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Abstract

This paper describes the procedure to develop a robust estimator design method for
a target tracker that accounts for both structured real parameter uncertainties and unknown
inputs. Two robust design approaches are combined : the Mini-p—Norm design method to

consider real parameter uncertainties and the H. design technique for unknown

disturbances and unknown inputs. Constant estimator gains are computed that guarantee
the robust performance of the estimator in the presence of parameter variations in the target
model and unknown inputs to the target. The new estimator has two design parameters.
One design parameter allows the trade off between small estimator error variance and low
sensitivity to unknown parameter variations. Another design parameter allows the trade off
between the robustness to real parameter variations and the robustness to unknown inputs.
This robust estimator design method was applied to the longitudinal motion tracking
problem of a T-38 aircraft.
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Introduction

In a target tracking problem, several types of uncertainties may be encountered. For the
design and analysis of a tracker, mathematical model of a target aircraft is necessary. This
mathematical model should be complete enough for an adequate description of the system and also
sufficiently simple such that the resulting algorithms are computationally feasible for real time
operation. The exact mathematical model for a target aircraft is nonlinear and is very complicated,
furthermore it is not known to the tracker. Therefore the mathematical model used in the tracker
design will be different from the exact target model. For the simplicity, the high order structural
mode of the target aircraft is neglected in the tracker design and the linear model instead of
nonlinear model is often used. This uncertainty corresponds to unstructured uncertainty.

The parameters in this mathematical model such as aerodynamic coefficients, mass, and
moments of inertia are unknown and time varying. This uncertainty corresponds to parameter
uncertainty (or structured uncertainty). The control input applied to the target vehicle by the pilot
and the disturbances such as atmospheric turbulence are unknown and time varying. This
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corresponds to the input uncertainty.

The objective of this research is to design a nonadaptive estimator which is robust to
parameter uncertainties and input uncertainties or disturbances, and therefore its function performs
satisfactorily in the presence of these uncertainties. Mini-p—-Norm (MpN) estimator design method
was developed by Kim and Andrisani[1][2] to guarantee robust performance against parameter
variations. This method computes estimator gains that minimize the new cost function which is
directly related to the p—norm of the estimation error variances computed at each parameter values
in the range of parameter variations. The MpN estimator has a new design parameter which
allows the trade off between small estimator error variance and low sensitivity to unknown
parameter variations.

The robust performance of an estimator with unknown inputs can be achieved by minimizing
the H. -norm of disturbance transfer function. Bernstein and Haddad[3] and Nagpal and
Khargonekar[4] applied the H. synthesis to design robust estimators against the uncertainties in
the input and initial conditions.

This paper describes a procedure to develop a robust estimator design method that accounts
for both structured real parameter unceriainties and unknown inputs. Two robust design
approaches are combined: the MpN design method to consider the real parameter uncertainties and
the H. design technique for the unknown disturbances and unknown inputs.

Mathematical Formulations

In this paper, continuous, linear, time invariant plant dynamics are assumed for the target
vehicle. The state equations modeling the target dynamics can be written in the form:

x = Ala)x+Bla)w
z = H(a)x (1)
y = Cla)x+v

where x = an %, dimensional state vector,

a = a vector of unknown system parameters,
z = an n, dimensional output state vector we want to estimate,

y = an n, dimensional measurement output vector,

A(a), B(a), H(a) and C(a) = the plant system matrices of proper size,

w = a zero-mean Gaussian white process noise vector with intensity €. and
v = a zero-mean Gaussian white measurement noise vector with intensity R..

Typical inputs to the target vehicle are pilot or driver inputs and disturbances such as those
caused by atmospheric turbulence. However, since these typical inputs are never known to the
tracker, they cannot be estimated unless an adaptation mechanism is implemented. A simple and
most common way to deal with these system inputs in the tracker problem is to model them as
Gaussian white process noise or colored noise.

In the design of estimators (specifically for the target tracking case), the exact plant matrices
A(a), B(a) and C(a) are also unknown to the estimator designer. Instead the estimator designer
must use a different, perhaps, simpler state space model of the following form :

x = Ax+B,w
z = Hx (2)

y= Cx+v
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where x is an #, dimensional state vector, and A, H, and C, are the system matrices of

tracker model.
Using the tracker model of Eq.(2), an estimator or observer can be designed in the following

form :
T=A,x+K(y—C,%
z =H,% (3)
y=C,x+v

where

W

an n, dimensional estimator state vector,

W

an 7, dimensional estimator output vector,

an n, dimensional measurement output vector,
an n, Xn, gain matrix of the estimator.

0]

N N R
1\

In the estimation problem, we are concerned about the estimation error of the states of
interest. The estimation error is defined as the difference between the estimated outputs and exact
outputs:

e(D=2(f)— 2(H=Hx—H, x

Robustness to Parameter Variations

Robust performance can be obtained in the presence of parameter variations by introducing
the Mini-p-Norm(MpN) estimator with the following cost function which is related to the p-norm
of the estimation error variances calculated at a; discrete points in the range of parameter
variations [1][2].

B = B[P, I T n
where P; is the probability of a= a; and
J: (K)= tri@o[E(efWeg)]a=a,

where W 1is a weighting matrix for estimation error states.
Note that (P; J{K))”"! has a role of a weight function, in the sense that when P; J;,(K)

is large, (P; J{K) )" !is large and when P;J{K) is small, (P; J{K))”~!is small for all p >1.
Therefore, the above cost function gives more weight to the large contributors in the performance
index and less weight to the smaller ones. When p =1, the MpN estimator minimizes the average
values of all P;J; and when p —co, it minimizes the maximum value of P;]J;.

Robustness to Unknown Inputs

In Eq.(1) and Eq.(3), let us introduce the following variables
w=Q"y and v=R ",

where 7; and 7, are white noises with unit intensities.
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Then, Eq.(1) and Eq.(3) can be combined to give:

Xo=Ax,+ Dy, (5)
where

x“:[gic ] A“I[I?C AO—OKCO]’

Dﬂ:[B(a())Ql/z K}gm], and 770=[Z;].

The steady state value of the state covariance of the augmented state, x, is solved by the
following Lyapunov equation : .
AX+XA,"+D,D,"=0. (6)

If we define W, as:
ww=w )
where W is the weighting matrix defined in Eq.(4), then the weighted estimation error is written
as:
W,e=F x, (8)
where
F=W,[H —H,). 9)
The disturbance transfer function H(s) from the noise input 7,(s) to the estimation error W, e(s)
is:
H(s) = F(sI-A,) 'D, . (10)
The relation of H(s) to the robustness of the estimator will be discussed next.
From Eq.(10), we obtain :

W;e = H(S) 7a
== F(SI_Aa) _lDa”a (11)
i
- _ sI-A 0 BT 0 7
W.lH Ho][ - KC sI—A,,+KC,,] 0 ER? [’72]
= H, () + Hy(s)n,
where
H(9 = WIH—H,(sI~A,+KC,) "'KCl(sI~ A) "' BQ",
Hy(9) = - WH(sI-A,+KC) "'KR"* .

In Eq.(11), H,(s) denotes the transfer function from the system input to the estimation error

and H,(s) denotes the transfer function from the measurement noise to the estimation error.
In order to have robustness to the disturbance inputs or unknown deterministic pilot inputs

which are modeled as process noises for the estimator design, H,(s) must be small; in order to

have robustness to the unknown measurement noise, H,(s) must be small. To achieve as much

robustness to the process and measurement noises as possible, we need to minimize the H~—-norm
of H(s), | H | » which is defined as:
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| H || o=sup , 0 max[ H(w)] (12)

where 0 max iS the maximum singular value. The minimization of [ H || » could cause an

increase in the estimation error variance or MpN cost function J, . Therefore, instead of

minimizing | H || », we constrain || H || » to be less than a specified value, i.e.

| Hllw < 7 (13)
From the definition of He~—norm in Eq.(12), it is clear that
| Hll w=max( H(5) o, | Hy(5) | ) (14)

where max(a;, ay) represents the larger value of a; and a,. Eq.(14) implies that

I H o< 7 and | Hy | < 7 (15)

In a practical tracking problem, the sensor dynamics and its noise characteristics are usually
well known to the tracker. Thus, in this case, we only need the constraint of

I H | < 7 (16)

However, the minimization of J, under the constraint of Eq.(16) is very difficult to solve or may
even be impossible. Instead, we have to use the constraint of Eq.(13). If | H; | o = | Hy || »,

the constraint of Eq. (13) will be the same as Eq.(16), but if | H; | w < || H; | », Eq.(13)

will lead to a conservative result. Finally, we will design an estimator which satisfies the following
design criteria :
Minimize the MpN estimator design criterion

I = P (X N)Y a7

where
N=F'F; (18)
under the constraints on the disturbance transfer function

| H; | o < vy for every i (19)

where ¥ > ( is a, given constant.
To solve this problem, we use the following Lemma.

Lemma 1. Let A, C, and K be given such that for every i there exists a

nonnegative—definite matrix X, satisfying

0= A4, X;+ X, AT+ X,;N X,+D,D", (20)
Then, (A,,D,) is asymptotically stable if and only if (A,—KC,) is asymptotically stable.

Furthermore, in this case,

| H; |« < 7 and X, < X, forevery i, (21)
and
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K< BIP o XN @2)

Proof : Lemma I follows immediately from the Lemma 3.1 in [3] except Eq.(22) which is
proved here. From Eq.(21), the following equation can be obtained

P;tr(X;N;) < P;tr( X;N;) for every 1. (23)
Since t7(X;N,) is a positive scalar, Eq.(23) implies

[tAX;N)I’<[tr( X;N)]1® for every i. (24)
Summation of Eq.(24) from =1 to ¢ leads to Eq.(22). [ |

Lemma 1 shows that if a non-negative definite solution to Eq.(20) exists, the H~ constraint
is automatically satisfied. Furthermore, the MpN estimator error criterion is guaranteed to be no

worse than the bound 21[P,-tr( X;N)]? . The minimization of Eq.(17) under the constraint of
Eq.(19) is very difficult. Instead, we can minimize the upper bound ﬁ‘[P,»tr( X;N)]” under the
&=

constraint of Eq.(19). Now, J(K)= ﬁ‘[Piz‘r( X;N)]” can be interpreted as an auxiliary cost.

The Auxiliary Minimization Problem

The new objective is to minimize

JE)= B[Pt XN
under the constraint of
0=A, X,+ X;,AT+y* X, NX,.D,D}, (25)

for every i. For this optimization problem, a Hamiltonian function can be expressed as:
L=J+ ﬁltr{ Gi(A, X+ X;AL+7 > X;,NX;+D,D%) (26)

where G, is a Lagrangian multiplier matrix. This Hamiltonian function leads to the following

necessary conditions :

dL

0 =—f =4, Xt KAL+y " XiN: Xt DD, @7)
_ _dL =0 A % oAT -2 T 3 P t{ XNyl

R AT G+ GA,+7r 7% G; X;N;+7y °NT X; G+ 3 X, (28)
_dL _ 5" 0 T -2 T

b= = 2 K[tr{ G(A, X+ XAy+r ? X;N X;+D,D3)}] (29)

Let the matrices G; and X; be partitioned as follows :

G= GITI, Go | and X,= XITL X, (30)
Glg_, GZZ, X12, XZZ,
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Substitution of Eq.(30) into Eq.(29) and some mathematical manipulations lead to:

—g%=2 121[ GL( X,,CT— Xp,CD+ Gp(XLCT— X5 CH+ GuKR).

If 2} G 5, is invertible and the measurement error variance is same for all 7 (ie. R;= R for
&

every 1), then K can be expressed explicitly as
K=—(% Gn) ' Bl Gh( X4,CT~ XpCD+ G XHCT— XpCDIR™

The matrices G; and X are obtained from Eq.(27) and Eq.(28). The equation (28) shows

that G, is dependent on X, unless 7 is infinitely large. Note that if the H., constraint is relaxed,
ie, 7y —oo, then this estimator becomes the MpN estimator introduced in [3]. If p=1, ¢ =1,
A=A, B=B, C=C, and H= H, then this estimator becomes the steady state Kalman filter
with an H., bound which is described in ref. [3].

Numerical Computations

The equation (27) has the form of Riccati equation even though the third term has a positive
sign instead of a negative sign and the N; matrix may not be semi-positive definite. This

non-standard Riccati equation can be solved using the Schur method [5].
The equation (28) can be written as:

aLP; t{ X;N;)1’
0 X; ’
This is a Lyapunov type equation. If X; is solved from Eq.(27), (A, + y“ % X,N,) and
alP; t{ X,N;)1”
. ¢
An iterative procedure to compute the optimal values for the estimator gains K is briefly

described here:
1. Choose an initial K and an initial 7. (The initial 7 should be reasonably large.)

. Calculate Xy, X5, and Xy from Eq.(27) for 7 = 1 to k.
. Calculate Gyy, and Gy, from Eq.(28) for 7 = 1 to k.

0=(A,+r *X:N)" G+ G(A,+7? X;N)+ (31)

become the known fixed terms, and G; can be solved from Eq.(31).

. Calculate a new value for K and name this K ..

Let K i1 =aK e, +(1—a) K, where 0<a<l.

. Compute J(K ,+1).

Go to (2) unless 4J=| J(K,y— J(K ,+))| is small enough.

. If 4] is small enough, then reduce the value of y
9. Go to (2) and repeat the above process until either a desirable value of 7 is achieved or

0 N O U W N

no further decreasing is possible.

Application : Tracking a Fixed Wing Aircraft

The MpN/H» estimator was applied to the longitudinal motion tracking of a T-38 aircraft.
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The 5th order state equations that describe the longitudinal motion of a target aircraft was used
[6]. The state vector of this linear equation has the following elements: the forward velocity «, the
vertical velocity w, the pitch rate g, the pitch angle 8, and the distance along the vertical inertial
axis z. The system input is an elevation deflection angle §,. In this longitudinal motion tracking
example, the vertical position(z) of target aircraft is to be estimated while the available
measurement is assumed to be also its vertical position which is corrupted by the measurement
noises.

As a tracker model, a simple e— B filter was used. An a— g filter is a typical tracking filter
with only two states, the position and velocity of the target, and the acceleration is considered as
a white noise. Normally three a— 8 filters are used in tracking the aircraft, one each direction of
an inertial rectangular coordinate system. Only one a— 8 is needed here since the target aircraft is
assumed to be solely in the vertical plane in this example. The «— 8 filter is described as follows

(71 : .
HEtH HERE

C,=H,=[1 0l

and

The MpN/H = estimator was designed to be robust to the variation of C,,, of a target aircraft
and the unknown inputs to a target aircraft. The C,, parameter is a stability derivative that

determines the static stability of aircraft longitudinal motion. The nominal value of the stability
derivative C,, for T-38 aircraft is -1.0. Th value of C,, was varied from -1.3 to -0.1, which is

the typical range for military aircraft.

The MpN/H- estimators are designed with p=1 and »=20 and with =10 and =13 and
their estimation error variances are plotted against C,, in Figure 1. The MpN/H- estimator
designed with p=1 and 7 =10° is the same as the Minisum Estimator [7] and the performance of
the MpN/H~ estimator designed with »=20 and y=10® would be very close to that of the Minimax
Estimator [8]. The results with very large ¥ show the inherent properties of the MpN estimator
*as p increases, the maximum estimation error variances decreases and the sensitivity to the C,,

variation reduces, but the average performance degrades. With y =13, which guarantees the most
robustness against the unknown inputs, the effect of p is small and the sensitivity to the C,,

variation is small. However, the estimation error variances are large for every values of C,,.

335

335

max Ji with p=1

3

st A

max Ji with p=20
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325
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30 mean Ji with p=1
295 "
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Fig. 1. The Estimation Error Variances Fig. 2. The Mean and Maximum Estimation Error

for C,, Variation Variances for y variation
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The mean estimation error variance(mean J;) and maximum estimation error variance (max
J;) for C,, variation are plotted against y in Figure 2. For y larger than 20, as y increases the
mean estimation error variance increases slightly and maximum estimation error variance
decreases slightly. The maximum estimation error variance with p=20 is already small at y= 10%,
thus, its decrement is negligibly small. The maximum estimation error variance with p=1
decreases noticeably as y decreases from 20 to 15.5. For y smaller than 15, both the mean and
maximum estimation error variances increase abruptly. Fig. 1 and Fig. 2 show that if we use too
small y to achieve as much as robustness to unknown inputs as possible, the robustness to real
parameter variations is sacrificed. Therefore, a trade-off is necessary between the robustness to
real parameter variations and the robustness to unknown inputs. The value of » should be
determined by the designer based on the degree of parameter variations and the uncertainty of the
unknown inputs that is expected in the tracking scenario.

Conclusions

A new design method for estimators that have the robust performance in the presence of real
parameter variations and the unknown inputs was proposed. This method calculates the optimal
estimator gains satisfying the H« constraint while minimizing the upper bound of the
Mini-p-Norm cost function using an iterative algorithm. It has two design parameters, p and 7.
The parameter p has the role of trading off between small estimator error variance and low
sensitivity to unknown parameter variations. The parameter y has the role of trading off between
the robustness to real parameter uncertainties and the robustness to unknown inputs. As y
decreases, this new estimator, named as "MpN/H" estimator, becomes less sensitive to the
unknown inputs, but the cost function which accounts for parameter variations could increase. If
y approaches infinity, the estimator satisfying the new objective reduces to the MpN estimator.

The MpN/H~ estimator was applied to the longitudinal motion tracking of a T-38 aircraft.
This example shows that if too small ¥ is used, the robustness to real parameter variation is
sacrificed. Therefore a trade-off is required between the robustness to the parameter uncertainties
and the robustness to unknown inputs by choosing proper value for 7.
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