N e ow
0]

One of important kinematic variables is the wheel side-slip angle, denoted by B.. in
Figure 5, which is required to compute the forces acting on the wheel/tire from the runway
surface. This angle depends on the velocity of Py in Fg, which is obtained by

Xon

E {;Pw

U Vey
P o YE N
wh
Xi» X2 r
[
Ywh
- \&H
xE
a d
!
b 4
Fig. 5. Wheel Sideslip Angle Definition
E E . B .
d 2 O0cPw _ d =2 OeB' d 2B8Pw, N—B — B'Py
at = & t B tTe xR #2

Since % %"= for the motion on the ground, the velocity * T s given by
EYT_ BTy G0 x BT (13)
Representing (13) in terms of the body axes gives

Eir= EpE | cv( LF 2’) R ,’f”” (14.a)
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U;’.. U 0 “R @ x}l:...
Vi=|V|+| R 0 -— y - 4b
WP.» 174 -Q P 0 z P, (1 - )

where U, V, W, P, Q, R represent the aircraft linear and angular velocities in the body axes,
respectively. As seen in the Figure 6, the wheel side-slip angle is found from the first
intermediate frame of the transformation matrix L yy.gw; SO that it is necessary to transform

(14) into that frame as follows:

E_I;'},’e“i,,; = LRW.- wi L wh- B 5_17?'
- p, (15)
=LRW.-RW2LRW2~M-I LWH-SSLSS-BE V:‘
=L (0L ()L §(@u)Li(— 2)La(84) BV 5"
Let us denote
5 y w w W T
£ V’:e"m = [ U!;ew. V};ew. WI;?W,] (16)
then, the wheel-side slip angle is computed by
Py
\%4
Bun = tan~'|—p - (17)
U kw,

2. Analytic Model

The kinematic variables computed in the previous section allow to compute the forces
acting on the undercarriage assembly, which is modeled as a composition of strut, wheel and
tire. The models of those forces acting on each component of undercarriage assembly are
discussed as below.

Strut Model

The strut is typically modeled as a single chamber -cantilevered oleo-pneumatic shock
absorber, as shown in Figure 6. The forces acting on the strut can be characterized as three
kinds. There is the pneumatic static compression forces, denoted by 7‘:”, acting on the strut.
Its magnitude depends upon the amount of strut compression displacement, x, being positive

in compression. Secondly, there is the hydraulic damping force, denoted by 77’5", along the
strut. Its direction is opposite to the motion of the piston/rod. Thirdly, there are frictional
forces, ¥ created as bearing surfaces slide relative to each other during strut motion.
Through these three mechanism, the forces are transmitted from the lower strut which is
attached to the wheel/tire, to the upper strut which is attached to the aircraft. These are
internal forces that occur as equal and opposite pairs as they act on the upper and lower
section of the strut.

Wheel/Tire Model
A typical, widely-used tire model is a point contact spring model with either linear or
nonlinear stiffness and damping in parallel. Using the point contact follower model, the forces

can be characterized as the normal force, ?‘)", the wheel-side force, 75", and the wheel drag
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Fig. 6. Forces acting on Undercarriage Assembly

force, . The normal force is along the local vertical in upward direction, and its magnitude
depends on the amount of tire deflection, &4,., With

— PyA
.o, IR = 7

= il 18
£8o, TR < rug )

The wheel side-force lies on the contact plane between the wheel/tire and the runway surface.
Its direction is perpendicular to the sum of velocity vector U ’;e‘"w, and V’;S‘M (see Figure 5), and
its magnitude depends upon the coefficient of sliding friction, C,, (B.4) and the normal force
by the following relation:

F= Cy,,,(Bwh) F( alire) (19)

The wheel drag force lies on the contact plane between the tire and the runway surface. Its
direction is opposite to the sum of velocity vector U ’,’a"wl and V’;";“, and its magnitude depends
upon the rolling coefficient of friction %, by the following relation:

F'=E;F" (84r) (20)

where for rolling without slipping case,
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Mb[
Fn(atire) (rwh - aﬁre)

ka=|kaot+ ( < kg mx)

(21)

and ky;= k4 my for slipping and rolling case. The values of k4, and 24 m depend upon the

runway surface conditions such as dry, damp, wet, icy, concrete, asphalt, unpaved, etc. M"
represents the applied brake torque on the main wheel axis of rotation. It comprises from the
manual brake operation by the pilot and the first-officer through their brake pedals. In addition,
there is an automatic anti-skid brake system which provides the wheel lock protection at
touchdown and skid-protection for the manual brake operation. In case of rejected take-off
situation, the thrust levers are retracted but the ground speed still remains above some value
so that the anti-skid system activates with the maximum brake pressure. It will be
de-activated when the airplane completely stops or manually disengaged. For landing phase
just after touchdown with the thrust levers all retracted, it activates with a selected level of
brake pressure until the airplane completely stops or manually disengaged. The pilot can
de-activate the automatic brake operation in any case of take-off and landing mode when he
operates the brake pedal; advances the thrust lever; and/or switches the selector off.

3. Equations of Motion

Each undercarriage assembly can be idealized as being composed of three mechanical parts
of strut, mechanical linkages and wheel/tire. It is advantageous to formulate the governing
equations of motion using Lagrange’s equations of motion given by

_d aTrel _ aTrel ﬂ — ;
i 5e ) () (5e) = @ -

where g¢; is a generalized coordinate, T, is the kinetic energy of the motion of undercarriage
assembly relative to the body reference frame, U is the potential energy, and Q; is the

generalized external force. Since the coordinates are measured in the body frame, which is
non-Newtonian by virtue of aircraft motion, an appropriate modification must be made to the
external force field acting on the system when calculating the generalized forces.[1]

Energy of Relative Motion & EOM
The motion of interest for the main gear is the piston stroke and the angular displacement
of the wheel, so that the generalized coordinate for the main gear can be chosen as ¢, =x,

and ¢y = p,,. In case of the telescopic nose gear one additional degree of freedom should be
allowed for the wheel steering angle. Since there is no potential energy term in the Lagrange’s
equation of motion for landing gear, (22) becomes

_d("i)—(a—T—) ) (23)

and the kinetic energy of relative motion for a main gear assembly can be expressed as
Tig=Ty+ T+ To+ T3 (24)

where T,, T, Ty, T; are the Kinetic energies of the strut motion, the wheel/tire motion, and

mechanical linkages motion relative to the body frame, respectively. The total kinetic energy
(see Appendix) of undercarriage relative motion is given by
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mg[14l§—3(az o_xp)Z] m3l% x i Tun 2 2
re = wi ’ 25
T, {ml,+m x T 6[4]%‘(612'0“1))2] + 3[4[5—(&2.0_3%)2] ] 2 + 9 ( )
Now, substituting (25) into (23) and evaluating for ¢, =x, and ¢, = p,; leads to
MQ[14I§“3(@_0—Xp)2] m31§ s
17 Sy R T e | (26.2)
myly(as,0— %) n myli(ayo—xp) =g -
N4B—(azo—xp°] = 3[4E—(aso—x)7 |** '
Juwn ;lwhz @ (26'b)
Ev ion of Generali Forces

Consider P; be the center of mass of the strut (i=1), the mechanical linkage (i=2,3), and
the wheel/tire (i=4), respectively, as shown in Figure 6. Now, the vector equation,

—> OgP; — OB’ — B'P; " " 5 . s
R"=R "+ 7R holds true, and the inertial acceleration is given by

- P; - B - P; - — B'P; — — — B'P; — - P;
Egl'= EGP 4B aP+( P x RBP)+( EP x EgP x RBP)+(ZE 0’ x B VP) 27)
Applying the Newton's equation of motion in the aircraft body reference frame leads to
mfa = F+ TP+ 1¢ (28)

th

where m; is the mass of the i* mechanical part, E is the sum of external force applied, 1

represents the transient force due to the motion of aircraft, and 76' represents the Coriolis’
force due to the motion of aircraft. For a practical use of undercarriage equation of motion
operating on the ground, the magnitude of applied external force is much greater than the
transient and the Coriolis’ force so that the effect of those forces can be usually neglected.
Now, the generalized forces can be evaluated from the principle of virtual work,

o= @)

where o6W is the work done by all the external forces and moments through a virtual
displacement dg;. The virtual displacement (linear) dx, is in the direction of O.Z axis, while
Oty is in the (rotational) direction of 0,,Y,., axis. It is convenient to express the external

forces in components of Fgs, while the external moments are in Fyy. Then, the forces acting
on the strut in Fgs components can be simply written as

Fi= [00 (—F"—F*—F")]" (30)
while the forces acting on the wheel/tire can be expressed as orthogonal components

Fu, = [-F F -F'1" (31)
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in the wheel/tire velocity frame, denoted by Fyy with coordinates defined and illustrated in
Figure 6. In order to find the virtual work done by F%, through the virtual displacement o)
the transformation matrix from Fyy to Fgs, denoted by Lss.wy, 1s sought. This can be
obtained by

Lss.wv = Lss.rw L rwi-w=Lss.wa L wei-rw, L rwi- rw L g wv
= Ly(@u)L1(Buh)L2(0un) L3(Bun) (32)
then
O @)
X5s —-F*
Y8 | = Ly(@u)L1(Bun)Lo( 9wh)L3(Bwh){ F* ] (33.b)
7 =F

The gravitational forces are in a local vertical direction, and also need to be transformed to
Fg as follows.

XSs 0
Yés =LSS'BLBAV[ 0 (34)
Z&s (my+ mun+ my+ my)g
The total external moment acting on the wheel axis of rotation is given by
M = - Mbt+ (F‘COS Bwh+ FrSin Bwh)( Vwh — 8tire) (35)

Therefore, the total virtual work done by the external forces and moments are
W= (—F?—F"—F/+ 2% + Z%) 6x, + {—M" + (F'cos Bun+ F'sin Bun)(7un— Sire)} Ot un  (36)

It is important to note that the virtual work done by the gravitational force due to those
torque links labeled as 2 and 3 in Figure 6 are not in parallel with the virtual displacement
o, The motion of instantaneous center of those torque links, denoted by «x.,, x., are related

with the x, as follows. (see Appendix)

to="R% , xa=F1 (37)

Now, evaluating the virtual work Q,, @, with (29) and (36) results in

Q= —F'"—-F"-F/'+7% + Mg+ Mg+ % mog+ 71 mag (38.a)
Q= - MY + (F‘COS Bunt FrSH}gBm)( Zuh— Otire) (38.b)

where
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Zgg: ( cos ¢whSin ¢w;,COS Bw}x + sin ¢wh5in Bwh)( - F\w) + ( Cos ¢whSin 6wh5in Bwh — sin ¢u,hCOS Bwh)( Fr)
3

8.c)
+ (cos ¢ 408 8,,,)(— F™)

EOM for Telescopic Nose Gear
The motion of telescopic nose gear can be regarded as an dditional degree of freedom in

OssZss axis, and the relavant dynamics are well described as a first order system given by
Tqv &th + Puwh = Kg, 89 + Kg,‘ aw (39)

where 6,,8, are rudder pedal and nose wheel tiller deflection angles, respectively, and

K§,K§ are configuration dependent system constants.
3.4 Transformation to Body Frame

Now that the equation of motion for each gear assembly is derived, the total external
forces and moments acting upon the aircraft can be evaluated. For a typical aircraft the
landing gear system comprises a telescopic nose gear and wing-body mounted main gears.
Equations (26) with (39) applies to all gear assembly while the equation (39) adds to the nose
gear assembly. The external forces acting on each gear assembly are conveniently represented
in the Fyy frame, but these forces need to be transformed into the aircraft body frame Fjp so

the transformation matrix L g.wy should be found as follows:

Lp.ww = Lp.ss Lss.ww

(40)
= LI(8JL{(— ) L3(@u)L1($un)Lo( ) La( Bur)

Adding up all the forces from the undercarriage and representing it to the body frame
components leads to

F¥ ~Fe
Fg"c = ZLZT(ass)LIT(_¢7ss)L3(¢wh)Ll(¢wh)L2(Hwh)LS(ﬂwh)( F* ] (41)
FIZ‘G 1 _Fn
The external moments are now evaluated as
My 0 —zi Yal[Fx
MF =2 2h 0 —xil| FY°
Mz —ya xa 0 || FF° (42)
Conclusion

The equations of motion representing an aircraft undercarriage assembly are developed
from the first principle. Developed model provides the foundation of carrying out the dynamic
analysis and simulation of aircraft motion on the ground. The model is structred; each
undercarriage is modeled as mechanical subpart. This also allows to carry out the design of
undercarriage system. The second part of this study will present the numerical simulation and
the advantages of the developed model.
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Appendix

Derivation of T,,

* Kinetic Energy of Strut Motion
T,= % my %y (A1)

where m, is the mass of the strut assembly.
* Kinetic Energy of Wheel Motion
Twh:%mwh x.p2+%]wh /1.wh2 (A-2)

where m,, is the mass of the wheel assembly, and J,, the mass moment of inertia about the
wheel axis of rotation.

* Kinetic Energy of Linkage Members

Ty=5my Vel + 3 Joo} (A3)
Ty=3Jo, &} (A4)

where m, is the mass of the linkage member labeled by 2, J, is the mass moment of inertia

about the center of mass, C,, i.e.
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ol D E P,
L a, h
A.1 Linkage Assembly A2 Linkage Kinematics
12
Jo="75% (A.5)
and Vg, is the velocity of C,, given by
_ PG
Ve="po % (A.6)

Note that P, is the instantaneous center of rotation for the linkage member 2. (refer to Figure
A2) Silimarly, J, represents the mass moment of inertia about the O; of linkage member

labeled by 3, i.e.
2
_mls (A7)

Jo,= 3

Let Vo, be the velocity of O, then
P,0, .
Vo= onf % (A8)

Now, the angular velocities of each member, denoted by ws, w3, can be obtained from

kinematic analysis and given by
Gl 2= (A9)
7 PO,

_ Yo _ PO, x
BT T RO, 4 w10
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Let P,O,=r7r,, PyCy=r;, Py0;=r;, and assuming a3=a, and =/, results in

(A11)

n=Vi-d . n=Vgi

Yy = 2 i 3= lg

where a; = ay, — x,. Then,

(95— 2ap,—x)_ (A12)

= 2@5_(@0_%)2 Xp

%
= w3 = A13
“ \[4[%—((120—7:,,)2 ( )

Finally, substituing (A.5), (A.6), (A.7), (A.12) and (A.13) into (A.3) and (A.4) yields the relative
kinetic energy terms of linkage members, T, and Tj.

In (37), the motion of instantaneous center of rotation of linkage members are expressed
in terms of x, which are obtained from Figure A.3 as below.
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A.3 Linkage Displacements
brc=or,+ 2% & _ B4, (A.15)
S, = ox, + 3(“2—4_8’@ - % =+ &, (A.16)
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