
1. Introduction

A precise dynamic model, such as a satellite that varies 

with attitude and speed, is required for attitude control. 

The controller monitors the plant’s inputs and outputs to 

acknowledge its characteristics by a model reference adaptive 

control (MRAC). An important part of every adaptive scheme 

is the adaptive law for estimating the unknown parameters 

on line. The adaptive law (Ioannou and Datta, 1991) is 

designed by first developing a parameterization of the 

unknown plant in terms of the unknown vector ψ*, which has 

to be estimated on-line. The general problem of the on-line 

constant parameter vector ψ* of a certain class of dynamic 

systems is described by 

(1)

where at each time t, the response z(t) with z≤t can be 

observed and  is some function whose form may be known. 

If we consider ψ(t) as an estimate of ψ* at time t, then the 

estimate ẑ(t)=ẑ(t, ψ) of z(t) can be constructed as

(2)

for some function. This estimation process is a mean through 

which the adjustment law for ψ may be designed so that ẑ(t, 
ψ) is as close as possible to z(t). Standard options for ensuring 

the quality of the estimation might be:

i)

ii)

iii)

In particular, method i) is more frequently used than ii) 

or iii).

After achieving precise model identification, the robust 

controller(H∞) was designed for the rigid body (Jin et al., 

1994; Lho et al., 1998) and for the flexible body in order to 

attain stabilization and the desired performance. It was 

assumed that the plant model comprised pitch dynamics, 

an earth sensor, and momentum wheel dynamics. In 

order to design a control system, we obtained a simplified 

mathematical model which described the actual plant as 

being controlled with a reasonable degree of accuracy over  

the operating range of interest. While a simple model leads 
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to a simpler control design, such a design must possess a 

sufficient degree of robustness or sensitivity with respect 

to the unmodeled plant characteristics. The plant with 

uncertainty is represented as

(3)

where Po(s) is the ideal plant dynamic model, and δp(s) is 

the perturbation of uncertainty. Given a compensator C(s) 

which stabilizes Po(s), we established the conditions for C(s) 

to be a robust stabilizer for all the plants in the class C(Po(s), 

r(s)). From the hypothesis that C(s) stabilizes Po(s) we have 
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q̈ +  2 ζσq̇ + σq + Dθ̈ = 0        (8) 

(4)

and Po(jw)C(jw) has the correct encirclements of -1 point to 

guarantee, from Nyquist’s stability criterion, that the nominal 

closed-loop system is stable.

A sufficient condition (Dorato et al., 1989) for robust 

stability is then

2 

 

In particular, method i) is more frequently used than ii) or 

iii). 

After achieving precise model identification, the robust 

controller(H∞) was designed for the rigid body (Jin et al., 

1994; Lho et al., 1998) and for the flexible body in order to 

attain stabilization and the desired performance. It was 

assumed that the plant model comprised pitch dynamics, an 

earth sensor, and momentum wheel dynamics. In order to 

d e s i g n  a     

control system, we obtained a simplified mathematical 

model which described the actual plant as being controlled 

with a reasonable degree of accuracy over 

 

 

 

 the operating range of interest. While a simple model led to 

a simpler control design, such a design must possess a 

sufficient degree of robustness or sensitivity with respect to 

the unmodeled plant characteristics. The plant with 

uncertainty is represented as 

 

P(s) = P(s) +  δP(s)             (3) 

 

where P(s) is the ideal plant dynamic model, and δP(s) is 

the perturbation of uncertainty. Given a compensator C(s) 

which stabilizes P(s),  we established the conditions for 

C(s) to be a robust stabilizer for all the plants in the class 

CP(s), r(s).  From the hypothesis that C(s)  stabilizes 

P(s) we have  

 

P(jw)C(jw) + 1 ≠ 0     ∀ w          (4) 

 

and P(jw)C(jw) has the correct encirclements of −1 point 

to guarantee, from Nyquist's stability criterion, that the 

nominal closed-loop system is stable. 

A sufficient condition (Dorato et al., 1989) for robust 

stability is then 

 

∥1 +  P(s)C(s)C(s)r(s) ∥∞ < 1        (5) 

 

The performance of the robust controller was compared to 

that of the proportional and integration (PI) controller, which 

has been applied to satellites such as Korea multi-purpose 

satellite (KOMPSAT) (KOMPSAT, 1996). 

 

2. Modeling of Satellite 
 

The rotational motion equation of the satellite is 

represented by the moment equation (Jin et al., 1994) as 
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satellite, h is the angular momentum of the momentum wheel 

rotating toward the pitch axis, Ts is the disturbed torque, Tc 

is the control torque, T is the outside torque reacting to the 

satellite, Dy is the related coefficient between the vibration 

mode and the attitude angle of rigid body, qy is the modal 

coordinate of the twisted mode of solar panel, σy is the 

number of vibration of the twisted mode of the solar panel, 

and τ is the passive attenuation coefficient of the vibration 

mode of the solar panel. The satellite body and attitude angle 

is shown in Fig. 1, and the modeling of the optimized flexible 

body of the satellite is in Fig. 2.

2.2 The rigid model of satellite

In the movement equation of the rigid model (Jin et 

al., 1994), the dynamic equation of the pitch under the 

assumption that no coefficients are related between the 

vibration mode and the attitude angle of the rigid body is 

written as
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 · α = 0 case)  
Eq. (9)  represents the dynamic equation of the pitch in the 

rigid model with no position angle.  
When the inertia moment of the roll is almost same as that 

of the yaw, and the angular velocity is small, the angle θ 

can be neglected. In the rigid body, the pitch circuit contains 

pitch dynamics in which the moment equation incorporates 

the pitch axis, the earth sensor, and the controller. The 

remaining components, except for the controller, are 

considered as the plant. For the input signal u and the 

output torque T, the differential equation of the momentum 

wheel in Fig. 3 is 

 

TṪ +  T =  Ku̇            (10) 

 

Substituting Eq. (7) into Eq. (10), we obtain  

 

TI θ̈ + TDq̈ + I θ̇ + I q̇ =  Ku       (11) 

 

Assuming the output of the plant is y =  θ, and the state 

variables are considered as x =  [θ θ̇ q q̇] , the state 

equation becomes a 4th order system (Lho et al., 1998). 

   

  · α = 3 w I
φ

− Iб    case) 

Using Eq. (7) and Eq. (8), we get Eq. (12) as 

 

  I − Dθ̈ +  αθ − 2Dζσ

q̇ - Dσ




q = T     (12) 

 

Combining Eq. (7) and Eq. (8) results in a fifth order state 

equation  
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Assuming the output of the plant is y=θ, and the state 

variables are considered as x=[θ θ̇ qy q̇y]T, the state equation 

becomes a 4th order system (Lho et al., 1998).
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Combining Eq. (7) and Eq. (8) results in a fifth order state 

equation 

ẋ=Ax+Bu

y=Cx
(13)

where x1=θ, x2=θ, x3 ; the state variable of momentum 

wheel, x4=qy, x5=q̇ y, x=[x1 x2 x3 x4 x5]T, y= θ
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  B =  [0 − 
 1     0 

 ], 

   C = [1 0 0    0 0], J =  T (D − I ) 

 

Table 1. Design data 

Symbol Name Value Unit Remark 

K Motor gain 0.0792 
N․m/

V 
Wheel loop 

D 
Related 

coefficient 
3.015 - Satellite body 

I  
Inertia 

Moment 
3,555 

in·lb·
sec2 

Satellite body 
(Pitch axis) 

ζ 
Passive 

Attenuation 
Coefficient  

0.005 - Bending mode 

σ

 

Number of 
vibration 

3.618 - Solar panel 

J 
Moment of  

Inertia 
100 

kg․
m2 

Satellite body  
(Roll axis) 

J 
Moment of 

Inertia 
200 

kg․
m2 

Solar array 

w 
Solar array 

first 
frequency 

0.5 Hz Bending mode 

ζ 
damping 

ratio 
0.25 % Bending mode 

 

Eq. (12) and Eq. (13) do not share related coefficients. 

With an input of u and an output of θ in Fig. 3, the transfer 

function (Phillips and Harbor, 2000) becomes  

 

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                (14) 

 

where α = 
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 ,   b =  


 

Substituting the values in Table 1 into Eq. (14) leads to 

α = 0.6024,    α =  −4.8913E − 9,   
                        α =  −2.9466E − 9, b = 1.3421E − 5 

 

 

->Fig. 3. Block diagram of attitude control and model 

identification in the satellite. 

 

3. MRAC and Robust Control of Satellite 

 

3.1 Design of MRAC 

The means by which the adaptive laws are established 

exist in two forms: a linear model and a bilinear model 

(Ioannou and Datta, 1991). An important class of parametric 

models for ψ∗ that appears in the adaptive control (Kosut 

and Safonov, 2001; Tsao et al., 2003) and identification of 

linear plants is a class in which ψ∗ appears in a linear form.  

  We considered the Lyapunov function when generating 

the parameter estimates previously defined asψ(t). A certain 

Lyapunov-like function V is then considered. The time 

derivative V̇ along trajectories of the dynamic equation is 

m a d e  n o n - p o s i t i v e  f o r  V ≥ V a n d  
 
 V ≥ 0 .     
The properties of V and V̇ establish stability properties of the 
on-line estimation scheme. The chosen form is  
 

                  V(ψ) =    
                           (15) 

 

Eq. (12) and Eq. (13) do not share related coefficients. With 
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where α1=
1

Tm
, α2=

α
Iθ

, α3=
α

TmIθ
, b1=

Km
TmIθ

Substituting the values in Table 1 into Eq. (14) leads to

α1=0.6024, α2=−4.8913E−9,
α3=−2.9466E−9, b1=1.3421E−5

3. MRAC and Robust Control of Satellite

3.1 Design of MRAC

The means by which the adaptive laws are established 

exist in two forms: a linear model and a bilinear model 

(Ioannou and Datta, 1991). An important class of parametric 

models for ψ* that appears in the adaptive control (Kosut and 

Safonov, 2001; Tsao et al., 2003) and identification of linear 

plants is a class in which ψ* appears in a linear form. 

We considered the Lyapunov function when generating 

the parameter estimates previously defined as ψ(t). A 

certain Lyapunov-like function is then considered. The time 

derivative V̇ along trajectories of the dynamic equation is 

made non-positive for V≥V0 and V0 ≥ 0.

The properties of V and  establish stability properties of 

Fig. 3. �Block diagram of attitude control and model identification in 
the satellite.

Table 1. Design data

Symbol Name Value Unit Remark
Km Motor gain 0.0792 N.m/V Wheel loop

Dy
Related 

coefficient
3.015 - Satellite body

Iyy Inertia Moment 3,555 in·lb·sec2 Satellite body
(Pitch axis)

ζ
Passive 

Attenuation 
Coefficient 

0.005 - Bending mode

σy
Number of 
vibration

3.618 - Solar panel

Jb1
Moment of 

Inertia
100 kg.m2 Satellite body 

(Roll axis)

Js1
Moment of 

Inertia
200 kg.m2 Solar array

w1
Solar array

first frequency
0.5 Hz Bending mode

ζ1 damping ratio 0.25 % Bending mode
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the on-line estimation scheme. The chosen form is 
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where Γ = ΓT > 0.
In order to derive the adaptive law in the model dynamic 

system with non-disturbance, the Gradient method was 
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In designing robust controller, the q parameter (Dorato et 
al., 1989) is first introduced as 
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The condition of q(s)  necessary for c(s)  to guarantee 

internal stability is 
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the adaptive control literature: the model reference control 
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assumed as no disturbances. Let us first consider model 

reference control structure.

The plant is assumed as y=G0(s)[u]=kp
Zo(s)
R0(s)

, and the 

reference model
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assumed as no disturbances. Let us first consider model 
reference control structure. 

The plant is assumed as y = G(s)[u] = k
()
() ,  and the 

reference model 
 

y = W(S)[r] = k
()
() [r]            (20) 

 
The objective for designing the MRAC is to calculate the 

plant input u such that the closed loop plant stable and 
y(t)→ y(t) as t → ∞for any bounded piecewise continuous 
reference input r(t). The following assumptions are given  

i) Z(s) is a monic Hurwitz polynomial of degree m≤ n − 1. 
ii) R(s) is a monic polynomial of degree n. 

iii) The sign of k is known. 

iv)The relative degree of n − m is known. 

v) Z(s), R(s) are coprime. 

vi) Z(s), R(s)  are monic Hurwitz polynomials of 

degree m, n, respectively. 

The MRAC law is given by  

 

   u =  ψ∗
 ()

∧() u + ψ∗
 ()

∧() y + ψ∗ y + c∗r     (21) 

 

w h e r e  a(s) = s, s,   ···, 1, a n d  ∧ (s) = ∧ (s)Z(s) 

and ∧ (s) is a monic Hurwitz polynomial of degree   

n − m − 1  and ψ
∗, i = 1, 2 , 3, c∗  are the constant 

controller parameters to be determined so that the control 

objective is achieved for the modeled part of the plant P(s). 

There exists ψ∗ , ψ∗ , ψ∗ , c∗  so that the control objective is 

achieved for the nominal plant P(s). 

For the case of α = 0 , the model has already been 

obtained in the paper (Jin et al., 1994) However, for 

α = 3w(I − Iб), the transfer function for filtering both sides 

by 
(.) is 

 


(.) ψ + α


(.) ψ − α


(.) ψ − α


(.) ψ =

b

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Here, the parameter z,  ψ∗,  and φ in the linear parametric 

model is given by 
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where z =  
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3.2 �esign of robust controller 

In designing robust controller, the q parameter (Dorato et 
al., 1989) is first introduced as 
 

q(s) =  ()
()()              (24) 

 
The condition of q(s)  necessary for c(s)  to guarantee 
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q(s) = B(s)q(s)              (25) 
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where Γ = Γ > 0.  
In order to derive the adaptive law in the model dynamic 
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There exists ψ∗ , ψ∗ , ψ∗ , c∗  so that the control objective is 

achieved for the nominal plant P(s). 

For the case of α = 0 , the model has already been 
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Here, the parameter z,  ψ∗,  and φ in the linear parametric 

model is given by 

 

   z =  ψ∗φ                      (23) 

 

where z =  

(.) [ψ], ψ∗ = [α  α  α  b], 

φ = [ 

(.) ψ, 
(.) ψ, 

(.) ψ, 
(.) [u]] 
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al., 1989) is first introduced as 
 

q(s) =  ()
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The condition of q(s)  necessary for c(s)  to guarantee 
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where a(s)=[sn-2, sn-3, …, 1]T, and and ∧(s)=∧0(s)Zm(s) and 

∧0(s) is a monic Hurwitz polynomial of degree n-mr-1 and 

ψi
*, i=1, 2, 3, co

* are the constant controller parameters to be 

determined so that the control objective is achieved for the 

modeled part of the plant Po(s). There exists ψ1
*, ψ2

*, ψ3
*, co

* so 

that the control objective is achieved for the nominal plant 

Po(s).

For the case of α=0, the model has already been obtained 

in the paper (Jin et al., 1994) However, for α=3wo
2(Iφ-Iб), the

transfer function for filtering both sides by 1
(s+0.1)3  is
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where Γ = Γ > 0.  
In order to derive the adaptive law in the model dynamic 

system with non-disturbance, the Gradient method was used. 
The method is based on the development of an algebraic error 
equation and the minimization of a certain cost function 
J(ψ, t) in terms of the estimated parameter ψ for each time t 
using the steepest descent method as shown in Eq. (16). Since 
ψ∗ is constant we can write  
 

z=ψ∗ϕ                                          (16) 
  

The estimate z  of z at time t is given by z = ψϕ and the 
estimation error is shown as  
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Using the gradient method we obtain  

 
ψ̇ =Γϵϕ,   Γ = Γ > 0                       (19) 

 
Three control structures have become very popular in the 

adaptive control literature: the model reference control 
structure, the pole placement control structure and the linear 
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assumed as no disturbances. Let us first consider model 
reference control structure. 

The plant is assumed as y = G(s)[u] = k
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()
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The objective for designing the MRAC is to calculate the 

plant input u such that the closed loop plant stable and 
y(t)→ y(t) as t → ∞for any bounded piecewise continuous 
reference input r(t). The following assumptions are given  

i) Z(s) is a monic Hurwitz polynomial of degree m≤ n − 1. 
ii) R(s) is a monic polynomial of degree n. 

iii) The sign of k is known. 

iv)The relative degree of n − m is known. 

v) Z(s), R(s) are coprime. 

vi) Z(s), R(s)  are monic Hurwitz polynomials of 

degree m, n, respectively. 

The MRAC law is given by  
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For the case of α = 0 , the model has already been 

obtained in the paper (Jin et al., 1994) However, for 
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Here, the parameter z,  ψ∗,  and φ in the linear parametric 
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where z =  
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In designing robust controller, the q parameter (Dorato et 
al., 1989) is first introduced as 
 

q(s) =  ()
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where Γ = Γ > 0.  
In order to derive the adaptive law in the model dynamic 

system with non-disturbance, the Gradient method was used. 
The method is based on the development of an algebraic error 
equation and the minimization of a certain cost function 
J(ψ, t) in terms of the estimated parameter ψ for each time t 
using the steepest descent method as shown in Eq. (16). Since 
ψ∗ is constant we can write  
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The estimate z  of z at time t is given by z = ψϕ and the 
estimation error is shown as  
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Using the gradient method we obtain  
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Three control structures have become very popular in the 

adaptive control literature: the model reference control 
structure, the pole placement control structure and the linear 
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assumed as no disturbances. Let us first consider model 
reference control structure. 

The plant is assumed as y = G(s)[u] = k
()
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()
() [r]            (20) 

 
The objective for designing the MRAC is to calculate the 
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y(t)→ y(t) as t → ∞for any bounded piecewise continuous 
reference input r(t). The following assumptions are given  
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ii) R(s) is a monic polynomial of degree n. 

iii) The sign of k is known. 
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v) Z(s), R(s) are coprime. 
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degree m, n, respectively. 

The MRAC law is given by  
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Here, the parameter z,  ψ∗,  and φ in the linear parametric 

model is given by 
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In designing robust controller, the q parameter (Dorato et 
al., 1989) is first introduced as 
 

q(s) =  ()
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The condition of q(s)  necessary for c(s)  to guarantee 
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where Γ = Γ > 0.  
In order to derive the adaptive law in the model dynamic 

system with non-disturbance, the Gradient method was used. 
The method is based on the development of an algebraic error 
equation and the minimization of a certain cost function 
J(ψ, t) in terms of the estimated parameter ψ for each time t 
using the steepest descent method as shown in Eq. (16). Since 
ψ∗ is constant we can write  
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The estimate z  of z at time t is given by z = ψϕ and the 
estimation error is shown as  
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structure, the pole placement control structure and the linear 
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assumed as no disturbances. Let us first consider model 
reference control structure. 

The plant is assumed as y = G(s)[u] = k
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() ,  and the 
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y = W(S)[r] = k
()
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The objective for designing the MRAC is to calculate the 

plant input u such that the closed loop plant stable and 
y(t)→ y(t) as t → ∞for any bounded piecewise continuous 
reference input r(t). The following assumptions are given  

i) Z(s) is a monic Hurwitz polynomial of degree m≤ n − 1. 
ii) R(s) is a monic polynomial of degree n. 

iii) The sign of k is known. 

iv)The relative degree of n − m is known. 

v) Z(s), R(s) are coprime. 
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The method is based on the development of an algebraic error 
equation and the minimization of a certain cost function 
J(ψ, t) in terms of the estimated parameter ψ for each time t 
using the steepest descent method as shown in Eq. (16). Since 
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where B(s) is the Blaschke product of poles of P(s) in right 
half plane (RHP) and q(s)  has to satisfy the     
interpolation conditions 
 

q(α) =  
 ()           (26) 

 
The robust stability condition can then be written 

 
∥ q(s)r(s) ∥< 1            (27) 

 
where r(s) is a minimum phase H function. 

The unit function is now introduced as   
 

u(s) = q(s)r(s)            (28) 
 

The robust stability condition becomes 
‖u(s)‖ < 1            (29) 

 
The above condition implies that u(s) must be an strictly 

bounded real (SBR) function (Dorato et al., 1989; Kosut and 
Safonov, 2001) since r(s)  and q(s)  are H . The 
interpolation conditions on u(s) are 

u(α)r(α) = ()
() = β       (30) 

 
The robust stability problem is reduced to an equivalent 

interpolation problem. The problem that presents itself 
comprises finding an SBR function u(s) which interpolates 
given points in the RHP. In mathematical literature, this 
problem is known as the Nevanlinna-Pick interpolation 
problem (Kimura, 1984). The controller is represented by the 
Blaschke product B(s) (Giarre et al., 1997), the uncertainty 
boundary r(s), and the function q(s) with unit function u(s) 
as shown below. 

 
C(s) = () 

()()              (31) 
 

In the flexible body model as shown in Eq. (13), the value of 
the inertia moment for roll axis and yaw axis is almost 
equivalent, and the angular velocity can be neglected for the 
small value. For the case in which the plant contains one pole 
at the right half of s-plane, the controller is designed by the 
interpolation theory (Dorato et al., 1989) where 

 
P(s) =  ()()

()()()()()     (32)  
 

where 
α = 0.0181 − 3.6226i,   α = 0.0181 + 3.6226i,  

              α = 0.6024,   
              α = α = 0.0001, a = 1.3455 − 5 ,   

  β = 0.0181 − 3.6180i,
   

      β = 0.0181 + 3.6180i  
 

Design procedure followed was: 

i) Choose the upper bound of uncertainty,  
         r(s) = 

. ,    k = 0.05 . 
ii) Obtain P (s) as P  (s) = B(S)P(s) where B(s) = ()

() 
iii) Compute the unit function u(s) with the pole at the right 

half s-plane and the ∞  value since r(s)  is the strictly 
proper. 

 u(α) = ()
 () = 3695.0215 Then, u(s) = .

.  
iv) Get the proper function as 

q(s)=()
() u(s) = . ()

()  
v) The controller C(s)  is obtained by pole and zero 

cancellation. 
vi) Check the stability of the closed loop system using the 

characteristic equation. 
 

4. Simulation 

For the model identification of the satellite, the parameter 
identification of the dynamic model was conducted by the 
MRAC method. Additionally, the PI and robust controller (H) 
were next designed for the desired performance. In the study 
conducted by the paper (Lho et al., 1998) three parameters of 
the pitch dynamics were proven to converge. In order to show 
convergence of the 4 parameters describing ψ∗in Eq. (23), an 
input with three different frequencies for Eq. (33) is applied. 
 

u(t) = 1 + sin(t) + sin(3t) + sin (5t)      (33) 
 

The true values are α = 0.6024, α = −4.8913E − 9, 
  α = −2.9466E − 9, b = 1.3421E − 5. 

T h e  s i m u l a t i o n  r e s u l t s  c o n v e r g e  t o  α ≅ 0.6, 
 α = α = b ≅ 0 which are the same as the true values as 
shown in Fig. 4. 
 

 
Fig. 4. Estimations of 4 parameters of α, α, α, and b. 

 

(26)
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where rm(s) is a minimum phase H∞ function.

The unit function is now introduced as  
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given points in the RHP. In mathematical literature, this 
problem is known as the Nevanlinna-Pick interpolation 
problem (Kimura, 1984). The controller is represented by the 
Blaschke product B(s) (Giarre et al., 1997), the uncertainty 
boundary r(s), and the function q(s) with unit function u(s) 
as shown below. 

 
C(s) = () 

()()              (31) 
 

In the flexible body model as shown in Eq. (13), the value of 
the inertia moment for roll axis and yaw axis is almost 
equivalent, and the angular velocity can be neglected for the 
small value. For the case in which the plant contains one pole 
at the right half of s-plane, the controller is designed by the 
interpolation theory (Dorato et al., 1989) where 

 
P(s) =  ()()

()()()()()     (32)  
 

where 
α = 0.0181 − 3.6226i,   α = 0.0181 + 3.6226i,  

              α = 0.6024,   
              α = α = 0.0001, a = 1.3455 − 5 ,   

  β = 0.0181 − 3.6180i,
   

      β = 0.0181 + 3.6180i  
 

Design procedure followed was: 

i) Choose the upper bound of uncertainty,  
         r(s) = 

. ,    k = 0.05 . 
ii) Obtain P (s) as P  (s) = B(S)P(s) where B(s) = ()

() 
iii) Compute the unit function u(s) with the pole at the right 

half s-plane and the ∞  value since r(s)  is the strictly 
proper. 

 u(α) = ()
 () = 3695.0215 Then, u(s) = .

.  
iv) Get the proper function as 

q(s)=()
() u(s) = . ()

()  
v) The controller C(s)  is obtained by pole and zero 

cancellation. 
vi) Check the stability of the closed loop system using the 

characteristic equation. 
 

4. Simulation 

For the model identification of the satellite, the parameter 
identification of the dynamic model was conducted by the 
MRAC method. Additionally, the PI and robust controller (H) 
were next designed for the desired performance. In the study 
conducted by the paper (Lho et al., 1998) three parameters of 
the pitch dynamics were proven to converge. In order to show 
convergence of the 4 parameters describing ψ∗in Eq. (23), an 
input with three different frequencies for Eq. (33) is applied. 
 

u(t) = 1 + sin(t) + sin(3t) + sin (5t)      (33) 
 

The true values are α = 0.6024, α = −4.8913E − 9, 
  α = −2.9466E − 9, b = 1.3421E − 5. 

T h e  s i m u l a t i o n  r e s u l t s  c o n v e r g e  t o  α ≅ 0.6, 
 α = α = b ≅ 0 which are the same as the true values as 
shown in Fig. 4. 
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Fig. 5. �Simulations of robust controller and proportional and integra-
tion.
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ψ*in Eq. (23), an input with three different frequencies for Eq. 

(33) is applied.
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()()              (31) 
 

In the flexible body model as shown in Eq. (13), the value of 
the inertia moment for roll axis and yaw axis is almost 
equivalent, and the angular velocity can be neglected for the 
small value. For the case in which the plant contains one pole 
at the right half of s-plane, the controller is designed by the 
interpolation theory (Dorato et al., 1989) where 

 
P(s) =  ()()

()()()()()     (32)  
 

where 
α = 0.0181 − 3.6226i,   α = 0.0181 + 3.6226i,  

              α = 0.6024,   
              α = α = 0.0001, a = 1.3455 − 5 ,   

  β = 0.0181 − 3.6180i,
   

      β = 0.0181 + 3.6180i  
 

Design procedure followed was: 

i) Choose the upper bound of uncertainty,  
         r(s) = 

. ,    k = 0.05 . 
ii) Obtain P (s) as P  (s) = B(S)P(s) where B(s) = ()

() 
iii) Compute the unit function u(s) with the pole at the right 

half s-plane and the ∞  value since r(s)  is the strictly 
proper. 

 u(α) = ()
 () = 3695.0215 Then, u(s) = .

.  
iv) Get the proper function as 

q(s)=()
() u(s) = . ()

()  
v) The controller C(s)  is obtained by pole and zero 

cancellation. 
vi) Check the stability of the closed loop system using the 

characteristic equation. 
 

4. Simulation 

For the model identification of the satellite, the parameter 
identification of the dynamic model was conducted by the 
MRAC method. Additionally, the PI and robust controller (H) 
were next designed for the desired performance. In the study 
conducted by the paper (Lho et al., 1998) three parameters of 
the pitch dynamics were proven to converge. In order to show 
convergence of the 4 parameters describing ψ∗in Eq. (23), an 
input with three different frequencies for Eq. (33) is applied. 
 

u(t) = 1 + sin(t) + sin(3t) + sin (5t)      (33) 
 

The true values are α = 0.6024, α = −4.8913E − 9, 
  α = −2.9466E − 9, b = 1.3421E − 5. 

T h e  s i m u l a t i o n  r e s u l t s  c o n v e r g e  t o  α ≅ 0.6, 
 α = α = b ≅ 0 which are the same as the true values as 
shown in Fig. 4. 
 

 
Fig. 4. Estimations of 4 parameters of α, α, α, and b. 

 

(33)

The true values are α1 = 0.6024, α2 = −4.8913E − 9,

α3 = −2.9466E − 9, b1 = 1.3421E − 5.

The simulation results converge to α1̃=~0.6, α̂1=α̂2=b̂1=~0 

which are the same as the true values as shown in Fig. 4.

For the pitch dynamic model of the satellite, the simulation 

was accomplished by Matlab/Simulink software. The initial 

value applied for xo is 0.1745 rad. The proportional gain (Kp) 

and the integration gain (Ki) were 4,308.6 (V/rad) and 53.9 

(V/rad/sec), respectively. The robust controller attained by 

using of the above design procedure encompassed a second 

order proper function as
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Fig. 5. Simulations of robust controller and proportional and 

integration. 
 

For the pitch dynamic model of the satellite, the simulation 
was accomplished by Matlab/Simulink software. The initial 
value applied for x is 0.1745 rad. The proportional gain (K) 
and the integration gain (K) were 4,308.6 (V/rad) and 53.9 
(V/rad/sec), respectively. The robust controller attained by 
using of the above design procedure encompassed a second 
order proper function as 
 

C(s) = . . .
. .           (34) 

 
As Fig. 5 displays, the convergence time of the robust 

controller is 160 seconds. The convergence time for the PI 
controller was 250 seconds. The robust controller converges 
to the steady state in shorter time than PI controller. 

 
5. Conclusions 
 

The rigid and flexible body of satellite was implemented. 
With the MRAC, the parameters of the dynamic model of plant 
in satellite were identified for the desired performance. After 
model identification, the robust controller was successfully 
designed to stabilize the satellite. With simulation, it was 
shown that the convergence time of the robust controller 
performed better than the PI controller in the attitude 
stabilization technique of KOMPSAT. 
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As Fig. 5 displays, the convergence time of the robust 

controller is 160 seconds. The convergence time for the PI 

controller was 250 seconds. The robust controller converges 

to the steady state in shorter time than PI controller.

5. Conclusions

The rigid and flexible body of satellite was implemented. 

With the MRAC, the parameters of the dynamic model of plant 

in satellite were identified for the desired performance. After 

model identification, the robust controller was successfully 

designed to stabilize the satellite. With simulation, it was 

shown that the convergence time of the robust controller 

performed better than the PI controller in the attitude 

stabilization technique of KOMPSAT.
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