
1. Introduction

Autonomous rendezvous and docking of vehicles are 

essential for future space exploration of the Moon, Mars, and 

beyond, and for the supply and repair of vehicles such as the 

International Space Station (ISS). Spacecraft rendezvous and 

docking dates back to the manned US Gemini and Apollo 

programs and the unmanned Russian Cosmos missions of 

the late 1960s. In all the US missions, the human pilots were 

in the vehicle control loop during rendezvous and docking, 

whereas the Russians used a primarily automated approach, 

giving the pilots a supervisory role. The Gemini and Apollo 

programs developed the initial concept for rendezvous 

and capture. The Shuttle has demonstrated that these can 

be performed for various low Earth orbit (LEO) missions. 

Recent programs, such as Demonstration of Autonomous 

Rendezvous Technology (DART) (Rumford, 2002; Zimpfer 

et al., 2005), XSS-11 (Zimpfer et al., 2005), Orbital Express 

(Zimpfer et al., 2005), Automatic Transfer Vehicle (ATV) 

(Gonnaud and Pascal, 1999; Zimpfer et al., 2005), H-2 

Transfer Vehicle (HTV) (Zimpfer et al., 2005), and the 

Hubble Robotic Servicing and Deorbit Mission (HRSDM) 

(Zimpfer et al., 2005), have been proposed and developed 

to demonstrate many of the technologies required for 

exploration that entails rendezvous and docking. Such 

programs have spurred significant developments in the area 

of autonomous rendezvous and capture (AR&C). However, 

the DART mission in 2005 experienced some failures. 

A 2006 National Aeronautics and Space Administration 

(NASA) report (NASA, 2006) provides an overview of the 

DART mishap investigation. The lessons learned from the 

mishap will hopefully facilitate the future development of 

autonomous capabilities.

Proximity operations and docking are critical phases of a 

rendezvous mission because highly precise translational and 

rotational maneuvers are required. AR&C capabilities will 

continue to be important for the successful execution of the 

various phases of a typical rendezvous mission, including 

the homing phase, the closing phase, proximity operations, 

and the final translational approach. The last two phases 

are critical from the perspective of mission completion and 

safety (Wertz and Bell, 2003). These phases are characterized 

by a chaser undergoing controlled motion that tracks a 

predetermined reference trajectory toward the docking port 
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of the target. Like proximity operations, docking maneuvers 

have been accomplished in manned missions since the 

early days of the space program. Autonomous proximity 

operations are required for many future missions; however, 

further research and development is necessary if they are 

to be accomplished routinely. These requirements have 

led to the development and evaluation of several relative 

navigation sensors, such as the video guidance sensor (VGS), 

the global positioning system (GPS), light detection and 

ranging (LiDars) sensors, the laser dynamics range imager 

(LDRI), optical sensors, star trackers, inertial navigation 

systems (INS), and others. Any of these sensors can provide 

the basis for accurate relative positions and attitudes. 

Various navigation sensors are used to estimate the relative 

state information for feedback to an automated rendezvous 

and docking operations controller. Of course, autonomous 

spacecraft rendezvous and docking requires highly precise 

translational and rotational maneuvers that are integrated 

with precise sensors.

The motion of the chaser with respect to the target 

spacecraft is modeled by nonlinear relative equations of 

motion including the oblateness and aerodynamic drag. 

The attitude dynamics are modeled by the well-known 

Euler rotational equations of motion, including the gravity-

gradient torque and attitude kinematic equations using 

quaternions. Optimal control techniques are applied to 

the Shuttle orbiter’s manual phase flight segment covering 

proximity operations and docking, as shown in Fig. 1. The 

Shuttle program is scheduled to be retired by 2010; however, 

the Shuttle orbiter’s standard ISS approach technique may 

be extended or applied to other programs. The intent here 

is to develop suitable control algorithms that can facilitate 

autonomous proximity operations and docking. The trajectory 

profile design in the manual flight phase of the Shuttle is 

highly dependent on the payload configuration (Olszewski, 

1990). Payload attitude control and susceptibility to plume 

impingement are primary drivers in the final approach. The 

preferred technique for preventing plume impingement 

is the use of the V-bar guidance method during the final 

approach (Pearson, 1989), which guides the approach of the 

Space Shuttle along a velocity vector toward a target such 

as the ISS. This well-known approach is a form of pursuit 

guidance, and has been thoroughly investigated dating back 

to the Gemini program (Pearson, 1989). To initiate the V-bar 

approach, the active vehicle nulls the orthogonal relative 

velocities along the V-bar direction and accelerates to the 

desired closing rate along the V-bar direction, which is now 

along the line of sight to the target. The V-bar final approach is 

desirable because it is relatively fuel efficient. In addition, the 

constant orientation of the earth’s horizon provides a good 

reference for piloting, and closing rates can be easily and 

immediately nulled with subsequent station-keeping should 

some Shuttle or payload system anomaly occur (Pearson, 

1989). The trajectory of the Shuttle to the ISS in use since the 

STS-102 mission in 2001 is by default the starting point for 

the design of the lower surface-inspection maneuver. Figure 

1 illustrates the following approach trajectory in the rotating 

local vertical local horizontal (LVLH) frame, centered at the 

ISS center of mass.

Fig. 1. �Standard International Space Station (ISS) approach (adapted 
from Walker et al. [2005]).

This trajectory satisfies the many constraints on visual 

and sensor visibility, plume impingement pressures and 

contamination, propellant consumption, and other factors 

(Cloutier, 1997). The reaction control system (RCS) of the 

Shuttle orbiter is used to provide thrusters for this approach 

trajectory. The 38 Primary Reaction Control System (PRCS) 

thrusters are arrayed around the Shuttle orbiter. The final orbit 

of the Shuttle orbiter’s rendezvous profile targets a point 183 

m (600 ft) below the ISS along the R-bar direction. The Shuttle 

orbiter crew begins manual trajectory control at a distance 

of 610 m (2000 ft). The negative R-bar direction control is 

activated at 305 m (100 ft) to provide plume protection by 

inhibiting thrusters that fire toward the ISS. At the 183 m (600 

ft) point, the Shuttle orbiter begins an 11.5 minute positive 

pitch automatic maneuver to the final ISS approach attitude. 

A simultaneous, manual V-bar translation of 0.3 m/s (1 ft/s) 

accomplishes a slow transition from the 183 m (600 ft) R-bar 

departure point to a final approach corridor along the ISS 

V-bar. In the LVLH frame, this transition appears as a gradual 

spiral from 183 m (600 ft) along the R-bar to approximately 

350 ft (107 m) along the V-bar. From the arrival point along 

the V-bar, the Shuttle orbiter slowly approaches the docking 

port at a rate of 0.06 to 0.03 m/sec (0.2 to 0.1 ft/sec). 

To effect translational control, the state-dependent Riccati 
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equation (SDRE) (Cimen, 2008; Cloutier, 1997; Stansbery 

and Cloutier, 2000; Sznaier and Suarez, 2001) control and 

linear quadratic tracking (LQT) (Alba-Flores and Barbieri, 

2006; Budiyono and Wibowo, 2007; Lewis and Syrmos, 

1995; Naidu, 2003) control with the free-final state are both 

considered, and their control results are compared and 

discussed. To provide attitude control, a linear quadratic 

Gaussian (LQG) controller is used, which is a combination of 

a linear quadratic regulator (LQR) (Lewis and Syrmos, 1995; 

Naidu, 2003) and a Kalman filter. The LQR technique is a 

well-known and accepted theory upon which many modern 

controllers are based. However, most dynamic systems 

requiring control are nonlinear. The SDRE method entails 

factorization of the nonlinear dynamics into the state vector 

and the product of a matrix-valued function that depends on 

the state itself. With this factorization, the SDRE algorithm 

fully captures the nonlinearities of the system, expressing the 

nonlinear system as a non-unique linear structure known as 

a state-dependent coefficient (SDC) matrix that minimizes 

a nonlinear performance index having a quadratic-like 

structure. A state-dependent Riccati equation using SDC 

matrices is then solved in real time to yield the suboptimal 

control law. The SDRE control is based on the nonlinear 

system whereas LQT is based on the linear system. As an 

alternative approach, an LQT controller with the free-final 

state that maintains the output as closely as possible to the 

desired or reference output with minimum control energy is 

also considered.

2. Dynamic Modeling

2.1 Coordinate systems

The coordinate systems used are LVLH frames centered 

on the target and the chaser spacecraft, and an orthogonal 

body-fixed frame at the center of mass and the earth-

centered inertial (ECI) frame, N, as shown in Fig. 2. The LVLH 

frame is sometimes referred to as the CW frame (Fehse, 2003; 

Prussing and Conway, 1993; Schaub and Junkins, 2003), E, 

with the x-axis being directed radially outward along the local 

vertical, the y-axis along the direction of motion or velocity 

direction, and the z-axis normal to the reference orbit plane. 

In a rendezvous mission, the motion of the chaser spacecraft 

is commonly described relative to the target spacecraft. 

Instead of the CW frame E, the spacecraft local orbital frame 

A is adopted here to describe its motion. This frame is related 

to the CW frame E.

Fig. 2. CW and body-fixed reference frame.

ax=ey

ay=-ez

ax=-ex

V-bar

H-bar

R-bar

(1)

In the above, ax, ay, and az are unit vectors in the spacecraft 

local orbital frame, A, and the axes, ex, ey and ez, are unit 

vectors in the CW frame, E. The +ax axis is referred to as the 

V-bar axis, the +ay axis as the H-bar axis, and the +az axis is 

termed the R-bar axis. The axes, bx, by, and bz, are unit vectors 

in the spacecraft body-fixed frame used to describe the 

attitude with respect to the inertial frame.

2.2 Relative motion dynamics

Two sets of equations of motion describing the chaser 

motion relative to the target in the LVLH frame are defined 

here. The first set includes the exact nonlinear relative 

equations of motion including the relative oblateness effect, 

J2, and the aerodynamic drag. The second set includes the 

linear relative equations of motions with no perturbations. 

The first set was used for the SDRE control formulation. The 

second set was used for the LQT control formulation with the 

free-final state. Among the many sources of perturbations, 

the earth’s oblateness and aerodynamic drag in the LEO 

are dominant. The relative effects of Earth’s oblateness 

and aerodynamic drag are included in the exact nonlinear 

relative equations for more precise dynamic modeling. In the 

CW frame, E, the perturbing acceleration due to oblateness 

is described by Prussing and Conway (1993):

(2)
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where Re is the radius of the Earth, i is the inclination, and 

θ is the argument of the latitude. The relative effect of the 

earth’s oblateness then becomes:

(3)

where the subscripts, c and t, denote the chaser and the 

target, respectively. The radius, inclination, and argument of 

the latitude of the target are assumed to be known from the 

on-board navigation system of the target vehicle. The radius, 

inclination, and argument of the latitude of the chaser are 

then used to relate the position and velocity vectors through 

Lee and Pernicka (2009)

(4)

where C is the 3-1-3 rotation sequence C=C3(θt)C1(it)C3(Ωt), 

η is the relative position, and η· is the relative velocity. The ω× 

term is the cross product matrix. The perturbing acceleration 

in the CW frame due to aerodynamic drag is computed 

by expressing the acceleration in terms of the ECI frame 

(Madonna, 1997; Vallado and McClain, 2001) as

, (5)

where ρ is the atmospheric density, which often is a difficult 

parameter to determine. The ballistic coefficient is cDA/m, 

another measure of a spacecraft’s susceptibility to drag 

effects, and Vrel is the velocity vector in the ECI coordinates 

relative to the rotating atmosphere. The relative effect of 

atmospheric drag in the CW frame is then given by:

, (6)

in which the drag is computed for both the chaser and the 

target orbit. Thus, the sum of the relative effects of Earth’s 

oblateness and drag becomes:

(7)

Consequently, the equations of motion for the SDRE 

control formulation become:

(8a)

(8b)

(8c)

In the above, x, y, and z represent the relative position of the 

chaser spacecraft with respect to the target spacecraft, rt refers 

to the scalar radius of the target from the center of Earth, 

rc refers to the scalar radius of the chaser from the center 

of Earth, μ is the gravitational parameter, and f represents 

the true anomaly of the target. The terms, Fx, Fy, and Fz, are 

the control forces, and m(t) is the time-varying mass of the 

chaser spacecraft due to the propellant mass consumption. 

The general linear relative equations of motion used for the 

LQT controller with the free-final state are derived from Eq. 

(10) by neglecting the perturbation effects and the higher-

order terms (Schaub and Junkins, 2003) to yield

(9)

2.3 Attitude dynamics and kinematics

The rotational motion of the chaser expressed in the body-

fixed frame is described by the well-known Euler’s equations 

of motion. Like the perturbing accelerations in relative 

motion dynamics, the attitude dynamics also experience 

disturbing torques such as the torque due to aerodynamic 

drag, magnetic field torque, and gravity-gradient torque due 

to the asymmetry of the spacecraft. This study models only 

the gravity-gradient torque. The gravity-gradient torque due 

to asymmetry of the body, expressed using the local orbital 

frame, A, is given in vector/dyadic form as (Wie, 1998):

(10)

where Ic is the inertia matrix of the chaser. The orientation 

of the body-fixed frame, B, of the chaser with respect to the 

spacecraft’s local orbital frame, A, of the chaser is described 

by the direction cosine matrix, CB/A, as indicated below.

(11)

The orientation of the local orbital frame, A, of the target 

spacecraft with respect to the CW frame, C, is described by 

the direction cosine matrix, C A/C, such that:
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(12)

The direction cosine matrix, CB/A, can be expressed using 

successive rotations with the inertial frame, N, through:

(13)

The angular velocity of the chaser, ω=ωB/N, and az can be 

expressed in terms of the basis vector of the body-fixed 

frame, B, of the chaser as:

(14a)

(14b)

The gravity-gradient torque matrix becomes:

(15)

A full description of the rotational motion of a rigid spacecraft 

requires both kinematic and dynamic equations of motion. 

For most modern spacecraft applications, quaternion 

kinematics (Lefferts et al., 1993) are preferred. The quaternion 

kinematic equations are given by:

(16)

where

(17)

The adopted quaternion is defined by:

(18)

where is defined as [q1   q2   q3]T=e sin(ϑ/2), and q4=cos(ϑ/2), 

where e is the axis of rotation and ϑ is the angle of rotation. 

Euler’s rotational equation of motion, including the gradient 

torque, is given by:

(19)

where гc is the applied control torque and Td is the external 

disturbance torque, which is modeled by Gaussian-noise.

3. Control Law Formulation

In this section, three optimal control techniques are 

derived for translational and rotational maneuvering. The 

SDRE tracking controller used with the nonlinear relative 

motion dynamics and the LQT controller with the free-final 

state used with the linearized relative dynamics are both 

derived for translational maneuvers. By using thrusters for 

translational and rotational control, both can be uncoupled 

to a high degree of approximation. However, a disturbance 

torque generated by thruster firing is considered as an 

unmodeled disturbance torque. The two controllers have 

different purposes but are executed simultaneously. The 

state vector for the translational maneuvers is given by:

(20)

3.1 �The SDRE tracking formulation for translational 
maneuvers

Motivated by the LQR method, which is characterized 

by the solution to the algebraic Riccati equation (ARE), 

SDRE feedback control is an extended linearization (SDC) 

control method that provides an approach similar to that 

of a nonlinear regulation problem. For reference trajectory 

tracking, the regulator problem must be recast as a tracking 

problem. The goal is to drive the error between the reference 

and the output to zero with minimum control energy. The 

tracking problem is then formulated with the performance 

index as follows.

(21)

(22a)

(22b)

In the above, xr(t)∈R6, f∈R6, B∈R6×3, R(x)∈R3×3, uFs∈R3; 

Also, xr(t) is the reference or desired state vector provided 

by the guidance scheme based on the CW state transition 

matrix (Sznaier and Suarez, 2001) and the straight-line 

V-bar approach (Fehse, 2003). Assume f(x) is continuously 

differentiable in x and f(0)=0; B is a constant matrix. The 

weighting matrices, Q(x)≥0 and R(x)>0, for all x. uFs (x) is 

the control force exerted by the SDRE controller in the CW 

frame. The translational maneuvering of the spacecraft 

is accomplished through the use of the control force. The 

nonlinear equations of the spacecraft dynamics in Eq. (8) are 

written in the linear-like state-space form of Eq. (22) through 

the SDC parameterization. Then, the matrices are given by:

(23)

The SDRE method for obtaining a suboptimal locally 
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asymptotically stabilizing solution of problem Eqs. (21, 22) 

is as follows.

i) �Use the direct parameter method to bring the nonlinear 

equation into the SDC form as in Eq. (21).

ii) Solve the SDRE to obtain P(x)≥0,

(24)

Construct the following nonlinear feedback controller 

equation.

(25)

The resulting SDRE-controlled trajectory becomes the 

solution of the quasi-linear closed-loop dynamics. 

(26)

Then, the state-feedback gain for minimizing Eq. (21) is:

(27)

The state weight matrix for the performance index in Eq. (21) 

is given by:

(28)

The control weight matrix is given by:

(29)

The weight matrices used from the initial time are readjusted 

at the steady-state conditions in order to reduce the steady-

state tracking error The additional control forces are then 

generated. This tuning of the weight matrices is very 

important in order to generate suitable control forces with 

no thruster saturation. The readjusted weight matrix, Q(x), 

is then 1,000 times the original Q(x(t0)), and the readjusted 

weight matrix, R(x), is 1/100 times the original R(x(t0)).

3.2 LQT formulation for relative translational motion

Tracking systems need to track a desired trajectory in 

some optimal sense. LQT control with the free-final state is 

developed to maintain the output as closely as possible to 

the desired output with minimum control acceleration. A 

linear, observable system from Eq. (9) is given as:

(30)

where uFL∈R3 is the control force in the CW frame from 

the LQT controller. The objective of the LQT controller is 

to control the system in Eq. (30) such that x(t) tracks the 

reference state, xr(t), as closely as possible during the interval 

[t0, tf ] with minimum control effort with the quadratic 

performance index chosen as follows.

(31)

Further, the boundary conditions are defined as x(t0)=x0 and 

free x(tf). The weight matrices, F(tf) and Q(t), are symmetric 

positive semi-definite matrices, and R(t) is a symmetric 

positive definite matrix. When F(tf) becomes large, the free 

final state becomes a fixed final state. The optimal control 

law consists of the sum of two components given by:

(32)

where the symmetric, positive definite matrix, P(t)∈R6×6, 

is the solution of the nonlinear, matrix differential Riccati 

equation (DRE), and the first term is a full-state feedback 

with Kalman gain. Thus,

(33)

with the final condition being

(34)

The vector, g(t)∈R6, is the solution of the linear, non-

homogeneous vector differential equation,

(35)

with the final condition  being 

(36)

Whereas the SDRE is solved online, the DRE and the non-

homogeneous vector differential equations are solved offline 

before control is performed. The optimal state is the solution 

of the linear state equation,

(37)

When the linearized equations of the spacecraft dynamics 

in Eq. (9) are adopted, the time-varying system matrix, A(t), 

becomes:

(38)

The applied weight matrices, Q(t) and R(t), in Eq. (31) are 
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equal to the matrices in Eqs. (28) and (29). The weight matrix 

for the final state, F(tf), is set to a relatively larger value than 

the value of Q(t) to achieve the effect of the fixed-final state 

control; it is given by:

(39)

3.3 LQG formulation for rotational maneuvers

This section describes some properties of quaternions that 

make it possible to realize an exact linearization of the 

error dynamics formulation. This study uses this linearized 

equation to take advantage of the simplified equation of 

motion to determine the precise attitude control. The control 

law formulation using LQR is combined with the extended 

Kalman filter (EKF), which leads to an LQG-type control 

system. The state vector for attitude control is given by:

(40)

where xa includes the quaternion and angular velocity of 

the chaser. The general form is given by:

(41)

where uг= гcR3 is the control torque. The goal is to drive 

the state to zero with minimum control energy. The regulator 

problem is then formulated with the performance index,

(42)

where the subscript, “a,” is used here to differentiate 

from translational maneuvers. The reference or desired 

quaternion, qd, is defined that also obeys the kinematic 

equation,

(43)

where ωd is the desired angular velocity vector and qd is 

assumed to be provided by on-board navigation in the target 

spacecraft. The error quaternion is defined as:

(44)

where ⊗ denotes quaternion multiplication. Also, the 

quaternion inverse is defined by qd
-1=[-ρd  q4]. This work 

adopts the convention of Lefferts et al. (1993), who multiply 

the quaternions in the same order as the attitude matrix 

multiplication. Then, δρ and δq4 can be shown to be given 

by the following.

(45.a)

(45.b)

As δρ approaches zero, the actual quaternion approaches 

the desired quaternion. Some properties of the quaternion 

error measurement are described below, making it possible 

to develop an exact linearization of the error dynamics for a 

formulation. Assume that the closed-loop dynamics have the 

linear form (Bach and Paielli, 1993; Paielli and Bach, 1993),

(46)

where L1 and L2 are 3×3 gain matrices. These matrices can 

be determined using an LQR approach starting with the 

following.

(47.a)

(47.b)

In the above, L=[L1  L2]. The state-space formulation of Eq. 

(48) is given by:

(48)

where xro=[δρT   δρ·T]T. The state weight matrix for the 

performance index in Eq. (42) is given by:

(49)

The control weight matrix is given by:

(50)

For the generation of effective control torque commands 

that avoid actuator saturation with good attitude tracking, 

the weight matrix, Qa(xa(t0)), is also readjusted at steady 

state as is the case with SDRE control. The ARE is solved to 

produce a constant gain matrix. The goal of this control is 

to determine a control torque, гc, in Eq. (19) that achieves 

the desired closed-loop dynamics given by Eq. (46). Toward 

this end, two time derivatives of Eq. (45a) are first taken and 

then substituted into Eq. (46) (Crassidis and Junkins, 2004) 

yielding:

(51)

Taking the time derivative of Eq. (16) leads to:

(52)

where the identity, Ω2(ω)=-(ωT ω)I4×4, is used. An identical 

expression for the desired quaternion is also given as:

(53)
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where ω· d can be derived from Euler’s equations of motion 

using Eq. (19) (neglecting the unmodeled torque, Td). 

Substituting Eq. (16) into Eq. (52) gives:

(54)

Substituting Eq. (16) and Eq. (54) into Eq. (51) and solving 

for гc yields:

(55)

For precision attitude control, precise attitude sensor sensors 

are adopted and combined with LQR control. The goal of the 

EKF application is the estimation of the gyro biases along 

all three axes and the attitude quaternions of the chaser 

spacecraft. The sensors used here include three axis gyros 

and star trackers whose output is the attitude quaternion 

referenced to J2000 inertial coordinates. For this sensor, a 

widely used model is given by the following (Crassidis and 

Junkins, 2004).

(56a)

(56b)

In the above, ηv and ηu are independent zero-mean 

Gaussian white noise processes with covariances usually 

given by σv
2I3×3 and σu

2I3×3, respectively, with σv= 10×10-7
 rad/

sec1/2 and σv= 10×10-10 rad/sec3/2.12 β is a bias vector, and ω~ 

is the measured observation. A combined quaternion from 

two star trackers is used as the measurement. To generate 

synthetic measurements, the following model is used:

(57)

where qm is the quaternion measurement, q is the truth, 

and v is the measurement noise, which is assumed to be a 

zero-mean Gaussian noise process with a covariance of 

0.001I3×3 deg2. The measured quaternion is normalized to 

ensure a normalized measurement. An error quaternion 

between the measured quaternion and the estimated 

quaternion of the chaser, q, is used for measurement in the 

filter. This is computed using the error quaternion,

(58)

For small angles, the vector portion of the quaternion is 

approximately equal to half angles so that δρ≈α/2 and δq4=1. 

The estimated quaternions of the chaser are fed to the control 

torque, гc, in Eq. (54) as q. The implementation of the LQG-

type control system for the chaser’s rotational maneuver is 

shown in Fig. 3.

(58)

 14

where mq isthequaternionmeasurement, q  isthetruth,and v isthemeasurementnoise,whichisassumedto

be a zeromean Gaussian noise process with a covariance of 2
33 deg001.0 ×I . The measured quaternion is

normalizedtoensureanormalizedmeasurement.Anerrorquaternionbetweenthemeasuredquaternionandthe

estimatedquaternionofthechaser, q̂ ,isusedformeasurementinthefilter.Thisiscomputedusingtheerror
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This study tested the controllers developed here in a 

Shuttle-like scenario in which the proximity operations 

and docking have historically been performed by the crew 

in the manual phase flight segment, as shown in Fig. 1. A 

six degrees-of-freedom simulation and a passive target 

(ISS) were created to demonstrate the performance of the 

controllers. The ultimate objective was to have the chaser 

(Shuttle) docking port approach the target docking port 

leading to a soft docking with the desired attitude. There 

were two types of axial alignment during this phase. The first 

one was the simplest case in which both vehicles had the 

same direction of axial alignment, as illustrated by Figs. 4a 

and b. The second one was the case in which the chaser had 

to execute a pitch rotation of +90 degrees, as illustrated by 

Figs. 4a and c.
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Fig. 4. Geometry of axial alignment.

The quaternions of the target, qt, were found through the use 

of the quaternion kinematic equations. The target angular 

velocity was assumed to be constant (consistent with an 

Earth-pointing attitude) during the scenario. The inertia 
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matrix of the target was assumed as follows (Fehse, 2003).

(59)

The inertia matrix of the chaser was also assumed constant 

and taken as follows (Nagata et al., 2001).

(60)

The chaser was initially located at the relative position, [609.6   

213.36   0.1] m, with a relative velocity of [0.01 -0.43 0.01] m/s 

with respect to the target. The initial quaternion of the chaser 

was [0.2473 0.4123 0.8651 0.1426], which corresponded to an 

initial attitude of -30 degrees of pitch rotation with respect 

to the CW frame of the chaser. The initial biases along each 

gyro axis were set as 1 deg/hr (Naidu, 2003). The docking 

target location (Olszewski, 1990) was given as [27.30 12.71 

-2.74] m in the CW frame. The flight segments were divided 

into a total of six stages that comprised of sub-segments. The 

first sub-segment started from the initial point, S1, where 

the final mid-course correction maneuver was executed and 

targeted S2, a point located 183 m along R-Bar. The second 

sub-segment started from S2 and continued to S3. At S2, 

the Shuttle started a positive pitch maneuver to the LOS 

of the target V-bar; the third was the first station-keeping 

to capture the LOS of the target; the fourth was the V-bar 

approach toward the target V-bar; the fifth was the second 

station-keeping location to decrease the approach velocity 

and ensure capture of the LOS; and the final sub-segment 

was the straight-line V-bar approach intended to accomplish 

soft docking. The simulation lasted for 68 minutes from 

the holding point, S1, to the target docking port with a step 

size of 0.1 seconds. Whereas the translational control was 

initialized at the beginning of each sub-segment, the attitude 

control was initialized twice to execute axial alignments. The 

first attitude was initialized at S1, and the second attitude 

was initialized at S2. Since the H-bar relative motion in this 

scenario was much smaller than the R-bar and V-bar relative 

motions, a planar motion perspective was used to better 

illustrate the results. The results of translational maneuvering 

were independently determined by both SDRE control and 

LQT control. The data were then plotted together from the 

holding point to the target docking port.

4.1 Results of translational maneuvering

Figures 5 and 6 show proximity operation trajectories and 

out-of plane motions for the entire duration of simulation. 

Using the CW guidance scheme and final straight-line 

approach guidance with subcentimeter-per-second 

velocities, the reference trajectories were autonomously 

directed to the controllers. The transfer time and the nominal 

trajectory for the R-bar relative motion were determined by 

the CW terminal guidance scheme (Fehse, 2003; Prussing 

and Conway, 1993). Figures 7 and 8 show the fly-around 

maneuver from S1 to S2 for 13 minutes, and the fly-around 

maneuver from S2 to S3 for 10 minutes, respectively. As soon 

as each sub-segment was complete, the newly initialized 

control was applied sequentially to the next sub-segment. 
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After the second sub-segment was completed, a five minute 

period of station-keeping was executed to ensure proper LOS 

alignment by nullifying the arrival velocity generated by the 

CW terminal guidance (Fehse, 2003; Prussing and Conway, 

1993), as shown in Fig. 9. After the fly-around maneuver from 

S2 to S3 was complete, the chaser needed to align its attitude 
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with the target LOS to the docking port during the station-

keeping period. Five minutes was considered an adequate 

amount of time to align with the LOS during the station-

keeping phase. Once the LOS was acquired during the 

station-keeping phase, the chaser prepared for the straight 

V-bar final approach phase and additional control forces 

were generated so that the chaser would not drift. After the 

first station-keeping period was complete, a V-bar hopping 

approach along the LOS was executed for 25 minutes, as 

shown in Fig. 10. The nominal V-bar hopping trajectory and 

the transfer time were also determined by the CW terminal 

guidance scheme, which typically provides a fuel-efficient 

approach.

The chaser then executed a second period of station-

keeping prior to the straight LOS final approach, shown 

in Fig. 11, for five minutes. Unlike the first station-keeping 

period, the chaser’s arrival velocity was opposite to that of 

the arrival velocity from the second R-bar maneuver. During 

the second station-keeping period, the chaser slowed the 

arrival velocity, again aligned the LOS to the docking port, 

and prepared for the straight LOS final approach. After the 

second station-keeping phase was completed, the chaser 

spacecraft completed the straight-line V-bar approach to 

dock with the target, as shown in Fig. 12. A straight-line V-bar 

guidance approach with very slow constant velocity was 

specified to ensure safety and avoid an unacceptably high 

physical impact on the target. 

According to the docking constraints (Pearson, 1989) in 

use for the Shuttle and the ISS, the lateral docking tolerance 

is a maximum of 0.330 m (13 inches), the lateral velocity 

tolerance is 0.0457 m/s (0.15 ft/s), and the closing velocity 

tolerance is 0.0914 m/s (0.30 ft/s). It is especially important 

to note the position tracking error and approach range 

rate to monitor these conditions. In order to facilitate an 

effective assessment of whether or not these conditions 

are met, the final straight-line V-bar approach over the last 

10 minutes was magnified. After control initialization in 

each sub-segment, the tracking error gradually decreased. 

This decrease in the tracking error is thus acceptable for 

achieving soft docking. As the translational maneuver was 

stabilized, the controlled state tracked the reference state 

more closely. The SDRE control achieved this accuracy as a 

result of adjusting the weight matrices in the final approach 

phase. However, LQT control with the free-final state could 

achieve very precise position tracking at the final stage by 

the use of a large weight-matrix, F(tf), for the final state in 

Eq. (40) with no changes in the other weight matrices. By 

applying this large weight matrix, F(tf), LQT control with 

the free-final state could produce the result using fixed-final 

state control (Lewis and Syrmos, 1995). Figure 13a shows the 

120 100 80 60 40 20 0   
180

160

140

120

100

80 

60 

40 

20 

V -bar (m)

R-
ba

r (
m

)
Des ired trajectory
S DR E
L QT

Fig. 8. Fly-around maneuver: S2 to S3.

122  121.8 121.6 121.4 121.2

13

12

11

10

9 

8 

7 

6 

5 

V -bar (m)

R-
ba

r (
m

)

Des ired trajectory
S DR E
L QT

Fig. 9. First station-keeping subsegment. 

120 100 80 60 40 

15

10

5 

0  

-5  

-10 

-15 

-20 

V -bar (m)

R-
ba

r (
m

) Des ired trajectory
S DR E
L QT

Fig. 10. V-bar approach.

30.5 30.4 30.3 30.2

15  

14.5

14  

13.5

-13  

2.5

V -bar (m)

R-
ba

r (
m

)

Des ired trajectory
S DR E
L QT

Fig. 11. Second station-keeping sub-segment.



DOI:10.5139/IJASS.2010.11.3.206 216

Int’l J. of Aeronautical & Space Sci. 11(3), 206–220 (2010)

position tracking error during the entire simulation. While 

the approach trajectory using the SDRE controller shows a 

constant straight-line trajectory whose error is less than 0.02 

m, the one resulting from LQT control with the free-final 

state shows a variation from about 0.14 m to 4×10-3 m at the 

final time, as shown in Fig. 13b. The approach range rate 

using SDRE control, shown in Fig. 14a, converged to 0.0077 

m/s, whereas the approach range rate using LQT control 

with the free-final state, shown in Fig. 14b, dropped to 0.0049 

m/s. The performance regarding translational maneuvering 

in the final approach is listed in Table 1.

The control force histories produced by the two controllers 

are shown in Fig. 15. The figure also shows that the 

additional control forces that resulted from the readjustment 
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Fig. 13. Position tracking error history.

Table 1. �Performance in translational maneuvering in the final 
straight-line V-bar approach

Control SDRE LQT

Position tracking error <2 cm 14 cm-0.4 cm

Approach range rate <0.8 cm/s 0.6 cm/s-0.49 cm/s

SDRE: state-dependent Riccati equation, LQT: linear quadratic track-
ing.
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Fig. 14. Approach range rate history.
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of the weight matrices in the SDRE controller increased 

impulsively before the final straight-line approach. LQT 

control with the free-final state shows that the chaser 

spacecraft more precisely approached each destination 

(shown in Fig. 1 as S2, S3, and the docking port) than the 

SDRE controller did. The translational maneuvers using 

the SDRE controller by adjusting the weight matrices in the 

straight-line LOS final approach could track the reference 

state provided by the straight-line guidance scheme and 

avoid thruster saturation. The tracking error was effectively 

reduced. However, additional control forces were required in 

straight-line maneuvering using the SDRE controller. Unlike 

LQT control with the free-final state, the effects of relative 

perturbations to the nonlinear system were considered in 

the SDRE approach in an attempt to control the translational 

maneuvering more precisely. For more precise translational 

maneuvers, the SDRE controller using nonlinear relative 

motion dynamics including relative perturbations can be 

closer to true system control than LQT control with the free-

final state. As the control forces and torques are generated, 

propellant mass is consumed, resulting in variations in 

the total mass and moment of inertia of the chaser. Figure 

16 shows the propellant mass consumption as a result of 

the applied control forces and control torques. This study 

assumed that the locations of all RCSs were known so that 

the propellant mass consumed by the control torques could 

be computed. The total is the sum of the mass consumed by 

both the control forces and the control torques.

4.2 Rotational maneuver

Because of varying mass, the moment of inertia is not 

constant. The robustness of the rotational controller was 

evaluated for uncertainties in the moment of inertia. The 

uncertainty was quantified by adding 30 percent of the 

initial moment of inertia to this initial value (Xin et al., 2004). 

Moreover, external disturbances, which were not modeled in 

the design of the controller, were added to the Euler rotational 

equation of the chaser in Eq. (19). All of the results to follow 

were compiled after incorporating the moment of inertia 

uncertainty and the external disturbances. The first rotational 

maneuver, illustrated by a comparison of Figs. 4a and b, was 

executed to align the chaser body axis with the target body 

axis in the first segment. The second rotational maneuver, 

illustrated by comparing Figs. 4a and c, was performed up 

to the final sub-segment after the first rotational maneuver 

was complete. Figure 17 shows that the chaser exhibited 

good attitude tracking during the entire simulation. To more 

clearly illustrate the geometry of the angular motion, the 
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Euler angle histories of the target and the chaser expressed 

with the 3-2-1 rotational sequence of the chaser, as converted 

from quaternions, are shown in Fig. 18.

Figure 19 shows the Euler angle error history between the 

target and the chaser spacecraft for axial alignments that are 

composed of 30 and 90 degrees of pitch rotation. The target 

is orbiting in a near-circular 350 × 450 km altitude Earth-

pointing orbit. The target angular rate can then be expressed 

as ωt=[0  n  0]T in the adopted body-frame, where n is the 

mean motion of the target and its value is 0.065 deg/s. This 

attitude control can be achieved by using the chaser’s 

precise estimation of the attitude with the sensors previously 

listed and by adjusting the weight matrices. The chaser 

spacecraft then maintains the desired attitude by using the 

control torque continuously until the terminal time, leading 

to roll, pitch, and yaw errors of less than 0.1 degrees. Figure 

20 shows the nominal target angular rate that the chaser can 

track for the two different types of axial alignment, which are 

illustrated in Fig. 4. For effective and rapid axial alignment, 

the weight matrix was adjusted during the steady-state 

interval, as was done for SDRE control. Even in the presence 

of unmodeled disturbance torques in the controller and 

uncertainty regarding the moment of inertia, the controller 

succeeded in maintaining an acceptable attitude tracking 

error. The rotational maneuvers thus could meet the 

alignment condition for the docking phase. The performance 

regarding rotational maneuver in the final straight-line V-bar 

approach is listed in Table 2.

Table 2. �Performance regarding rotational maneuver in the final 
straight-line V-bar approach

Control LQG

Attitude tracking error (roll, pitch, yaw) < 0. 1 deg

Angular rates (roll, yaw) -3×10-3deg/s~-3×10-3deg/s

Angular rates (pitch) 0. 0628 deg/s~0.0634 deg/s

LQG: linear quadratic tracking.

The upper plot in Fig. 21 shows the gravity-gradient torque 

history acting on the chaser, and the lower plot shows the 

external disturbance torque history acting on the chaser, 

which was simulated by white Gaussian-noise with mean 

[10 10 10]T, both of which were added to Eq. (19). Figure 

22 shows the applied control torque history. Along with the 

two required attitude changes, the large, initial, disturbing 

control torques were applied and the response was then 

reduced to nearly zero.

0 1000 2000 3000 4000
-100

-80

-60

-40

-20

0

20
D

eg

T ime (s ec)

R oll error
P itch eror
Yaw error

Fig. 19. Euler angle error history.

0 1000 2000 3000 4000
-0.1

0

0.1

0.2

0.3

0.4

0.5

T ime (s ec)

de
g/

s

w
tx

w
ty

w
tz

w
cx

w
cy

w
cz

Fig. 20. Angular rate histories.

0 1000 2000 3000 4000
-20

0

20
C has er G ravity-G radient T orque

N
.m

 

0 1000 2000 3000 4000
-50

0

50
E xternal Dis turbance T orque

T ime (s ec)

N
.m

 

T orque 1
 T orque 2
T orque 3

T orque 1
 T orque 2
T orque 3

Fig. 21. Gravity-gradient and external torque histories.

0 1000 2000 3000 4000
-500

0

500

1000

1500

2000

T ime (s ec)

To
rq

ue
 (N

.m
)

T orque 1
 T orque 2
T orque 3

Fig. 22. Control torque history.



219

Lee. et al.    Optimal Control for Proximity Operations and Docking

http://ijass.or.kr

Conclusions

This study designed a nonlinear SDRE control technique 

and an LQT control technique for translational maneuvers 

between spacecraft. The adopted SDRE control technique was 

designed for nonlinear relative motion dynamics, including 

Earth’s oblateness and aerodynamic drag perturbations. 

Through the SDC parameterization, a linear-like closed-

form structure was achieved for the nonlinear system control 

problem. For the tracking command, the controller was 

designed without increasing the state dimensions, unlike 

the SDRE integral servo controller formulation. The tracking 

results using SDRE control were successfully achieved by 

readjusting the weight matrices at the steady-state interval to 

avoid saturation. The LQT control designed for the linearized 

system shows that the free-final state becomes the fixed final 

state when the weight matrix for the final state is large. This 

result is very effective in meeting the required final state 

condition. The LQT control results can be used as a reference 

in designing the SDRE controller. However, for more precise 

control, SDRE control is preferable because the controller 

was designed for the nonlinear system including the relative 

perturbations. An LQG-type control technique was designed 

for the rotational maneuvers. A combination of an LQR 

controller and EKF estimation using star trackers and three-

axis gyros constitutes the LQG-type control technique. The 

weight matrices were readjusted similarly for the LQG-type 

control as for SDRE control to decrease the attitude tracking 

error to within the desired accuracy. The tracking error was 

maintained even in the presence of disturbance torques and 

uncertainties in the moments of inertia, demonstrating the 

robustness of this LQG-type controller. The Shuttle crew’s 

manual flight segment was chosen to simulate and evaluate 

the control techniques applied in this study. A six degrees-of 

freedom simulation demonstrated that the adopted control 

techniques can successfully conduct proximity operations 

and meet the conditions for the docking phase. The control 

techniques can also be applied to other programs that require 

autonomous proximity operations composed of many sub-

phases, including docking. For executing autonomous and 

precise proximity operations, including successful docking, 

the integration of these controllers with accurate state 

estimation using high-precision sensors is needed.
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