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Abstract

Hypersonic vehicles exhibit distinct dynamic and static characteristics, such as unstable dynamics, strict altitude angle 

limitation, large control bandwidth, and unconventional system sensitivity. In this study, compromise relations between 

the dynamic features and static performances for hypersonic vehicles are investigated. A compromise optimal design for 

hypersonic vehicles is discussed. A parametric model for analyzing the dynamic and static characteristics is established, 

and then the optimal performance indices are provided according to the different design goals. A compromise optimization 

method to balance the dynamic and static characteristics is also discussed. The feasibility of this method for hypersonic 

vehicles is demonstrated.
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1. Introduction

Critical design issues, such as the aero-thermo-elastic-

propulsion coupling relations and scramjet propulsive 

theories, are extensively investigated with the advancement of 

hypersonic technologies. Research has aimed at developing 

hypersonic transportation systems for a reliable and 

affordable transport to space and global reach vehicles [1]. 

Extensive studies have been focused on the control-orienting 

analysis and control integrated design for hypersonic vehicles 

[2]. These vehicles should incorporate control-centric 

considerations associated with strong relations between 

aerodynamics, propulsion, structure, and controls during the 

conceptual stages of vehicle design. Thus, several control-

relevant problems, such as the input/output coupling, 

unstable/non-minimum phase, and uncertain dynamic 

effects, should be carefully explored to obtain the overall 

design [3]. Multidisciplinary design optimization using the 

control-centric idea should be introduced to the design of 

waverider configuration to improve the general performance 

of hypersonic vehicles.

Compared with conventional vehicles, hypersonic vehicles 

exhibit unique wave-riding features and operate with high 

dynamic pressure in uncertain and unknown environments 

[4]. In addition to the dynamic complexity and unexpected 

coupling between the airframe and the propulsion system, 

physical limitations on the control inputs presents numerous 

challenges for the implementation of continuous control 

throughout a large flight envelope. Therefore, establishing 

a high-fidelity model and designing an adaptive controller 

for hypersonic vehicles are critical to realize the anticipated 

tasks. A high-fidelity model of the longitudinal dynamics for 

an air-breathing hypersonic vehicle was developed [5], from 

which a control-oriented model was built with curve-fitted 

approximations [6] to provide the control design object. 

In addition, a wing/pivot system model [7], a nonlinear 

ten-degree-of-freedom dynamics model [8], and a three-

dimensional flexible model [9] were provided in the design 

of flight control systems as well as the evaluation of flight 

stability. Based on these established models, a reference 

command tracking control law was presented by using the 

H∞ method to achieve excellent tracking performance of 

hypersonic vehicles in [10]. Moreover, a linear parameter-

varying switching tracking control scheme was proposed 
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[11] for a hypersonic vehicle model to satisfy a specified 

performance criterion. In addition, a novel finite time 

control method was used for the longitudinal model of 

the hypersonic vehicle to optimize operation [12]. Several 

advanced control approaches were adopted to design the 

robust adaptive controller for hypersonic vehicles. These 

techniques include high-order dynamic sliding mode 

control method [13], neural control mean [14], and adaptive 

back-stepping control strategies [15]. Establishing a model 

of the hypersonic vehicle is important for designing a 

feasible controller, thus ensuring the wavering stability and 

completing the command track.

However, a nonlinear model of a hypersonic vehicle 

restricts the control design space, and thus the control 

specifications are unable to meet the anticipated demands 

under certain flight conditions. Consequently, compromise 

between the nonlinear model and control qualities for 

hypersonic vehicles should be investigated. A comprehensive 

analysis of the dynamic and static characteristics is 

beneficial in coordinating the relations associated with the 

inherent model dynamics and expected close-loop control 

performances. In this aspect, the sensitivity of flight dynamics 

was analyzed for hypersonic vehicles to understand the 

design tradeoffs required and contribute to the control 

design [16]. In addition, the influence on design parameters 

combined with various limit-of-performance metrics was 

considered for hypersonic vehicles to explore the varying 

trends for model dynamics matched with additional control 

constraints [17]. Furthermore, fundamental limitations were 

studied for the model dynamics and closed loop control 

performances of hypersonic vehicles to complete further 

control-relevant design [18]. Hence, multidisciplinary 

optimization approaches [19] should be introduced to 

the design of a hypersonic vehicle to achieve coordinating 

maneuver concerning the nonlinear model and control 

performance.

This study investigates compromise optimal design 

methods by integrating dynamic and static characteristics 

of hypersonic vehicles. Several aspects of this issue are 

considered. First, the waverider model is established 

using multidisciplinary estimation methods. Second, 

the dynamics feature is analyzed, and control-based 

performance indices are constructed. Third, an 

optimization technique is selected to iterate the provided 

performance functions according to the viewpoint of the 

integration of dynamic and static characteristics. Lastly, 

the feasibility of the presented design methods is verified 

for a typical waverider configuration. The design goal of the 

compromise optimization is simultaneously realized for 

hypersonic vehicles.

2. ��Dynamic Modeling Using Multidisci-
plinary Knowledge of Hypersonic Vehicles

Hypersonic vehicles adopt waverider configuration 

to acquire high lift-drag ratio and improved propulsive 

efficiency. However, such shape will affect flight stability; 

for example, any change in the flight altitude leads to thrust 

alteration because of the strong aerodynamic-propulsion 

coupling dynamics. A basic waverider structure is applied in 

this study to reflect this relation (Fig.1).

Figure 1 shows a typical two-dimensional waverider 

configuration, and the lower surface of the forebody is 

considered as a curve surface where the airflow is continually 

compressed before entering the propulsive systems. In turn, 

Fig.2. Schematic diagram of concave surface

Fig.1. Basic shapes of hypersonic waverider
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the airstream encounters the concave surface, shown in Fig. 2.
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where   denotes the airflow turning angle;   is the shock wave angle; uP  and uM  indicat
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where δ denotes the airflow turning angle; β is the shock 

wave angle; Pu and Mu indicate respectively the pressure 

and Mach with regard to the upstream airflow; Pd represents 

the pressure of the condensed airflow; γc is the specific heat 

ratio. Alternatively, the airflow enters the convex surface, 

displayed in Fig. 3.
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where d  and u  are respectively the angles between the compression surfaces and level surf
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denote the first compression angle and second compression 
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As soon as the trim parameters b , eb , and b  are obtained, the linear model is acqui

red accordingly. However, b , eb , and b  may not satisfy the design requirements for the 
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ropulsive direction, mass change, and so on. Therefore, the matching changes in the angle of

 attack and elevator deflection angle can regulate the pitching moment such that the balance 

relation is achieved for the hypersonic vehicle. 

However, adjusting the angle of attack and elevator deflection angle is limited for a hyp

ersonic flight. Specially, the trim angle of attack should be constrained within the certain rang

e in which the scramjet can function well. In turn, the trim elevator deflection angle and pro

pulsive coefficient should escape the input saturation to guarantee larger control authority [27].

 Based on these features, the static feature specification is considered as follows: 
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ents, and [ , , ]b b b bS    . Equation (12) shows the coordinating optimization relations in relat

ion to the trim values. Beyond this, the dynamic characteristics should be further considered i

n this paper. Thus, the transfer function between the flight path angle and elevator deflection 

angle is emphatically discussed, which was explored in Ref. [27]: 
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where p  and p  are the frequency and damp of the long-term mode, respectively. 1spz  and

 2spz  denote the poles of the short-term mode. 1z , 2z , and 3z  indicate the according zer

os. c  represents the gain of this transfer function. For Equation (13), a right-half plane zero

 caused by the appearance of the negative lift exists as the elevator deflects trailing edge up.

 Without loss of generality, 3z  is selected as this zero, given by [28], as follows: 
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ce along with the angle of attack and elevator deflection angle, respectively. 

The existence of this non-minimum phase zero constrains the available upper boundary o

n the system bandwidth of the close-loop control system [28]. However, one of the poles in t

he short-term mode remains in the right-half plane because applying the slender waverider str

ucture ensures that the instantaneous center-of-rotation is always in front of the center-of-mass.

 Consequently, the dynamic model of a hypersonic vehicle has an unstable pole, which constr

ains a lower bound on the control bandwidth, because the frequency of the close-loop control

 system should be greater than the frequency of the unstable pole [28]. Accordingly, the opti
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where ωp and ξp are the frequency and damp of the long-

term mode, respectively. Zsp1 and Zsp2 denote the poles of the 

short-term mode. Zr1, Zr2 and Zr3 indicate the according zeros.   
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cr represents the gain of this transfer function. For Equation 

(13), a right-half plane zero caused by the appearance of the 

negative lift exists as the elevator deflects trailing edge up. 

Without loss of generality, Zr3 is selected as this zero, given 

by [28], as follows:
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follows:
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where spc  and 3c  denote the selected index coefficients, and 3[ , ]s spW   . Nevertheless, t

he performance index that only uses Equation (12) or (15) is not sufficient to guarantee the s
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Equation (16) can achieve the compromise optimal design results, leading to the trade-off

 relations among the waverider configuration, control efficiency, and flight condition. Furtherm

ore, optimizing the flight condition for the given waverider configuration is investigated, and t

he flight Mach is regarded as the optimal variable corresponding to the given flight height. C

orrespondingly, the compromise optimization is expressed as follows: 
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By using the steepest descent method, the iterative step in 

the compromise optimal design is given as follows:
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n is given as follows: 

 ( 1) ( ) ( )k k k
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where   represents the negative gradient direction. According to Equation (20), once the 

absolute gradient of   is smaller than the expected value, the iteration stops. Accordingly, th

e optimal flight velocity is acquired such that the compromise design between static features 

and dynamic characteristics can be realized for the hypersonic vehicle. 

4. Illustrative Example 

The waverider configuration in Fig. 1 is adopted to verify the effectiveness of the presen

ted methods. The geometric parameters of the hypersonic vehicle are provided in Table 1 [5].

 Several shape parameters are slightly different from those in Ref. [5] because the waverider 

configuration in Fig. 1 considers the forebody as the two-stage compression section for impro

ving propulsive efficiency. 

Tab.1. Geometric parameters of hypersonic vehicle 

Parameter names Symbols Values 

The length of the forebody Lf 14.33m 

The length of the afterbody La 10.06m 

The engine length Ln 6.09m 

The forebody turn angle 1co  3  

The afterbody turn angle 2  34.14  

The inlet height h1 1m 

The inlet width W  0.3048m 

The length of the inlet cowl cowlL  4m 

The elevator area eS  1.58m2 

The vehicle mass m 2000kg 

The moment of inertia Iy 5105 kg*m2 

The center position of gravity  Cg （-16.8m,0） 
Once these model parameters are introduced to Fig. 1, the aerodynamic forces and thrust

 can be obtained using the estimating theories in Section 2. Based on Equation (11), the trim

 values are solved on the given flight condition. Furthermore, the static feature specification i

(20)

where -∇Γ represents the negative gradient direction. 

According to Equation (20), once the absolute gradient of 

Γ is smaller than the expected value, the iteration stops. 

Accordingly, the optimal flight velocity is acquired such that 

the compromise design between static features and dynamic 

characteristics can be realized for the hypersonic vehicle.

4. Illustrative Example

The waverider configuration in Fig. 1 is adopted to verify 

the effectiveness of the presented methods. The geometric 

parameters of the hypersonic vehicle are provided in Table 

1 [5]. Several shape parameters are slightly different from 

those in Ref. [5] because the waverider configuration in Fig. 1 

considers the forebody as the two-stage compression section 

for improving propulsive efficiency.

Once these model parameters are introduced to Fig. 1, 

the aerodynamic forces and thrust can be obtained using 

the estimating theories in Section 2. Based on Equation 

(11), the trim values are solved on the given flight condition. 

Furthermore, the static feature specification in Equation 

(12) is considered. In this case, the flight altitude range is 

selected from 28 km to 30 km, and the expected angle of 

attack is limited to 1° at the same time. The resulting curves 

are provided in Figs. 5 and 6.

By using Equation (12), the maximum value of the optimal 

flight Mach is calculated as 7.51 with the height of 30 km 

(Figs. 5 and 6). In this case, the right-half plane pole and 
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zero are 3.04 and 6.29, respectively, whereas the trim angle 

of attack, elevator deflection angle, and equivalence ratio 

are 1.09°, 15.41°, and 0.6, respectively. For comparison, the 

dynamic feature specification in Equation (15) is considered, 

and simulation results are shown in Figs. 7 and 8.

By using Equation (15), the maximum value of the optimal 

flight Mach is calculated as 9.22 with the height of 30 km (Figs. 

7 and 8). This result demonstrates that the optimal value 

using the dynamic characteristic specification is evidently 

distinct from that using the static feature specification. 

More importantly, the trim angle of attack is far from the 

anticipated value. These results imply the presence of design 

contradiction between dynamic characteristics and static 

features. Consequently, the compromise design should 

be fully considered for hypersonic vehicles. Accordingly, 

the performance index in Equation (16) is adopted in the 

simulation, and the resulting curves are displayed in Figs. 9 

and 10.

The optimal results can meet compromise design 

demands. The compromise design can synthesize 

static features and dynamic characteristics such that 

the generalized performance is improved accordingly 

Table 1. Geometric parameters of hypersonic vehicle

11 

n is given as follows: 

 ( 1) ( ) ( )k k k
MaMa Ma Ma     (20)

where   represents the negative gradient direction. According to Equation (20), once the 

absolute gradient of   is smaller than the expected value, the iteration stops. Accordingly, th

e optimal flight velocity is acquired such that the compromise design between static features 

and dynamic characteristics can be realized for the hypersonic vehicle. 

4. Illustrative Example 

The waverider configuration in Fig. 1 is adopted to verify the effectiveness of the presen

ted methods. The geometric parameters of the hypersonic vehicle are provided in Table 1 [5].

 Several shape parameters are slightly different from those in Ref. [5] because the waverider 

configuration in Fig. 1 considers the forebody as the two-stage compression section for impro

ving propulsive efficiency. 

Tab.1. Geometric parameters of hypersonic vehicle 

Parameter names Symbols Values 

The length of the forebody Lf 14.33m 

The length of the afterbody La 10.06m 

The engine length Ln 6.09m 

The forebody turn angle 1co  3  

The afterbody turn angle 2  34.14  

The inlet height h1 1m 

The inlet width W  0.3048m 

The length of the inlet cowl cowlL  4m 

The elevator area eS  1.58m2 

The vehicle mass m 2000kg 

The moment of inertia Iy 5105 kg*m2 

The center position of gravity  Cg （-16.8m,0） 
Once these model parameters are introduced to Fig. 1, the aerodynamic forces and thrust

 can be obtained using the estimating theories in Section 2. Based on Equation (11), the trim

 values are solved on the given flight condition. Furthermore, the static feature specification i

Fig.5. Optimal results in consideration of static feature specification
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compared with the single performance index. Moreover, the 

different specifications in Equations (12), (15), and (16) are 

considered, and the comparative results are listed in Table 2.

According to Table 2, the right-half plane zero will be closer 

to the imaginary axis when the static feature specification in 

Equation (12) is used compared with that with the use of 

the integrated index in Equation (16). By contrast, the index 

in Equation (15) results in the deviation of the trim angle 

of attack from 1°, even reaching an unexpected negative 

value. These results demonstrate that the compromise 

specification in Equation (16) is better than that in Equations 

(12) and (15) because the optimized flight conditions are 

acquired by applying the compromise optimal design for 

hypersonic vehicles. In particular, aerodynamic forces 

estimated using Equations (1) and (2) yield some errors 

because of the calorically perfect gas assumption. However, 

the main inherent features can be fully reflected using the 

optimal design process associated with the compromise 

Fig.6. Trim states in consideration of static feature specification

Fig.7. Optimal results in consideration of dynamic characteristic specification
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performance indices. Nevertheless, the feasibility of the 

proposed method is important in the conceptual design 

stage for hypersonic vehicles.

5. Conclusion

A compromise optimal design strategy for hypersonic 

vehicles is presented. The dynamic model is established 

using multidisciplinary knowledge to analyze the static 

and dynamic features. Performance specifications are 

determined from the integrated design viewpoint, and the 

optimization method is discussed to obtain the optimum 

flight condition. Furthermore, a simulation example is 

provided to test the feasibility of the proposed approach. The 

resulting curves show that the compromise performance 

indices associated with static features and dynamic 

characteristics are suitable for the integrated design of 

Fig.8. Trim states in consideration of dynamic characteristic specification

Fig.9. Optimal results in consideration of compromise optimal specification
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hypersonic vehicles. This work is beneficial for future studies 

on the design of a complex three-dimensional waverider 

configuration by using multidisciplinary optimization for 

hypersonic vehicles.
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