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Abstract

A Green's function approach based on the laminate theory is adopted to obtain
the unsteady temperature distributions in a semi-infinite hollow circular cylinder made
of functionally graded materials (FGMs). The transient heat conduction equation based
on the laminate theory is formulated into an eigenvalue problem for each layer by using
the eigenfunction expansion theory and the separation of variables. The eigenvalues
and the corresponding eigenfunctions obtained by solving an eigenvalue problem for
each layer constitute the Green's function solution for analyzing the unsteady
temperature distributions. Numerical calculations are carried out for the semi-infinite
hollow circular FGM cylinder subjected to partially heated loads, and the numerical
results are shown in figures.
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t - Time thermal diffusivity of metal
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Introduction

Recently, Functionally Graded Materials (FGMs) have been considered as thermal barrier
materials in fields such as the nuclear, the aircraft and the space engineering. A FGM differs from
a conventional thermal barrier material like a two-layered cylinder. A FGM is characterized by
continuously changing material properties due to a graded composition from one surface to other
surface. For such heterogeneous materials such as FGMs, the heat conduction equation is presented
in a complex form, and the ‘theoretical treatment for the temperature change is very difficult.

In order to design the effective FGM that can reduce the transient thermal stresses, it is
important to know the most effective compositions of FGM and the effect of time on the thermal
stresses. But there are few reports [1-5] on the solution of transient problems because it is difficult
to analyze the transient temperature fields of FGM. Almost all papers, which treated transient
problems, have used the Laplace transformation or Fourier transformation to solve the governing
equation.

On the other hand, Diaz and Nomura [6] showed a Green’s function approach for
two-dimensional homogeneous elastic problems. Nomura and Sheahen [7] used Green's function to
analyze the steady thermal stresses of a two-dimensional FGM plate.

In this paper, we discuss the transient problems of FGM. Since compositions of FGM are
dependent on the function of one-directional position from a metal surface to a ceramic surface, it
is assumed that the thermal properties of FGM are dependent on the one-directional position. The
transient temperature solution for a two-dimensional semi-infinite hollow circular FGM cylinder
with one-directionally dependent properties is formulated by the Green’s function approach based
on the laminate theory. An approximate solution of the eigenfunction expansion method for each
layer is substituted into the governing equation to yield an eigenvalue problem. The eigenvalues
and the corresponding eigenfunctions obtained by solving an eigenvalue problem for each layer
constitute the Green’s function solution for obtaining the two-dimensional transient temperature
distributions. The eigenvalues and the corresponding eigenfunctions for any layer are determined
from the homogeneous boundary conditions at outer sides, and the continuous conditions of
temperature and heat flux at the interfaces.

As an example, a semi-infinite hollow circular FGM cylinder made of zirconium oxide and
titanium alloy under the partially heated loads is selected. The numerical results, such as the
temperature distributions and the thermal stress distributions, are shown in figures.

Analysis

We consider the two-dimensional unsteady temperature fields T(r, z,t) in an axisymmetric
semi-infinite hollow circular cylinder made of functionally graded material whose thermal
properties vary with the radial coordinate r. The thermal properties are dependent on the
r—directional position and the temperature is independent on the hoop direction position. The heat

conduction equation of the cylindrical coordinate system (r, z) with a heat source q(r,z,t) is
expressed by:

%ar{rk(r)—aa%}+%{k(r)%—§}+q(r,z,t)=p(r)cp(r)%’tr- (1)

where T is temperature, and t is time. The thermophysical properties o, c,and k are
position-dependent density, specific heat and thermal conductivity, respectively.

2.1 Green’s function approach for axisymmetric heat conduction equation

For convenience in analysis, we consider the heat conduction equation without a heat source
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q(r,z,t), and T=T(r, z, t) can be constructed by the superposition of the simpler problem as:
T(r,z,t) =T, z)+ 6(r, z,t) (2)

where T® and @ are the solutions of the steady-state problem with non-homogeneous boundary
conditions and the unsteady-state problem with homogeneous boundary conditions, respectively.

Steady heat conduction equation

The steady solution T® to Eq. (1) is obtained by the standard Galerkin-Based Green function
[8] as follows:

T(r,z)=T"(r,z) + stsf"dv (3)

where the function T 'and the function G represent a differentiable temperature function which
satisfies the non-homogeneous boundary conditions and the standard Galerkin-based Green
function, respectively, and the function f* is given as follows:

f*(r,z)=%{rk(r)%’r‘}+§Z—{k(r)%} @)

Unsteady heat conduction equation

We consider a laminated medium consisting of L-layers in the r direction. Assuming that the
number of laminae L becomes sufficiently large, and the thermal properties in each layer are
constants, the governing equations of Eq. (1) without a heat source q(r, z,t) for each layer and
initial conditions are given as

9 [ 96}, 9% _ 1 96
ror {r or }+ 9z% A ot (5)
0i(r,z,0)=F;(r,z)=T;—T(r,z) at r;_<r<r;, i =1, 2 -, Lfort=0 (6)

where A; and T, are the thermal diffusivity of the i-th layer and the initial temperature,

respectively.
Using the eigenfunction expansion theory and the separation of variables, we can obtain the
solutions of Eq. (5) for an axisymmetric semi-infinite cylinder:

6(r.2.0= 2 [ cn(B)in(r, and(z, Be " g @

at ri<r<r;,i=12 -, Lfort>0.

The unknowns C,, are constants to be evaluated, and the function ¢im and ¢ satisfy the

eigenvalue problems as follows:

9 [ 0mD)_ am
rar{ or ]+ A, $im()=0 at r;_ | <r<r; )
2
%%(%14_32‘/!(2):0 at 0<z<oo -

i=1.2, --.Lfort>0
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where @, is m-th eigenvalues, and ¢;, is eigenfunctions corresponding to eigenvalues. Applying
the initial conditions of Eq. (6) to Eq. (7), and considering the orthogonality relations of functions
®im, We obtain the cn,(8):

-1 sk g, . . .
enlB) = NCaINGE A4 Sy wodmn TFIT 255 ), B dz (10)

where

_sk M P g2 (o ,
N(aw) = ]Z A fr,=n_1r Gim(r, am)dr (11)

and function ¢(z,B8)and N(A) are determined from the boundary conditions at z=0.
The substitution of Eq. (10) into Eq. (7) gives the solution for 6;(r,z,t):

co I
0i(r,z,t)= i“f f r'Fi(r',z)G(r, z,tlr", 2" ,t")| v —odr'dz’ (12)
1= 2 =0Jr'=r;_,
where Green's function Gy(r,z,tlr",z",t")| = is defined as:

Gi(r,z,tlr", 2", t)] ¢ = 2{ 7 N( » }d)lm(r @) dim(r, an)e g(z,z"t) (13)

g(z,z',t)= f;oT\I(l—,é’) Wz, Bz, Be "B (14)

at r;;<r<r;,1i=12, -, L fort > 0.
Next, we consider the two-dimensional heat conduction equation with a heat source:

A a

20, N 0° 0 A; 20,
iré)r[ }

o 52 Tk, q;(r, z, t)—? at r;1<r<r;,i=1,2 -, L. fort >0 (15

where k; and q;(r,z,t) denotes the thermal conductivity and the internal heat source of i-th

layer, respectively.
The general solutions of Eq. (15) are assumed as:

6,r,2.0= 2 [ du(8,0) dinlr, an)i(z, e~ g (16)

Substituting Eq. (16) into Eq. (15), and applying the initial conditions in Eq. (6), we can obtain d,:

_ 1
dn(8.8) =cn(B) + T N (B an

I e A . . (AR 3 s 3 s s
X 2 A—;fofz,:ofr,zri_lr {f;qi(r ,Z ,t)}¢,~m(r ez, Be T dr dz'dt

where Cp, is given in Eq. (10).

Substituting Eq. (17) into Eq. (16), and introducing the Green's function, the solution of Eq. (15)
is obtained

0i(r,z,t) = z‘fz,:oﬁzmr'Fj(r' ,2)Gy(r,z,t|r" ,z2",t")| ¢ —odr’dz’

X el N T
+;fo Lzofr,=mr {k]- qi(r’, z ,t)}Gij(r,z.tIr ,z',t)dr’ dz’dt

(18)
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at 1 ;<r<r;,i=1,2, -, L. for t > 0.

where Green's function Gj(r,z,tlr",z",t") is written as

< Gy(r, z,tlr, 2, ) = 2{1;’ N(a )}¢lm(r ) Pim(1”, @m)e az”(t_t')g(z,z',t—t') (19)

2.2 Determination of eigenfunctions and eigenvalues

The general solution @i, (1, @) of the eigenvalue problems given in Eq. (8) can be written:

¢lm(r am 1mJ0(V__ r)+D1mY0(V__r)

at r;—1<r<r;,i=12, -, Lfort>0 (20)
where J;, and Y, denote the Bessel function of the first and second kind of order zero,
respectively, and C;, and D, are coefficients to be evaluated.

The function ¢(z, 8) given in Eq. (9) is dependent on the boundary conditions [9], and is given
as follows:
Wz, B) = cos(fz), N(B)=nx/2 for the insulated face at z=0
¥z, B) = sin(Bz), N(B)= /2 for the prescribed temperature at z=0
Wz, B) = Beos (Bz) +h,/k,sin(B), N(B) = x{g*+ (h,/k,)?}/2
for the face with heat transfer at z=0 (21)

where h; and k, are the heat transfer coefficient and thermal conductivity at z=0, respectively.
Applying the continuous conditions of temperature and heat flux at the interfaces to Eq. (20), the
simultaneous equations for C;, and D;, are written in matrix form as

Cim

[Dim]
at r=r;in r;;<r<r;,i=1,2, -, L fort > 0.
where

D11 P2

D21 D22

[Ci+1,m

}e M=% 22)
Di+1,m

Ki+) Ai @m Im
o= BRT iR IR W Y73 e )
[Y l)YO(\/AH ) — kll:l V O(V—I)Y(Q At }
K. Ai @m Zm
pu= DT |~ G I kJT 3 )
k,+ /li m m
1 [ (V—‘I')Yo(\//1 +l ll{il \/THJO(ﬁrl)YI(” jA_Fl ri)J

P2 =TT DET
DET = [ O(V-r )Yl(v—r D) — Yo(v—r )Jl(V—H'r )}

Dlz—
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Therefore, the eigenvalues a,, are determined from Eq. (22) and the homogeneous boundary

conditions at the outer surfaces, and the corresponding eigenfunctions for all layers are determined
from Eq. (22).

Numerical Results and Discussion

The numerical calculations are carried out for a hollow circular FGM cylinder made of
Zirconium oxide and Titanium alloy, and the position functions of material properties in Ref. [2] are
used. For the numerical calculations, we used the dimensionless qualities as follows:

_R=(r_ra)/(rb—ra)v ;:Z/(rb—ra)v T):b/(rb—-ra)v z':"/1mt/(rb—ra)2

where R and z denote the dimensionless position in the r-direction and in the z-direction, b
denotes the width of the heating region on R=1, 7 and Am are the dimensionless time and the

thermal diffusivity of metal, respectively. The volumetric ratio of metal V= (1 —ﬁ)M and the

porosity P=AR(1—R) as the function of position are used, respectively.

3.1 Semi-infinite hollow circular FGM %2828
cylinder sased \a\
We consider the two-dimensional T \\
transient temperature distributions of a 32880 \A
semi-infinite hollow circular FGM cylinder 32865 - .
subjected to the partially heated loads as N
follows:
T/T,
%—T =0at z=0, 0<R<1 290007
Z
2.8750
T=T0+Tbcos(zlbz) at R=1, 0<z<b ; 2as00 ] T T
T=T, at R=1, z>b \
I ~\
T=Ty at R=0, 0<z<o 2.8000 4 TN~
where b is the width of the heating region on 2,7,::,4
R=1. \
Numerical calculations are carried out for — 2sseo-
Tp,=5T,, b=1, m=50 in Eq. (19), M=1 and
A:O_ 2.4000
Figs. 1-3 present the convergence of o
dimensionless temperatures ( T/T;) for layer ] » e
number L at three kinds of dimensionless g i i i i r

positions, respectively. The convergence of the
solution is very fast at the small dimensionless
times ( z=0.01, r=0.05, z=0.1). Figs. 4 and
5 show the temperature distributions of a Fig. 1. The dimensionless temperatures vs.
semi-infinite hollow circular FGM cylinder with the number of layers L at

the dimensionless positions in unsteady and dimensionless_position

steady state. R=0.8 and z=0.1.

The Number of Layers L
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Fig. 2. The dimensionless temperatures vs.

the number of layers L at
dimensionless position

R=0.8 and z=0.5.

Fig. 4. The two—dimensional dimensionless
temperatures vs. the dimensionless

positions at 7=0(.1.
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Fig. 3. The dimensionless temperatures vs.

the number of layers L at
(ﬂmensionless_position
R=0.8 and z=0.8.

Fig. 5. The two-dimensional dimensionless
temperatures vs. the dimensionless

position at =00,
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3.2 Applications to thermal stress analysis

It is very difficult to obtain an analytical thermal stress solution of two—dimensional
axisymmetric FGM cylinder. Then, we consider thermal stress problem in a one-dimensional hollow
circular FGM cylinder with the inner radius r, and the outer radius r, by use of the proposed
approach. When the material properties are the function of the position, the one-dimensional basic
equation for the thermal stress of a hollow circular cylinder is as follows [2]:

d%u,
dr? +%

%—%+81¢1(r)[%-&-M(r){—']:m(r)—hz(r)eﬂ wa
where

S0 = 4 (T Bl

Mo =$H{-ar = B arra—w B

A+v(-2y) d( aE .
T et To))

hl(r)=

_ +wl=2y) d Ey
hy(r) = E(Vl_,,) dI{ (1+u)(1—2u)}

and u,, E, v, @ and g, denote the displacement in the radial direction, Young's modulus, Poisson’s

ratio, the coefficients of linear thermal expansion and the constant strain, respectively.
The solution of Eq. (23) is obtained by the perturbation theory [2], and thermal stresses are carried
out under the following conditions:

ox=0 at r=r,
0,=0 at r=ry, (24)

and the both ends of the hollow circular cylinder are free:

f, g D=1 (25)

where o, is the thermal stress in radial direction, and 6,, is the thermal stress in axial direction.

We consider the transient temperature distributions and thermal stresses of the
one-dimensional FGM hollow circular cylinder under the thermal boundary conditions as follows:

T=770(K) at R=0
T=1680(K) at R=1

and an initial condition: T;=300(K) at r=0.

Figs. 6 and 7 present the temperature distributions with variation of the volumetric ratio of metal
and the porosity, respectively. The FGM at M=0.5, M=1.0 and M=1.5 contains about 67%, 50% and
40% of metal, respectively, and the FGM at A=0, A=0.06 and A=0.12 has porosity of 0%, 1% and
2%, respectively. As shown in Figs. 6 and 7, the effects of the volumetric ratio of metal on the
temperature distributions are greater than those of the porosity in steady and unsteady state. Figs.
8 and 9 show the effects on axial stress ¢,, with variation of the volumetric ratio of metal and
the porosity, respectively. As shown in Figs. 8 and 9, the effects of the variation of dimensionless
time on the axial stresses are greater than those of the volumetric ratio of metal and the porosity.
Figs. 10 and 11 show the effects on hoop stress ¢4 with variation of the volumetric ratio of metal

and the porosity, respectively. The effects on hoop stress ¢4 with variation of the volumetric ratio
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Fig. 6. The temperature distributions vs.
the dimensionless position for a

one—dimensional FGM cylinder.
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Fig. 8. The axial thermal stresses vs.
the dimensionless position for a
one—dimensional FGM cylinder.

0.8
o.o{ 5
o\
© 084 )
o AN ]
€ ] |7=0.01 r=00 A=0 'l
S =1 -
B —— ——: M=05
244 |—O— —@— : M=10
—A— —A— . M=15 %
32

0.0 0.2 04 06 0.8

Dimensionless position R

Fig. 10. The hoop thermal stresses vs.
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of metal and the porosity are greater than those on axial stress 0,, as shown in Figs. 8-11. The

maximum compressive axial stress and hoop stress produce on the outer surface at very small
time, while the maximum tensile axial stress and hoop stress on the inner surface at steady state.

Conclusions

A Green's function approach for analyzing the unsteady temperature distributions of a
semi-infinite hollow circular FGM cylinder with one-directionally dependent properties is proposed.
The Green”s function is formulated by using the laminate theory, and is expressed by the
eigenvalues and the corresponding eigenfunctions for each layer. The eigenvalues and the
corresponding eigenfunctions for each layer satisfy the continuous conditions of temperature and
heat flux at each interface, and the homogeneous boundary conditions at outer sides. Therefore, it
is shown in figures that the convergence of temperature solution is very fast in steady and
unsteady state. It is shown in figures that the application of the proposed method to the analysis
of one—dimensional thermal stresses and the calculations of the volumetric ratio of metal and the
porosity, which is required for the design of FGM cylinder, are possible.

References

1. Obata, Y. and Noda, N., 1993, "Unsteady thermal stresses in a functionally gradient
material plate (Analysis of one-dimensional unsteady heat transfer problem),” Trans. of the JSME,
Series A, 59(560), 1090-1096 (in Japanese).

2. Obata, Y. and Noda, N., 1994, "Steady thermal stresses in a hollow circular cylinder and
a hollow sphere of a functionally gradient material,” Journal of Thermal Stresses, 17, 471-487.

3. Tanigawa, Y., 1995, "Some basic thermoelastic problems for nonhomogeneous structural
materials,” Transactions of ASME, Journal of Applied Mechanics, 48(6), 287-300.

4. Ootao, Y. and Tanigawa, Y., 1994, "Three dimensional transient thermal stress analysis of
a nonhomogeneous hollow sphere with respect to rotating heat source,” Trans. of the JSME, Series
A, 60(578), 2273-2279(in Japanese).

5. Tanigawa, Y., Akai, T., Kawamura, R., and Oka, N., 1996, "Transient heat conduction and
thermal stress problems of a nonhomogeneous plate with temperature-dependent material
properties,” Journal of Thermal Stresses, 19, 77-102.

6. Diaz, R. and Nomura, S., 1996, "Numerical Green’s Function Approach to Finite-sized Plate
Analysis,” International Journal of Solids and Structures, Vol. 33, pp. 4215-4222.

7. Nomura, S., and Sheahen, D. M., 1997, "Green's Function Approach to the Analysis of
Functionally Graded materials,” ASME MD-80, pp. 19-23.

8. Beck, J. V., Cole, K. D., Haji-Sheikh, A., and Litkouki, B., 1992, Heat Conduction Using
Green”s Functions, Hemisphere Publishing Co., Washington D.C., pp. 353-356.

9. Ozisik, M. N., 1993, Heat Conduction, John Wiley & Sons, New York, pp. 99-153.



	Unsteady Temperature Distributions in a Semi-infinite Hollow Circular Cylinder of Functionally Graded Materials
	Abstract
	Introduction
	Analysis
	Numerical Results and Discussion
	Conclusions
	References


