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Abstract

Multi-objective design exploration (MODE) and its applications are reviewed as an attempt to utilize numerical simulation in 

aerospace engineering design. MODE reveals the structure of the design space based on trade-off information. A self-organizing 

map (SOM) is incorporated into MODE as a visual data mining tool for the design space. SOM divides the design space into 

clusters with specific design features. This article reviews existing visual data mining techniques applied to engineering 

problems. Then, we discuss three applications of MODE: multidisciplinary design optimization for a regional-jet wing, silent 

supersonic technology demonstrator and centrifugal diffusers.
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1. Introduction

Multidisciplinary design optimization (MDO) is gaining 

great importance in aerospace engineering. A typical MDO 

problem involves multiple competing objectives. While 

single objective problems may have a unique optimal 

solution, multi-objective problems (MOPs) have a set 

of compromising solutions, largely known as the trade-

off surface, Pareto-optimal solutions or non-dominated 

solutions. These solutions reveal trade-off information 

among different objectives. They are optimal in the sense 

that no other solutions in the search space are superior to 

them when all objectives are taken into consideration. A 

designer will be able to choose a final design with further 

considerations.

Evolutionary algorithms (EAs) (Deb, 2001) are suitable for 

finding many Pareto-optimal solutions. However, because 

EAs are population-based approaches, they generally 

require a large number of function evaluations. To alleviate 

the computational burden, the use of the response surface 

method (RSM) has been introduced as a surrogate model 

(Queipo et al., 2005). The surrogate model used in this study 

is the Kriging model (Jeong and Obayashi, 2005; Jones et al., 

1998; Keane, 2003).

This approach for finding many Pareto solutions operates 

sufficiently in its present condition; however, smooth 

operation is achieved only when the number of objectives 

remains small. To reveal the trade-off information from the 

resultant Pareto front for real-world problems containing 

many objectives, visualization of the Pareto front becomes 

an issue. The next section reviews visual data mining in 

engineering design.

A MDO system denoted multi-objective design 

exploration (MODE) was proposed in Obayashi et al. (2005) 

and is illustrated in Fig. 1. MODE is not intended to provide 

an optimal solution. MODE reveals the structure of the 
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design space from trade-off information and visualizes it as a 

panorama for a decision maker. The present form of MODE 

consists of the Kriging model, adaptive range multi objective 

genetic algorithms, analysis of variance and a self-organizing 

map (SOM) (Kohonen, 1995). SOM divides the design 

space into clusters. Each cluster represents a set of designs 

containing specific design features. A designer may find an 

interesting cluster with good design features. Such design 

features are composed of a combination of design variables. 

If a particular combination of design variables is identified as 

a sufficient condition belonging to a cluster of interest, it can 

be considered as a design rule. Rough set theory (Pawlak, 

1982) and other data mining techniques have been employed 

to extract design rules. Through the applications of MODE, 

this article illustrates the importance of understanding the 

design problem better instead of obtaining a single optimal 

solution.

This article reviews existing visual data mining techniques 

applied to engineering problems. Then, we discuss three 

applications of MODE: MDO for a regional-jet wing, the 

silent supersonic technology demonstrator (S3TD) and 

centrifugal diffusers.

2. Review of Visual Data Mining

2.1 Multi-dimensional multivariate visualization

Wong and Bergeron (1997) reported that “the main 
objectives of multi-dimensional multivariate (MDMV) 
visualization are to visually summarize an MDMV data set, 
and find key trends and relationships among the variates.” 

To achieve this goal, extensive research has been conducted 

in many fields (Alpern and Carter, 1991; Chernoff, 1973; 

Inselberg, 1997; Inselberg and Dimsdale, 1990; van Wijk 

and Liere, 1993; Wong and Bergeron, 1997). Among the 

methods developed to date, parallel coordinates (Inselberg, 

1997; Inselberg and Dimsdale, 1990) and the scatter plot 

matrix are the most widely used approaches in the field of 

engineering design because of their ease of use. Recently, 

SOMs (Cios et al., 1998; Deb, 2001) have attracted attention 

as a novel means for MDMV visualization. The SOM 

approach entails an unsupervised neural network technique 

that classifies, organizes, and visualizes large data sets. It 

projects multidimensional data on a 2-D map without any 

information loss. In this study, we applied SOM to find the 

tradeoffs between objective functions, relationships between 

objective functions, and design variables. Additionally, SOM 

was employed to determine the sweet spot of the design 

space (Jeong et al., 2005 a and B; Kumano et al., 2006a; 

Obayashi et al., 2007). Parashar et al. (2008) used SOM for 

Pareto solution analysis and decision-making. Generative 

topographic mapping (GTM) (Svensen, 1998) is another 

novel MDMV visualization method, which is based on a 

constrained mixture of Gaussians the parameters which 

can be optimized using the expectation maximization 

algorithm. Holden and Keane (2004) used GTM to visualize 

the high-dimensional data of aircraft design. Pryke et al. 

(2007) adopted “Heatmaps” to visualize the results of 

MOP. These novel visualization methods can supply more 

information than primitive visualization methods. However, 

users are required to be familiar with reading the results. 

For visualization of the Pareto frontier of MOP, Mattson and 

Messac (2003) introduced the s-Pareto Frontier method, 

and Agrawal et al. (2004) proposed hyper-space diagonal 

counting (HSDC) and hyperspace Pareto frontier (HPF) 

(Agrawal et al., 2006). 

 
Fig. 1. Flowchart of multi-objective design exploration with component algorithms. 
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Fig. 1. �Flowchart of multi-objective design exploration with component algorithms.
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2.2 Visual design steering

Recent developments have sought to support visual design 

steering (VDS), which is a modification of the computational 

steering paradigm (Parker et al., 1997). VDS was first suggested 

by Winer and Bloebaum (2002a; 2002b) to incorporate the 

designer’s experiences and intuition into the optimization 

process in order to efficiently obtain an optimum solution. 

They used graph morphing to show trends in the performance 

space corresponding to changes in the design variables. 

In VDS, the designer can stop and change the direction of 

exploration at any stage during the optimization. Eddy and 

Lewis (2002) introduced cloud visualization (CV) to support 

visual steering. In CV, all previously obtained design points 

are presented as clouds in both the design and performance 

spaces. These spaces are displayed in separate windows and 

are linked to each other. A similar visualization system called 

synchronous visualization (SV) was suggested by Jeong et 

al. (2007) to visualize parameter subspaces and function 

space at the same time. Recently, ARL trade space visualizer 

(ATSV) (Stump et al., 2002, 2004), originally introduced as 

a graphical user interface tool supporting the “design by 

shopping” paradigm, has been equipped with the visual 

steering command (Simpson et al., 2008; Stump et al., 2009) 

in order to reinforce the trade (or design) space exploration 

process. VDS linked with high-performance computing and 

meta-modeling techniques provides the possibility of finding 

a better solution in complicated system designs using less 

design time.

Kodiyalam et al. (2004) introduced a rapid method for 

the visualization of physical model behavior during an 

optimization run by adopting high-performance computing 

and surrogate modeling. This method identifies how the 

responses of the physical model will change with changes in 

the design variables as optimization is running. Messac and 

Chen (2000) suggested a method for real-time visualization of 

the optimization process. The technique for the visualization 

of the path through the design space of the solutions during 

evolutionary optimization run was developed by Pohlheim 

(1999). Ligetti et al. (2003) investigated the impact of 

graphical interface delay on the efficiency and effectiveness 

of the design results (Ligetti and Simpson, 2005; Simpson et 

al., 2005).

2.3 Non-visual data mining

Recently, non-visual data mining techniques have 

been applied to MDO data to extract specific design rules. 

The most widely used non-visual data mining method in 

engineering design is the analysis of variance (ANOVA). 

ANOVA quantitatively illustrates the effects of each design 

variable or interaction of design variables of the objective 

function (Jeong et al., 2005a; Shimoyama et al., 2010). 

Sugimura et al. (2010) and Graening et al. (2008) introduced 

decision tree analysis (Witten and Frank, 2005) in order to 

obtain the design rules and knowledge for a centrifugal 

impeller and 3-D turbine blade, respectively. Decision 

tree analysis, developed in the field of statistical science, 

uses a type of ANOVA to extract design rules that support 

decision-making. Figure 2 shows a tree diagram obtained by 

decision tree analysis. By tracing a path to reach a desired 

node, a single design rule can be obtained. For example, the 

following if-then type rule can be found by tracing the path 

represented by the thick line in Fig. 3 

if (dv1>a1) and if (dv3≤a3) and ,......, then(P>bn) (1)

where dvi is the i-th design variable and ai is the criterion 

for dividing dvi. P is performance and bi is the criterion for 

dividing the performance P.

Rough set and association rules are additional non-visual 

data mining methods used to extract design rules. Rough set 

theory, a mathematical method developed by Pawlak (1982), 

was originally applied to analyze human senses because how 

it treats ambiguous data and extracts underlying rules from 

the data. The concept and procedure for extracting design 

rules from engineering design data using rough set theory are 

briefly explained in Fig. 3. In contrast to decision tree theory, 

multiple design rules are obtained from the rough set theory. 

To only obtain meaningful rules, rule sets are screened by 
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reduction and filtering. Similar to the rough set theory, the 

association rule generates many different rules. To select only 

the important rules, criteria such as support, confidence, and 

lift are used in the association rule. Sugimura et al. (2009a, b) 

applied rough set and association rules to obtain the tradeoff 

rules of a robust centrifugal fan design. Proper orthogonal 

decomposition (POD), which is known as the principal 

component analysis in statistical science, has been used 

to extract dominant features of designed transonic airfoil 

geometry. In this method, the design data are decomposed 

into a set of optimum orthogonal base vectors. Subsequently, 

features of these vectors are investigated in order to extract 

information. This method has been extended to extraction of 

the flow field characteristic of a transonic airfoil (Oyama et 

al., 2010). 

3. �MDO for the Regional-Jet Wing with	
Engine-Airframe Integration

In Japan, the New Energy and Industrial Technology 

Development Organization (NEDO) subsidized the 

development of an environmentally friendly high 

performance small jet aircraft. Mitsubishi Heavy Industries, 

Ltd. (MHI) was the prime contractor for the project. The 

purpose of this project was to build a prototype aircraft using 

advanced technologies, such as low-drag wing design, and 

lightweight composite structures, which were necessary 

for the reduction of environmental burdens. In March 

2008, MHI decided to bring this conceptual aircraft into 

commercial use. This commercial jet aircraft, named the 

Mitsubishi regional jet (MRJ), has a capacity of about 70-90 

passengers. This project focused on environmental issues, 

such as reduction of exhaust emissions and noise. Moreover, 

in order to bring the jet to market, lower-cost development 

methods using computer-aided design were also employed 

in this project. 

Under this project, Tohoku University participated as a 

collaborator and published a number of research results. 

Obayashi et al. (2005) and Takenaka et al. (2005) provided an 

overview of the collaborative works. Chiba et al. (2007) and 

Kumano et al. (2006a) gave an account of the MDO system 

development for the main wing. Hatanaka et al. (2006) and 

Kumano et al. (2006b) described the MDO system for engine-

airframe integration. The winglet design was performed by 

Takenaka et al. (2008). Aeroelastic simulations were also 

performed in the works provided by Kumano et al. (2008) 

and Morino et al. (2009).

3.1 Definition of optimization problem

The application shown here is the MDO tool for a 

regional-jet wing design with engine-airframe integration 

(Kumano et al., 2006b). It should be noted that the optimized 

wing is not the exact MRJ wing; rather, the acquired design 

knowledge from the present application has been utilized 

for the MRJ wing design. Integration is an imperative issue 

in aircraft design. The shock wave generated inboard of the 

pylon may lead to flow separation and buffeting. To prevent 

these phenomena, the wing shape near the pylon has been 

optimized. The following design objectives are considered 

here.

<Objective functions>

	 Minimize 

		  - Drag under cruising conditions (CD).	

		  - Shock strength near wing-pylon junction (–Cp,max).

		  - Structural weight of the main wing (Wing weight).

<Design variables>

		  - �Airfoil shapes of lower surface at 2 spanwise sections 

= 26 variables

		  - Twist angles at 4 sections   = 4 variables

30 variables in total

<Constraints>

		  - Wing thickness > specified value

		  - Rear spar height > specified value

     		  - Strength margin > specified value

		  - Flutter margin > specified value

3.2 Optimization results

During the optimization, the update of the Kriging models 

was performed six times. A total of 149 sample points were 

used. Figure 4 shows the performance of the baseline 

configuration and those of additional sample points at every 

iteration. As the iteration progressed, sample points moved 

toward the optimum direction indicating that the additional 

sample points for update were selected successfully. Several 

solutions with improvements in all objective function values 

compared with the baseline shape were obtained. One 

of the solutions was improved in 7.0 counts in CD, 0.503 in 

–Cp,max, and 21.6 kg in the wing weight compared with the 

performance of the baseline shape.

3.3 Airfoil parameters used in data mining 

Data mining was performed using airfoil parameters 

that differed from non-uniform rational B-spline (NURBS) 

design variables. The difference is due to the fact that 

NURBS control points have no aerodynamic or structural 

significance. Figure 5 shows the airfoil parameters of 

interest. XmaxL represents the distance from the leading 
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edge to the maximum thickness point of the lower half of the 

airfoil. maxL is the corresponding maximum thickness of the 

lower half. XmaxTC is the distance from the leading edge to 

the maximum thickness point. maxTC is the corresponding 

maximum thickness. In addition, sparTC is the thickness 

at the front spar. These parameters are taken at two wing 

sections as shown in Table 1.

3.4 Analysis of variance

ANOVA is a statistical data mining technique that reveals 

the effects of each design variable on the objective and the 

constraint functions (Jones et al., 1998). ANOVA uses the 

variance of the model due to individual variables and pairs of 

variables (interactions) of the approximation function based 

on the Kriging model. By decomposing the total variance 

of the model into components due to main effects and 

interactions, the influences of individual variables and their 

pairs on the objective function can be calculated. Because 

the present Kriging model allows nonlinear approximation, 

ANOVA is sufficient for the present data mining.

Figure 6 shows the results of ANOVA for each objective 

function. According to the results, dv2, dv7, and dv9 largely 

influence CD. dv6, dv10, and dv2 largely influence −Cp,max. 

Furthermore, dv6, dv8, and dv2 largely influence wing 

weight.

3.5 Visualization of design space

In order to visualize the design space, SOMs proposed by 

(Kohonen, 1995) were employed. The following SOMs were 

generated by Viscovery SOMine (http://www.eudaptics.

com/somine. accessed March 5, 2010). Once the user 

specifies the size of the map, this software automatically 

initializes the map based on the first two principal axes. The 

aspect ratio of the map is also determined according to the 

ratio of the corresponding principal components. The size of 

the map is usually 2000 neurons, which provides a reasonable 

    

        (a) CD - –Cp,max                                     (b) –Cp,max - Wing weight 

 

 

(c) CD  - Wing weight 

Fig. 4. Comparison of design performance among the baseline shape and sample points through Kriging updates. 
 

3.3 Airfoil parameters used in data mining  

Data mining was performed using airfoil parameters that differed from non-uniform rational B-spline 

(NURBS) design variables. The difference is due to the fact that NURBS control points have no aerodynamic or 

structural significance. Fig. 5 shows the airfoil parameters of interest. XmaxL represents the distance from the 

leading edge to the maximum thickness point of the lower half of the airfoil. maxL is the corresponding maximum 

thickness of the lower half. XmaxTC is the distance from the leading edge to the maximum thickness point. 

maxTC is the corresponding maximum thickness. In addition, sparTC is the thickness at the front spar. These 

parameters are taken at two wing sections as shown in Table 1. 

(a) CD - –Cp,max

    

        (a) CD - –Cp,max                                     (b) –Cp,max - Wing weight 

 

 

(c) CD  - Wing weight 

Fig. 4. Comparison of design performance among the baseline shape and sample points through Kriging updates. 
 

3.3 Airfoil parameters used in data mining  

Data mining was performed using airfoil parameters that differed from non-uniform rational B-spline 

(NURBS) design variables. The difference is due to the fact that NURBS control points have no aerodynamic or 

structural significance. Fig. 5 shows the airfoil parameters of interest. XmaxL represents the distance from the 

leading edge to the maximum thickness point of the lower half of the airfoil. maxL is the corresponding maximum 

thickness of the lower half. XmaxTC is the distance from the leading edge to the maximum thickness point. 

maxTC is the corresponding maximum thickness. In addition, sparTC is the thickness at the front spar. These 

parameters are taken at two wing sections as shown in Table 1. 

(b) –Cp,max - Wing weight

    

        (a) CD - –Cp,max                                     (b) –Cp,max - Wing weight 

 

 

(c) CD  - Wing weight 

Fig. 4. Comparison of design performance among the baseline shape and sample points through Kriging updates. 
 

3.3 Airfoil parameters used in data mining  

Data mining was performed using airfoil parameters that differed from non-uniform rational B-spline 

(NURBS) design variables. The difference is due to the fact that NURBS control points have no aerodynamic or 

structural significance. Fig. 5 shows the airfoil parameters of interest. XmaxL represents the distance from the 

leading edge to the maximum thickness point of the lower half of the airfoil. maxL is the corresponding maximum 

thickness of the lower half. XmaxTC is the distance from the leading edge to the maximum thickness point. 

maxTC is the corresponding maximum thickness. In addition, sparTC is the thickness at the front spar. These 

parameters are taken at two wing sections as shown in Table 1. 

(c) CD  - Wing weight

Fig. 4. �Comparison of design performance among the baseline shape 
and sample points through Kriging updates.

 
 

Fig. 5. Airfoil parameters used for data mining. 
 

 

 

 

 

 

Table 1. Airfoil parameters used for data mining 

Number Airfoil parameters 

dv1 XmaxL @ η= 0.12 

dv2 XmaxL @ η= 0.29 

dv3 maxL @ η= 0.12 

dv4 maxL @ η= 0.29 

dv5 XmaxTC @ η= 0.12

dv6 XmaxTC @ η= 0.29

dv7 maxTC @ η= 0.12 

dv8 maxTC @ η= 0.29 

dv9 sparTC @ η= 0.12 

dv10 sparTC @ η= 0.29 
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resolution within a reasonable computational time. 

Solutions uniformly sampled from the design space were 

projected onto the two-dimensional SOM. Figure 7 shows 

the resulting SOM with 12 clusters considering the three 

objectives. Furthermore, Fig. 8 shows the same SOM colored 

by the three objectives. These color figures show that the 

SOM indicated in Fig. 7 can be grouped as follows:

- �The upper right corner corresponds to the designs 

of individual variables and their pairs on the objective function can be calculated. Because the present Kriging 

model allows nonlinear approximation, ANOVA is sufficient for the present data mining. 

Fig. 6 shows the results of ANOVA for each objective function. According to the results, dv2, dv7, and dv9 

largely influence CD. dv6, dv10, and dv2 largely influence −Cp,max. Furthermore, dv6, dv8, and dv2 largely 

influence wing weight. 

 

 
  (a) CD                                          (b) −Cp,max 

 

 

(c) Wing weight 

Fig. 6. ANOVA results for each objective function based on airfoil parameters. 
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components. The size of the map is usually 2000 neurons, which provides a reasonable resolution within a 

reasonable computational time.  

Solutions uniformly sampled from the design space were projected onto the two-dimensional SOM. Fig. 7 

shows the resulting SOM with 12 clusters considering the three objectives. Furthermore, Fig. 8 shows the same 

SOM colored by the three objectives. These color figures show that the SOM indicated in Fig. 7 can be grouped 

as follows: 

- The upper right corner corresponds to the designs containg heavy wing weight and low CD. 

- The upper edge area corresponds to those with heavy wing weight.  

- The lower right corner corresponds to those with low CD, −Cp,max, and light wing weight. 

- The upper left corner corresponds to those with high CD. 

- The lower left corner corresponds to those with high CD, and −Cp,max. 

As a result, the lower right corner is the sweet spot in this design space, improving all three objective functions. 
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Fig. 8. Self-organizing map based on the design performance colored by each objective function. 
 

Fig. 9 shows the same SOM colored by four airfoil parameters (dv2, dv6, dv7, and dv10, respectively). In Fig. 

9(a) colored by dv2, large dv2 values can be found at the right edge. This area corresponds to small CD and −Cp,max 

values as shown in Fig. 8(a) and (b), respectively. This signifies that large dv2 values lead to acceptable CD and 

−Cp,max performance. Furthermore, in Fig. 9(c) colored by dv7, low dv7 values can be found at the right edge. This 

color pattern is very similar to that for CD. This also indicates that low dv7 values lead to acceptable CD 

performance.  

In Fig. 9(b) colored by dv6, large dv6 values can be found at the right edge. This means that large dv6 values 

lead to good performance of −Cp,max. In addition, the color pattern of Fig. 9(d) is very similar to that for −Cp,max. 

This means that low dv10 values lead to good performance of −Cp,max. As shown in Fig. 10, large dv6 and low 

dv10 values mitigate the blockage between the wing and nacelle. Therefore, the shockwave between the wing and 

nacelle is weakened.  
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containg heavy wing weight and low CD.

- �The upper edge area corresponds to those with heavy 

wing weight. 

- �The lower right corner corresponds to those with low CD, 

−Cp,max, and light wing weight.

- �The upper left corner corresponds to those with high CD.

- �The lower left corner corresponds to those with high CD, 

and −Cp,max.

As a result, the lower right corner is the sweet spot in this 

design space, improving all three objective functions.

Figure 9 shows the same SOM colored by four airfoil 

parameters (dv2, dv6, dv7, and dv10, respectively). In Fig. 

9(a) colored by dv2, large dv2 values can be found at the right 

edge. This area corresponds to small CD and −Cp,max values 

as shown in Figs. 8(a) and (b), respectively. This signifies 

that large dv2 values lead to acceptable CD and −Cp,max 

performance. Furthermore, in Fig. 9(c) colored by dv7, low 

dv7 values can be found at the right edge. This color pattern 

is very similar to that for CD. This also indicates that low dv7 

values lead to acceptable CD performance. 

In Fig. 9(b) colored by dv6, large dv6 values can be found 

at the right edge. This means that large dv6 values lead to 
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dv10 values lead to good performance of −Cp,max. As shown in 

Fig. 10, large dv6 and low dv10 values mitigate the blockage 

between the wing and nacelle. Therefore, the shockwave 

between the wing and nacelle is weakened. 

3.6 Extraction of design rules

Rough set theory was originally developed by Pawlak (1982). 

This mathematical method has been applied to human sense 

analysis because of its capability of handling ambiguous 

data and extracting underlying rules from that data. Because 

simulation data is deterministic, only the latter function was 

used. Rough set theory extracts design rules (decision rules) 

through the classification of set elements and set operations. 

Since details of the mathematical aspects of rough set theory 

can be found in the reference, the concept and flowchart of 

applying rough set theory to an engineering design database 

are briefly explained using Fig. 11. First, design samples 

with continuous variables are discretized to make logical set 

operation possible. Here, design variables are categorized 

into three levels. Each level is assigned to a different range of 

values of a design parameter and an objective function in such 

a way that the levels 1, 2 and 3 correspond to the minimum, 

middle and maximum ranges, respectively. For objective 

functions, clusters can be considered as a discrete category 

instead of these levels. Each design is then regarded as a 

deterministic rule describing conditions (design variables) 

and results (objective functions and clusters). Hence, all 

the data becomes a collection of rule sets. However, the rule 

sets still have as many conditions as the number of design 

variables, making it difficult for designers to understand 

them. Since some design variables do not affect the results or 

decisions, reducing the number of design variables required 

to obtain the same results is possible. This operation used 

for the purpose of obtaining minimum sets of conditions to 

determine the desired decision attributes is called ‘reduct,’ 

which makes obtaining simple rules with fewer conditions 

possible. Reduct is obtained from set operations. After 

obtaining reduced rule sets, the rule sets are filtered on the 

basis of the frequency to determine dominant rule sets. 

Finally, the meaning of the filtered rule sets is interpreted. 

Open software ROSSETA (Ohrn, 2000) was used for the 

necessary calculations.

The resulting rule appears, for example, ‘dv1(medium) 

AND dv2(large) AND dv5(medium) AND dv7(medium) AND 

dv9(small) AND dv10(small) => Cluster(C6), occurrence(10).’ 

It still appears complicated because the condition consists of 

a combination of five design parameters. In order to interpret 

the design rules more comprehensively, the frequency of 

appearance of small, medium and large for each design 

parameter was counted according to the sweet-spot cluster, 

small objective function values (CD, −Cp,max and wing weight), 

respectively, as summarized in Table 2. For example, dv2-

sweet reads +9. This signifies that the condition dv2(large) 

appears 9 times among the rules to belong to the sweet spot 

cluster. In other words, to belong to the sweet spot cluster, 

dv2, dv4 and dv6 should be large and dv9 and dv10 should 

be small. 

The design knowledge discussed by using SOM in Section 

3.3 can be summarized as

1) Large dv2 improves CD and –Cp.

2) Small dv7 improves CD.

3) Large dv6 improves -Cp.

4) Small dv10 improves -Cp.

Table 2 exhibits information consistent with these 

visualization results. Table 2, however, provides much more 

than the visualization. For example, dv4 should be large in 

order to belong to the sweet spot cluster, but it should be 

small in order to improve only the drag. Similarly, dv7 should 

be medium although it should be small in order to improve 

CD and –Cp. This illustrates the power of rough set theory. 

 
Fig. 11. Flowchart of data mining using rough set theory. 

 

Table 2. Frequency of appearance in design rules (+ indicates large, - indicates small and no sign 
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succeeded in October 2005 (Ohnuki et al., 2006), research and development of the S3TD has garnered the 

focus of the Japan Aerospace Exploration Agency (JAXA) (Murakami, 2006).  

This paper presents the practical two-step multidisciplinary design exploration (MDE) for S3TD airplane. 

The wing planform was re-designed in order to improve lift performance at low speeds and also to restrain 

low boom performance for wing-fuselage simple configuration. Then, a three-dimensional main wing and a 

stabilizer were designed for intimate configuration constructed as the main wing, fuselage, vertical tail wing, 
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Visualization results depend on who looks at the figures and 

how deeply one reads. The result of rough set theory reduces 

oversights and reveals more detailed conditions.

4. Two-Step MDO for S3TD Airplane

Since the flight experiment of the non-powered supersonic 

experimental scaled airplane NEXST-1 succeeded in October 

2005 (Ohnuki et al., 2006), research and development of 

the S3TD has garnered the focus of the Japan Aerospace 

Exploration Agency (JAXA) (Murakami, 2006). 

This paper presents the practical two-step multidisciplinary 

design exploration (MDE) for S3TD airplane. The wing 

planform was re-designed in order to improve lift 

performance at low speeds and also to restrain low boom 

performance for wing-fuselage simple configuration. Then, a 

three-dimensional main wing and a stabilizer were designed 

for intimate configuration constructed as the main wing, 

fuselage, vertical tail wing, stabilizer, and engine system.

4.1 design-exploration system

4.1.1 Optimizer 

A hybrid method between particle swarm optimization 

and genetic algorithm was employed. Recent optimization 

work often used a response surface model (RSM) based on a 

Kriging surrogate model in order to restrain evaluation time 

(Jeong et al., 2005b). However, when the optimization problem 

with many design variables is taken into consideration, many 

initial sample points are needed to maintain the accuracy 

of the response surface. In the present study, RSM was not 

selected in order to avoid extensive evaluation time for the 

initial samples. In addition, since the designers were required 

to present many optimum solutions for the decision of a 

compromised one, an evolutionary-based Pareto approach 

as an efficient multi-thread algorithm was employed instead 

of a gradient-based method. 

4.1.2 Data mining 

Although design optimization is important for engineering, 

the most significant design consideration is the extraction 

of knowledge in a design space. The results obtained by 

multiobjective (MO) optimization are not a sole solution, 

but an optimum set. That is, MO optimization results 

are insufficient information for practical design because 

designers need a conclusive shape. However, the results 

acquired from MO optimization can be accounted for as a 

hypothetical design database. Data mining as a post-process 

for optimization is essential for efficiently obtaining fruitful 

design knowledge (Obayashi and Sasaki, 2003). In the present 

study, functional ANOVA (Sobol, 1993) and a SOM (Deb, 

2001) were used for data mining. The distinguishing feature 

of a SOM is the generation of a qualitative description. When 

two methods are combined together, the results obtained 

compensate for the disadvantages of the individual methods 

(Chiba and Obayashi, 2008).

4.1.3 Evaluation methods 

The present exploration system prepared three evaluation 

modules for aerodynamics (including stability), structures, 

and boom noise. It took roughly seven days to evaluate one 

generation using the central numerical simulation system 

(CeNSS) of Numerical Simulator III in JAXA. 

1) Aerodynamic evaluation: TAS-Code, parallelized 

unstructured Euler/Navier-Stokes solver was employed. 

Three-dimensional Euler equations were solved with a 

finite-volume cell-vertex scheme on the unstructured mesh 

(Ito and Nakahashi, 2002). 

2) Structural evaluation: In the present MDE systems, 

structural optimization was performed in order to realize 

minimum wing weight with constraints of strength, vibration, 

and flutter requirements. The strength, vibration, and flutter 

characteristics were evaluated by using the commercial 

software MSC. NASTRANTM. 

3) Sonic boom evaluation: The computer-aided design-

based automatic panel analysis system (CAPAS) (Makino 

and Naka, 2007) was used.

4.2 First-step multidisciplinary design exploration

MDE was defined in the consideration of the sequence 

of the projecting flight experiment. The initial 0th shape 

of S3TD was designed to focus on low boom and low drag. 

However, its shape exhibited insufficient performance in 

regards to lift at low speed. Therefore, the second shape with a 

primary purpose of lift-performance improvement would be 

re-designed to maintain low boom intensity (the first shape 

was for minor change to re-design low-boom geometry). 

Detailed information of this MDE work is provided in Chiba 

et al. (2008). 

4.2.1 Objective functions 

The following five objective functions were defined. The 

first three objective functions are for aerodynamics, the 

fourth is for noise, and last is for structures. 

1) The minimization of the pressure drag at supersonic 

cruising condition: S•CDp (Mach number of 1.6, altitude of 

16 km, and target CL of 0.132 for the reference configuration 

of S3TD. S • CL supersonic = const. S denotes the one-sided wing 

reference area). 
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2) The minimization of the friction drag at supersonic 

condition: S•CDf . In this study, since the Prandtle-Hoerner’s 

simple equation was used for CDf evaluation, the each fidelity 

of CDp and CDf was different. Therefore, the objective functions 

were separated to avoid disappearing one influence for the 

inconsistency. 

3) The maximization of the lift at subsonic condition: S•CL 

(Mach number of 0.2 and angle of attack of 10.0 deg). 

4) The minimization of sonic boom intensity Iboom at 

supersonic condition. This objective function value was 

defined as |∆Pmax| + |∆Pmin| at the location with largest peak of 

sonic-boom signature across boom carpet. 

5) The minimization of a composite structural weight Wc 

for wing using fiber angle of ply and a number of ply with the 

fulfillment of the strength and vibration requirements. When 

an individual could not be satisfied with the requirements, 

the penalty was given to the rank in the optimizer. 

The present objective functions were selected in order to 

define no constraint conditions due to tradeoffs. Tradeoffs 

were expected between S•CDp and Wc as well as that between 

S•CDp and S•CL. 

4.2.2 �Decision of a compromise solution from design-
exploration results 

The total evolutionary computation of 12 generations 

was performed, and 75 non-dominated solutions were 

obtained. Here, the derived non-dominated solutions are 

focused because a compromise solution was selected. The 

evolution might not converge yet. However, the result was 

satisfactory because several non-dominated solutions 

achieved improvements over the reference configuration. 

Furthermore, a sufficient number of solutions were searched 

so that data mining of the design space can be performed. 

This provides useful knowledge for designers. 

The 75 non-dominated solutions were extracted using 

an SOM in order to determine a compromise solution. 

The applicable solutions to the following conditions were 

excluded from the 75 non-dominated solutions: 1) The 

structural requirements were not fulfilled, 2) S•CL is low, or 

wing area was low (this means the constraint for the landing 

speed), 3) S•CDp and S•CDf were impractically large. As a result 

of this operation, 24 non-dominated solutions as the practical 

designs were sorted. The SOM was re-generated using derived 

24 non-dominated solutions taking into consideration the 

five objective functions. The compromise solution was 

determined from these individuals taking into consideration 

the balance of the five objective functions and the low-

boom competence as the primary objective of the S3TD on 

SOM. The designers clustered similar planform shapes, and 

selected the exploitable shape group as a demonstrator using 

the experiences cultivated by the development of real-world 

aircrafts. Four shapes were selected taking into consideration 

the low-boom competence. The final compromise solution 

which is improvable due to the refinements on the fuselage 

and cross-section geometries was ultimately determined.

Since the compromise solution secured the wing area, 

low-speed aerodynamic performance could be improved 

and it was re-designed to have practical capability for takeoff 

and landing. However, as the objective functions regarding 

aerodynamics depended on wing area, the design knowledge 

about wing cross section was insufficient. 

A comparison of the planform between the reference 

configuration and the selected compromise solution 

(called ‘compromise’) is shown in Fig. 12. Also, airfoils of 

the reference and compromise configurations near the 

junction relative to the fuselage, kink, and tip are shown. It 

is notable that the reference configuration does not possess 

twists, and its airfoil is described by NACA64A series. The 

thickness ratios are respectively defined as 6% at root, 5% 

at kink, and 3% at tip. The installed angle of the wing is −0.5 

deg relative to the fuselage. As S•CL is the maximization 

objective, compromise has a larger wing area than that of the 

reference configuration. Furthermore, the inner wing area 

of compromise becomes large as a means of securing the 

structural strength. The sweepback angle was more subtle 

so as to not affect Iboom. Thus, the wing area and structural 

strength are also secured. But, the chord length near the kink 

was designed short in order to achieve low Wc and S • CDf . 

Therefore, the number of ply increased to augment the eigen 

frequency. The supersonic leading edge of compromise was 

located near the root in order to reduce the effect on Iboom of 

the front boom. Also, the blunt leading edge of compromise 

was located near the kink in order to improve the strength, 

eigen frequency, and subsonic aerodynamic performance. 

Data-mining results indicate that the sharp leading edge 
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near the tip affects Iboom. But, the wing area provides a strong 

effect on the objectives. Therefore, the knowledge regarding 

the airfoil shape is unreliable. 

Finally, the boom intensity as the primary objective 

function was compared between the reference and 

compromise configurations. Although Iboom performance 

of the reference configuration was better, compromise also 

maintained a non-N-shaped signature to restrain the initial 

peak. Compromise exhibited better S • CL performance for 

the landing speed constraint as well as the Iboom restraint. In 

this study, the rearward boom intensity cannot be discussed 

because the assumed fuselage-wing configuration ignores 

an engine nacelle and vertical/horizontal tail wings. But, 

computational fluid dynamics (CFD) visualization of Cp 

distribution on symmetrical plane reveals that shock wave 

occurs in the vicinity of wing trailing edge. It is necessary that 

the full configuration is optimized to design the geometry 

restrained rearward boom intensity and to obtain the design 

knowledge regarding cross section shape.

4.3 �Second-step multidisciplinary design explora-
tion

Second-step MDE was implemented among aerodynamics, 

stability, structures, aeroelasticity, and boom noise. An 

intimate configuration of the 2.5th latest shape composed 

by main wing, fuselage, vertical tail wing, stabilizer, and 

engine system was considered in order to strictly evaluate 

each objective. As the 2.5th shape did not trim, the geometry 

design to trim is the primary objective of this optimization. 

The optimization target was the airfoil shapes of the main 

wing cross section at root, kink, and tip positions, and the 

deflection angle of the stabilizer. This MDE work is explained 

in detail in Chiba et al. (2009).

4.3.1 Objective functions

1) �The minimization of the pressure drag CDp at supersonic 

cruising, which is defined by a Mach number of 1.6, 

altitude of 14 km, and target CL of 0.055. The target CL is 

constant due to the fixed planform. 

2) �The minimization of the intensity of sonic boom Iboom 

at supersonic cruising. This objective function value 

is defined as |∆Pmax| + |∆Pmin| at the location with the 

largest (smallest) peak of sonic-boom signature across 

boom carpet. 

3) �The minimization of structural weight W for a main 

wing. The inboard and outboard wings are respectively 

defined as aluminum and composite materials. The 

minimum wing weight is solved with the fulfillment of 

the strength and flutter requirements. For the inboard 

wing made of aluminum, the thicknesses of skin 

and multi-frames are optimized. In addition, for the 

outboard wing made of composite material, the stacking 

sequence is optimized. These are the combination 

optimizations, and these are the nesting constitution 

for the present MDO. 

4) �The minimization of the difference between the centers 

of pressure and of gravity |xcp − xcg| to trim. “MAC” 

denotes mean aerodynamic chord. The center of 

pressure is calculated as follows. 
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(1)

On the other hand, the center of gravity xcg is computed 

from the aerodynamic center N0 as follows. 

xcg = N0 − const. 

xcg = N0 − const.        

= xref −
∆CMp
 ∆CL

 × MAC − const.     (2) 

where, the constant value const. in Eq. (2) is defined by the results of Navier-Stokes computations in 

advance. It is set on 0.817 m in this study.  

4.3.2 Selection and evaluation of compromise solution from design-exploration results  

The total evolutionary computation of 18 generations was performed using 139 individuals, and 37 non-

dominated solutions were obtained. The concrete presented materials roughly classify into two groups. 
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Fig. 13. Cp distribution of the decided compromise solution. 

The angle of attack of 2.915deg is set to achieve the target CL. 

 

One group comprises information regarding tradeoffs among the objective functions. The other group is 

composed of information concerning the candidates of a compromise solution. This includes the contour 

figure of the Cp distribution at a supersonic cruising condition (shown in Fig. 13), the wing section and Cp 

distribution at root (21.62% spanwise location), kink (63.33%), and tip (99.00%).Moreover, the candidates 

(2)

where, the constant value const. in Eq. (2) is defined by 

the results of Navier-Stokes computations in advance. It is set 

on 0.817 m in this study. 

4.3.2 �Selection and evaluation of compromise solution 
from design-exploration results 

The total evolutionary computation of 18 generations was 

performed using 139 individuals, and 37 non-dominated 

solutions were obtained. The concrete presented materials 

roughly classify into two groups.

One group comprises information regarding tradeoffs 

among the objective functions. The other group is composed 

of information concerning the candidates of a compromise 

solution. This includes the contour figure of the Cp distribution 

at a supersonic cruising condition (shown in Fig. 13), the wing 

section and Cp distribution at root (21.62% spanwise location), 

kink (63.33%), and tip (99.00%).Moreover, the candidates are 

selected from the non-dominated solutions and individuals 

adjacent to them, which indicate the relationship between 

the boom intensity and the trim performance. The boom 

intensity has priority in this study. The trim performance 

provides tradeoffs for all of the other objective functions. The 

individual with complicated manufacturing is excluded as a 

candidate of the compromise solution. The important points 

are: 1) the performance of all objective functions, and 2) the 

possibility for the improvement of the other three objectives 

to maintain boom performance. On the final decision for 
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a compromise solution, the individual with a wing section 

similar to NEXST-1 was selected. That is, the shape of the 

selected compromise solution is more feasible regarding 

aerodynamics and manufacture. The conclusion followed 

that trim performance was improved by the regulation of the 

reflection angle of the stabilizer (the outside range set in the 

present optimization is namely reconsidered). Therefore, a 

weak non-dominated solution was selected as a compromise 

solution. 

Table 3 shows the specification of the compromise solution. 

It is notable that the criteria of the design angle of attack 

and the reflection angle of the stabilizer is the horizontal 

line (longitudinal axis of body) for three views. Thus, the 

reflection angle is defined for the longitudinal axis of the 

body and is independent of the angle of attack. This result 

shows that the trim performance is insufficient. The results 

from ANOVA indicate that the cant angle and the geometry 

of the main wing, which influence trim performance, affect 

several objective functions. However, the reflection angle 

of the stabilizer does not affect any objective function with 

the exception of the trim performance. Since the designed 

reflection angle of the stabilizer can afford to be harder, its 

modification can improve the trim performance. 

Figure 13 shows the Cp distributions on the upper surface 

and on the symmetrical plane. This figure reveals that the 

shock waves occur around the front location of the engine 

and bumps into the upper surface of the main wing. Although 

the shock wave is shielded, the performance of the wing is 

degraded. It is important to design the geometry of the wing 

for the alleviation of this shock wave. At the root location, 

since two shock waves bump into the wing upper surface, 

the increase of the wing thickness provides insufficient lift 

performance and augments the induced drag. On the other 

hand, it reveals the connection between the structural 

weight and the structural requirements. The constraint of the 

thickness at the root is 5% ± 1% chord length. The thickness 

of the compromise solution at the root is 4.4% chord length. 

Its thickness becomes thin with the fulfillment of the 

structural requirements.  The upper surface near the leading 

edge at the kink location is dented. Therefore, the shock 

wave occurred from the front of the engine is mitigated. The 

pressure distribution also indicates the similar effect. This 

hollow component is the key necessary for improving the 

aerodynamic performance. The maximum thickness at the 

kink is 5.4% chord length. The thickness at the kink location 

should be thick in order to provide sufficient aerodynamic 

performance and to fulfill the structural requirements. At 

the tip location, the wing exhibits insufficient aerodynamic 

performance. Since the wing geometry in the vicinity of the 

tip strictly affects the boom intensity indicated by the data-

mining results, the wing tip geometry is evolved to reduce 

the boom intensity. In addition, a strong shock wave occurs 

around the rear part of the fuselage. As this corrupts the rear 

boom intensity, re-consideration is needed. 

The ground pressure signature of the compromise 

solution indicates that both peaks of the front and rear boom 

intensity are weakened because it is not N shape. The data 

mining reveals that three design variables for the main wing 

such as the cant angle for the attachment to the fuselage, 

twisting angle, and the bluntness of the leading edge affects 

the front boom. It similarly reveals that the design variable 

as the reflection angle of the stabilizer affects the rear 

boom. In particular, the inboard wing with a camber on the 

trailing edge improves the rear boom intensity. The strong 

expansion wave from the trailing edge extinguishes the 

positive pressure from the lifting surface of the rear fuselage. 

Moreover, the large negative reflection angle of the stabilizer 

causes strong rear boom intensity due to a similar reason. 

However, the negative reflection angle must be trimmed. The 

reflection angle of the stabilizer is essential in the present 
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Fig. 13. Cp distribution of the decided compromise solution.
               The angle of attack of 2.915deg is set to achieve the target CL.

Table 3. The specification of the selected compromise solution

CDp 0.02092
Iboom 0.9301 psf
W 341.3 kg

|xcp-xcg| 1.065 m
Outboard wing 8 plies * 4 sets
Inboard wing skin: 9.0 mm, multi frames: 8.9 mm

Design angle of attack 2.915 deg
Reflection angle of stabilizer -1.608 deg
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design problem.

The two multidisciplinary design explorations for the silent 

supersonic technology demonstrator were demonstrated. 

The process of this approach provided tradeoffs among 

the defined design requirements, i.e., objective functions. 

Furthermore, the important design variables were evident, 

and the correlations between the design requirements 

and the variables were also shown. The obtained design 

information was produced for the designers, and it was 

employed as the resource of decision making in order to 

determine a compromise solution. The knowledge was 

produced for future design.

5.  Performance Studies for Centrifugal Dif-
fusers

This study discusses further applicability of data mining 

techniques (ANOVA and SOM) to a fundamental topic in 

engineering research, i.e., the construction of performance 

maps that represent relations between performance and 

geometry parameters. Performance maps are often used to 

make a first decision on preliminary specification of a product 

to be designed. Therefore, performance map construction is 

an essential area in the field of engineering.

This study was performed using a centrifugal diffuser as 

the target product for performance map construction. The 

centrifugal diffuser is one a component commonly used in 

various household appliances (air cleaners, vacuum cleaners, 

etc.) as well as heavy industrial machineries (aircraft engines, 

marine engines, etc.). Conventionally, diffuser performance 

has been evaluated based on the quasi-one-dimensional 

nozzle theory. Figure 14 illustrates the performance map 

for a linear nozzle with a rectangular cross-section, which 

mimics the original map in Ikui (1988). This map represents 

the contour lines of the pressure recovery coefficient Cpr 

in the nozzle throat to exit section, which are plotted on 

the plane taking two nozzle geometry parameters into 

consideration (aspect ratio λ and expansion ratio ε). It reveals 

the Cpr vs. λ and Cpr vs. ε relationships, which are suitable for 

diffusers with flat blades. However, actual diffusers mostly 

consist of cambered blades, and actual diffuser performance 

seems to be affected by the blade geometries ignored in the 

quasi-one-dimensional nozzle theory (blade camber, blade 

attack angle to flow, etc.). In addition, diffuser hub and 

case geometries may also affect diffuser performance (e.g., 

Kitadume et al. (2007) discuss the case geometry effects 

based on experiments). A further consideration is that actual 

diffusers should ensure good overall performance, i.e., air 

pressure must be recovered not only in the nozzle section 

but also upstream and downstream of the nozzle. Thus, 

the performance map should be constructed in a higher-

dimensional form, which allows comprehension of the 

various relationships among many performance parameters 

and many geometry parameters. Therefore, the centrifugal 

diffuser is an appropriate target product to validate the data 

mining techniques for high-dimensional performance map 

construction, as well as to provide useful knowledge about 

the relations between diffuser performance and geometries.

The performance studies for centrifugal diffusers have 

also been reported by other researchers. Krain (1981) 

experimentally measured the internal flow field development 

within an impeller-diffuser-interacted stage by means of 

laser velocimeters.  Simon et al. (1987)  experimentally 

investigated simultaneous adjustments of inlet guide blades 

and diffuser blades in centrifugal compressors for the 

improvements in both performance and operating range. 

Paxson and Skoch (1998) proposed and demonstrated 

a wave augmented diffuser that reduces the loss caused 

by the discharge flow turning from a radial or tangential 

direction to an axial direction by numerical simulations. 

However, diffuser geometries considered in those studies 

were limited to flat blades (Krain, 1981; Paxson and Skoch, 

1998) or cambered blades parameterized simply by the 

angle of attack (Simon et al.,1987). Although Kim et al. (2009) 

compared and discussed the performance among three 

different diffusers (wedge, symmetric airfoil, and cambered 

airfoil) by numerical simulations, it still was lacking in the 

varieties of diffuser geometries that could be considered for 

performance map construction. In a recent study conducted 

by Abdelwahab and Gerber (2008), a three-dimensional 

aerofoil diffuser geometry, which allows spanwise variations 

in solidity, stagger, and lean angles, was developed for 

industrial centrifugal compressor stages based on both 
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numerical and experimental analyses. But its performance 

tendencies have not been explained in a high-dimensional 

form of geometry parameters.

5.1 �Geometry and performance definition of cen-
trifugal diffusers

Figure 15 shows the centrifugal diffuser geometries 

considered in this study. This diffuser has 13 similar cambered 

blades of constant thickness. The leadi ng and trailing edges 

of these blades are linear and parallel to the diffuser center 

axis. The diffuser geometries are defined by the blade size (D3 

and D4 shown in Fig. 15(a)), the case size (D5 and Dex shown 

in Fig. 15(a)), and the blade camber angle (β3 and β4 shown 

in Fig. 15(b), where a linear profile is assumed between the 

leading and trailing edges). For simplicity, this study fixed D3 

and generated 100 diffusers with different shapes through 

the Latin hypercube sampling (LHS) (McKay et al., 1979), 

in which the values of D4/D3, D5/D4, Dex/D5, β3, and β4 were 

treated as five independent random variables for geometry 

definition of the diffuser. As described in the next section, 

this study implemented the data mining for performance 

map construction based on 12 geometry parameters in the 

nozzle part (ht, he, lp, ls, lavg, θ, α, κp, κs, κavg, ε, and λ shown in 

Fig. 15(c)) instead of the five random variables considered 

in LHS.

The centrifugal diffuser should work so efficiently that it 

can to decelerate internal air flow without pressure loss. In 

general, such performance can be quantified by a pressure 

recovery coefficient such that a larger value of the coefficient 

leads to more efficient air deceleration. For general 

discussions on diffuser performance, this study focused on 

two pressure recovery coefficients in different sections as 

performance functions: Cpr in-3 for inlet to blade entrance 

section and Cpr in-4 for inlet to blade exit section. This study 

was performed to evaluate the values of Cpr in-3 and Cpr in-4, 

which were obtained at a constant mass flow rate, from the 

CFD simulations for 100 different diffusers generated by LHS. 

The present CFD simulations solved the Reynolds-averaged 

Navier-Stokes (RANS) equations for compressible air, which 

were coupled with the high-Reynolds-number k-ε turbulence 

model, using the commercial software STAR-CDTM (http://

www.cd-adapco.com. accessed April 1, 2009). Consequently, 

in the present implementation, the performance values 

were successfully obtained for 85 diffusers, while the CFD 

simulations fell into divergence for the rest.

5.2 Data mining results and discussion

Figure 16 shows the data mining results obtained by 

ANOVA. Figures 16(a) and (b) show the breakdowns of the 

main effects and the interaction effects for each performance 

function. For Cpr in-3, only the variable ht (throat width) has a 

major contribution. For Cpr in-4, although various contributions 

of ht, κp (pressure side curvature), ε (expansion ratio), and λ 

(aspect ratio) were revealed, a combination of two variables, 

ht and κp, has the largest contribution. Figures 16(c) and 

(d) shows the functional-formed main and interaction 

effects of the variables that showed large contributions in 

Figs. 16(a) and (b), respectively. Figure 16(c) indicates that 

smaller ht leads to larger Cpr in-3. Figure 16(d) indicates that a 

combination of smaller ht and larger κp, and a combination of 

larger ht and smaller κp lead to larger Cpr in-4.

Figures 17 shows the SOM color images, each of which 

is colored according to performance or nozzle geometry 

parameters (only four nozzle geometries with large 
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κavg, ε, and λ shown in Fig. 15(c)) instead of the five random variables considered in LHS. 
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Fig. 15. Centrifugal diffuser geometries. 
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loss. In general, such performance can be quantified by a pressure recovery coefficient such that a larger value of 
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blade entrance section and Cpr in-4 for inlet to blade exit section. This study was performed to evaluate the values of 

Cpr in-3 and Cpr in-4, which were obtained at a constant mass flow rate, from the CFD simulations for 100 different 

diffusers generated by LHS. The present CFD simulations solved the Reynolds-averaged Navier-Stokes (RANS) 

equations for compressible air, which were coupled with the high-Reynolds-number k-ε turbulence model, using 

the commercial software STAR-CDTM (http://www.cd-adapco.com. accessed April 1, 2009). Consequently, in the 

present implementation, the performance values were successfully obtained for 85 diffusers, while the CFD 

simulations fell into divergence for the rest. 

 
5.2 Data mining results and discussion 

Fig. 16 shows the data mining results obtained by ANOVA. Fig. 16(a) and (b) show the breakdowns of the 
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Fig. 15. Centrifugal diffuser geometries.
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main effects and the interaction effects for each performance function. For Cpr in-3, only the variable ht (throat 

width) has a major contribution. For Cpr in-4, although various contributions of ht, κp (pressure side curvature), ε 

(expansion ratio), and λ (aspect ratio) were revealed, a combination of two variables, ht and κp, has the largest 

contribution. Fig. 16(c) and (d) shows the functional-formed main and interaction effects of the variables that 

showed large contributions in Fig. 16(a) and (b), respectively. Fig. 16(c) indicates that smaller ht leads to larger 

Cpr in-3. Fig. 16(d) indicates that a combination of smaller ht and larger κp, and a combination of larger ht and 

smaller κp lead to larger Cpr in-4. 

 
 

 
(a)  Breakdowns of main and interaction effects on Cpr in-3 

 
(b)  Breakdowns of main and interaction effects on Cpr in-4 

 
(c)  Functional main effect of ht on Cpr in-3 

 
(d)  Functional interaction effect of ht vs. κp on Cpr in-4 

Fig. 16. ANOVA data mining results. 
 

Fig. 17 shows the SOM color images, each of which is colored according to performance or nozzle geometry 

parameters (only four nozzle geometries with large contributions are considered here). Cpr in-3 becomes large in the 

left area on the SOM (denoted as “A” in Fig. 17(a)), while ht becomes small in this area. This relation is consistent 

with the main effect results given by the ANOVA, as shown in Fig. 16(c). Conversely, Cpr in-4 becomes large in the 

upper area on the SOM, which is denoted as a combination of “B” and “C” in Fig. 17(b). Area B has small ht and 

large κp, while area C has large ht and small κp. Therefore, each of areas B and C is also consistent with the 

main effects and the interaction effects for each performance function. For Cpr in-3, only the variable ht (throat 

width) has a major contribution. For Cpr in-4, although various contributions of ht, κp (pressure side curvature), ε 

(expansion ratio), and λ (aspect ratio) were revealed, a combination of two variables, ht and κp, has the largest 

contribution. Fig. 16(c) and (d) shows the functional-formed main and interaction effects of the variables that 

showed large contributions in Fig. 16(a) and (b), respectively. Fig. 16(c) indicates that smaller ht leads to larger 

Cpr in-3. Fig. 16(d) indicates that a combination of smaller ht and larger κp, and a combination of larger ht and 

smaller κp lead to larger Cpr in-4. 
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showed large contributions in Fig. 16(a) and (b), respectively. Fig. 16(c) indicates that smaller ht leads to larger 
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smaller κp lead to larger Cpr in-4. 
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Fig. 16. ANOVA data mining results. 
 

Fig. 17 shows the SOM color images, each of which is colored according to performance or nozzle geometry 

parameters (only four nozzle geometries with large contributions are considered here). Cpr in-3 becomes large in the 

left area on the SOM (denoted as “A” in Fig. 17(a)), while ht becomes small in this area. This relation is consistent 

with the main effect results given by the ANOVA, as shown in Fig. 16(c). Conversely, Cpr in-4 becomes large in the 
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large κp, while area C has large ht and small κp. Therefore, each of areas B and C is also consistent with the 
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main effects and the interaction effects for each performance function. For Cpr in-3, only the variable ht (throat 

width) has a major contribution. For Cpr in-4, although various contributions of ht, κp (pressure side curvature), ε 

(expansion ratio), and λ (aspect ratio) were revealed, a combination of two variables, ht and κp, has the largest 

contribution. Fig. 16(c) and (d) shows the functional-formed main and interaction effects of the variables that 

showed large contributions in Fig. 16(a) and (b), respectively. Fig. 16(c) indicates that smaller ht leads to larger 

Cpr in-3. Fig. 16(d) indicates that a combination of smaller ht and larger κp, and a combination of larger ht and 

smaller κp lead to larger Cpr in-4. 

 
 

 
(a)  Breakdowns of main and interaction effects on Cpr in-3 

 
(b)  Breakdowns of main and interaction effects on Cpr in-4 

 
(c)  Functional main effect of ht on Cpr in-3 

 
(d)  Functional interaction effect of ht vs. κp on Cpr in-4 

Fig. 16. ANOVA data mining results. 
 

Fig. 17 shows the SOM color images, each of which is colored according to performance or nozzle geometry 

parameters (only four nozzle geometries with large contributions are considered here). Cpr in-3 becomes large in the 
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with the main effect results given by the ANOVA, as shown in Fig. 16(c). Conversely, Cpr in-4 becomes large in the 

upper area on the SOM, which is denoted as a combination of “B” and “C” in Fig. 17(b). Area B has small ht and 

large κp, while area C has large ht and small κp. Therefore, each of areas B and C is also consistent with the 

(c) Functional main effect of ht on Cpr in-3

main effects and the interaction effects for each performance function. For Cpr in-3, only the variable ht (throat 

width) has a major contribution. For Cpr in-4, although various contributions of ht, κp (pressure side curvature), ε 

(expansion ratio), and λ (aspect ratio) were revealed, a combination of two variables, ht and κp, has the largest 

contribution. Fig. 16(c) and (d) shows the functional-formed main and interaction effects of the variables that 

showed large contributions in Fig. 16(a) and (b), respectively. Fig. 16(c) indicates that smaller ht leads to larger 

Cpr in-3. Fig. 16(d) indicates that a combination of smaller ht and larger κp, and a combination of larger ht and 

smaller κp lead to larger Cpr in-4. 
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Fig. 17 shows the SOM color images, each of which is colored according to performance or nozzle geometry 

parameters (only four nozzle geometries with large contributions are considered here). Cpr in-3 becomes large in the 

left area on the SOM (denoted as “A” in Fig. 17(a)), while ht becomes small in this area. This relation is consistent 

with the main effect results given by the ANOVA, as shown in Fig. 16(c). Conversely, Cpr in-4 becomes large in the 

upper area on the SOM, which is denoted as a combination of “B” and “C” in Fig. 17(b). Area B has small ht and 

large κp, while area C has large ht and small κp. Therefore, each of areas B and C is also consistent with the 

(d) Functional interaction effect of ht vs. κp on Cpr in-4

Fig. 16. ANOVA data mining results.

interaction effect results from the ANOVA in Fig. 16(d). Furthermore, other higher-order interaction effects can 

also be determined by comparing the color patterns of all the SOM images. Thus, the SOM color images can serve 

as the high-dimensional performance maps themselves. 
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(f)  λ 

Fig. 17. Self-organizing map data mining results. 
 

Among the results obtained in the present data mining, the interaction effect of ht and κp is a remarkable issue 

to discuss diffuser performance because κp is not considered in the quasi-one-dimensional nozzle theory (Fig. 14). 

The present results specify a large effect of the blade curvature on the pressure recovery performance in the 

diffuser with a curved nozzle. Therefore, this study confirmed that data mining techniques can be used to discover 

new engineering knowledge, and is suitable and applicable to performance map construction with high 

dimensions. 
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The present results specify a large effect of the blade curvature on the pressure recovery performance in the 

diffuser with a curved nozzle. Therefore, this study confirmed that data mining techniques can be used to discover 

new engineering knowledge, and is suitable and applicable to performance map construction with high 
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new engineering knowledge, and is suitable and applicable to performance map construction with high 
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The present results specify a large effect of the blade curvature on the pressure recovery performance in the 

diffuser with a curved nozzle. Therefore, this study confirmed that data mining techniques can be used to discover 

new engineering knowledge, and is suitable and applicable to performance map construction with high 
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contributions are considered here). Cpr in-3 becomes large in 

the left area on the SOM (denoted as “A” in Fig. 17(a)), while 

ht becomes small in this area. This relation is consistent with 

the main effect results given by the ANOVA, as shown in Fig. 

16(c). Conversely, Cpr in-4 becomes large in the upper area 

on the SOM, which is denoted as a combination of “B” and 

“C” in Fig. 17(b). Area B has small ht and large κp, while area 

C has large ht and small κp. Therefore, each of areas B and 

C is also consistent with the interaction effect results from 

the ANOVA in Fig. 16(d). Furthermore, other higher-order 

interaction effects can also be determined by comparing the 

color patterns of all the SOM images. Thus, the SOM color 

images can serve as the high-dimensional performance 

maps themselves.

Among the results obtained in the present data mining, 

the interaction effect of ht and κp is a remarkable issue to 

discuss diffuser performance because κp is not considered 

in the quasi-one-dimensional nozzle theory (Fig. 14). The 

present results specify a large effect of the blade curvature 

on the pressure recovery performance in the diffuser with 

a curved nozzle. Therefore, this study confirmed that data 

mining techniques can be used to discover new engineering 

knowledge, and is suitable and applicable to performance 

map construction with high dimensions.

6. Conclusions

This article reviewed existing visual data mining 

techniques that had been formally applied to engineering 

problems. We discussed three applications of MODE: MDO 

for the regional-jet wing, the S3TD and centrifugal diffusers. 

With the given set of design parameters, ANOVA was first 

applied. The results indicated which design parameters were 

influential. Next, visual data mining for the design space 

was performed using SOM. SOM divided the design space 

into clusters with specific design features. SOM obtained 

from the solutions uniformly sampled from the design space 

revealed that the sweet spot could exist. By comparing the 

SOM colored by influential design parameters found by 

ANOVA and the objective functions, several design rules 

were extracted. Finally, sufficient conditions belonging to 

the sweet spot cluster were extracted by rough set theory. 

Similarly sufficient conditions to improve each design 

objectives were extracted. The use of data mining will provide 

more knowledge about the design space and extract more 

information from the optimization process.
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