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Abstract

Active aeroelastic control is an emerging technology aimed at providing solutions to structural systems that under the action 

of aerodynamic loads are prone to instability and catastrophic failures, and to oscillations that can yield structural failure by 

fatigue. The purpose of the aeroelastic control among others is to alleviate and even suppress the vibrations appearing in the 

flight vehicle subcritical flight regimes, to expand its flight envelope by increasing the flutter speed, and to enhance the post-

flutter behavior usually characterized by the presence of limit cycle oscillations. Recently adaptive and robust control strategies 

have demonstrated their superiority to classical feedback strategies. This review paper discusses the latest development on 

the topic by the authors. First, the available control techniques with focus on adaptive control schemes are reviewed, then the 

attention is focused on the advanced single-input and multi-input multi-output adaptive feedback control strategies developed 

for lifting surfaces operating at subsonic and supersonic flight speeds. A number of concepts involving various adaptive control 

methodologies, as well as results obtained with such controls are presented. Emphasis is placed on theoretical and numerical 

results obtained with the various control strategies.

Key words:  Nonlinear active aeroelastic control, MIMO adaptive, robust and neural control, feedback and feedforward control 
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Nomenclature

α, h = Pitching (rad) and plunging (m) displacements

ξ = Dimensionless plunging displacement, ξ = h/b
β = Trailing edge control surface (TECS) deflection (rad)

γ = Leading edge control surface (LECS) deflection (rad)

mW, mT = Mass of wing and pitch-plunge system (kg)

m = Airfoil mass per unit span (kg/m)

Iα = Inertia of wing section about elastic axis (kg∙m²)

kh, kα = Structural spring stiffness polynomials in plunging (N/m) and pitching (N∙m)

ωh, ωα = Uncoupled frequency in plunging (rad/s), ωh =   kh/m, and pitching (rad/s), ωα =   kα/Iα

ch, cα = Structural damping coefficients in plunging (kg/s) and pitching (kg∙m2/s)

a, b, s = Mid-chord to elastic axis dimensionless distance, semi-chord (m) and wing section span (m)

Clα, Cmα = Rate of change of lift, moment w.r.t. angle-of-attack (1/rad)

cmα-eff = Rate of change of effective moment w.r.t. angle-of-attack (1/rad)
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1. Introduction

The development and application of passive and active 

feedback control are current focus of research for aerospace, 

civil, and mechanical structural systems. Aircraft flight 

vehicles, long span bridges, wind turbines, skyscrapers, 

and Micro-Electro-Mechanical Systems (MEMS) are 

just a few examples of systems where passive and active 

feedback control is and will play a critical role in these 

technology development. Particularly, it’s well known that 

the implementation of active feedback control design aimed 

to solve the aeroelastic instabilities problem, which can yield 

instantaneous catastrophic failure, e.g., flutter, or structural 

fatigue failure, due to persistent oscillations, e.g., limit 

cycle oscillations (LCOs) (Librescu and Marzocca, 2005), 

are emerging aeronautical and aerospace fight vehicles 

technologies. Since above dynamic aeroelastic effects are 

very likely to impose critical constraints on the flight vehicle 

performance, passive or active feedback control strategies 

need to be applied in order to safely perform maneuvers in the 

proximity of the flight envelope boundary. Although one can 

postpone the aeroelastic instabilities to provide an expansion 

of the flight envelope via increasing the stiffness of the wing 

section, the corresponding by-product of adding weight on 

the wing indeed decreased the overall performance of the 

flight vehicle over the entire flight envelope. Instead of simply 

increasing the stiffness of the wing section, active suppression 

mechanisms could yield improved performance with many 

successful implementation examples on suppressing 

flutter, divergence, control reversal, and detrimental wing 

oscillations, through feedback to control surfaces. An early 

comprehensive review of active control algorithms, wind-

tunnel experiments, and flight experiences associated with 

feedback control and aeroelasticity was presented in Noor 

and Venneri (1992). Lyons et al. (1973) presented a theoretical 

study of flutter suppression under full-state feedback by 

utilizing Kalman estimator. Later, more complex higher-

order aeroelastic models were subsequently developed. A 

methodology for designing optimal feedback control laws 

has been developed and implemented to active aeroelastic 

vibration suppression problems by Mukhopadhyay et 

al. (1980). Based on Linear Quadratic Gaussian (LQG) 

methodology, Gangsaas et al. (1981) proposed a gust load 

alleviation method and flutter suppression control laws. In 

both control strategies, output feedback control was used 

while the unmeasurable states were described by estimators. 

Karpel (1982) developed a partial-state feedback control law 

with pole placement techniques while Horikawa and Dowell 

(1979) adopted proportional gain feedback methods to 

achieve flutter suppression and load alleviation by directly 

feeding one of four variables back to the control surface. 

For the experimental results on the flutter suppression, by 

utilizing a simple but efficient proportional gain feedback 

control laws derived from root locus plots, Heeg (1993) has 

demonstrated that the flutter velocity of a bending-torsion 

spring mounted small wing model can be increased by up to 

20%. Results in Lin (1993) and Lazarus (1992) demonstrated 

that the proposed full-state feedback active control 

mechanism with an estimator was efficient by using a typical 

section with leading- and trailing-edge flaps. The disturbance 

rejection, gust alleviation, and flutter suppression were also 

demonstrated in the experimental investigations.

Although aforementioned results have shown the 

successful applications of the linear control theory in 

the aeroelastic instability problem, the need for more 

sophisticated aeroservoelastic models and control strategies 

stem from the fact that aircraft shows complex dynamical 

behaviors due to the presence of system nonlinearities under 

C1β, Cmβ = Rate of change of lift, moment w.r.t. TECS deflections (1/rad)

Cmβ-eff = Rate of change of effective moment w.r.t. TECS deflections (1/rad)

C1γ, Cmy = Rate of change of lift, moment w.r.t. LECS deflections (1/rad)

Cmy-eff = Rate of change of effective moment w.r.t. LECS deflections (1/rad)

CuL, CuM = Lift and pitching moment coefficients (1/rad) for subsonic unsteady model

xα = Dimensionless static unbalance about the elastic axis

rα = Dimensionless radius of gyration

U∞, ρ∞ = Freestream velocity (m/s) and air density (kg/m³)

L, M = Aerodynamic lift (N) and moment (N∙m)

Lg, Mg = Aerodynamic lift (N) and moment (N∙m) due to external disturbance for steady subsonic model

Pu, Qu = Aerodynamic lift (N) and moment (N∙m) for unsteady subsonic model

t, τ = Time variable (s) and dimensionless time variable, τ = U∞t/b
μ = Mass ratio for supersonic model, μ = m/4ρ∞b2; subsonic, μ = m/πρ∞b2
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complex flight conditions. Recently, a significant amount of 

research in advancing methods for nonlinear aeroelasticity 

have been carried out, especially to deal with the softening 

or hardening structural stiffness effects and aerodynamic 

nonlinearities in the transonic or stall region. Dowell and 

Clark’s book (2004) shed some lights on the importance 

of considering nonlinearities in the aeroelastic analysis. 

Specifically, hardening structural nonlinearities due to 

the presence of freeplay gave rise to nonlinear stiffness, 

especially in torsion. Usually this type of nonlinearity could 

yield a pronounced effect and lead to a limited amplitude 

aeroelastic behavior, which was not catastrophic but 

may finally lead to fatigue problems on the wing section 

(Breitbach, 1978; Eastep and Olsen, 1980; Edwards et al., 

1983; Strganac and Mook, 1990; Yang and Zhao, 1988).

A review of recent work on the active control of aircraft 

wing with nonlinearity can be found in (Mukhopadhyay, 

2000a, b, 2001). Several control algorithms have been tested 

on a typical wing section model using single control surface 

and examined experimentally (Behal et al., 2006a; Ko et al., 

1997, 1998, 1999; Lee and Singh, 2007, 2009; Mukhopadhyay, 

1992; Singh and Wang, 2002; Strganac et al., 2000; Vipperman 

et al., 1998; Wazak and Srinathkumar, 1992; Xing and Singh, 

2000; Zhang and Soffker, 2009; Zhang and Singh, 2001), 

by using traditional root locus and Nyquist method, LQG 

method, nonlinear control theory as well as robust and 

adaptive control strategies. In general, the pitching angle 

(α) was considered as the primary output variable aimed 

to regulate to zero. Firstly, the nonlinearities introduced by 

the torsional stiffness were canceled out using adaptation, 

leading to a feedback linearized system. Secondly, full-state 

feedback control aimed to enhance the aeroelastic response 

through classical linear methods such as LQR or pole 

placement was usually adopted. In Singh and Wang (2002), 

an adaptive backstepping design technique was carried out 

to control the pitch angle with only output measurements. 

In Behal et al. (2006a), an adaptive control strategy was 

proposed using only the feedback for the pitching variable. 

Its performance toward suppressing flutter and LCOs as well 

as reducing the aeroelastic response in the subcritical flight 

speed regime was also demonstrated. Lee and Singh (2007) 

designed a robust control law for the global regulation of a 2 

Degrees Of Freedom (DOF) aeroelastic system. The model 

had polynomial type structural nonlinearity and only the 

pitch angle was measured for feedback. It was also assumed 

that all the system parameters were unknown to the designer 

while the bounds of uncertainties were assumed to be known 

in the control design. Another robust control strategy for 

active flutter suppression of a nonlinear 2D wing-flap system 

was introduced in Zhang and Soffker (2009). An optimized 

state feedback robust stabilizer with a proportional-integral 

observer (PI-Observer) was designed where the PI-Observer 

was adopted to estimate both the system states and the 

bounds of the nonlinearities in the aeroelastic system. Based 

on the immersion and invariance approach, the adaptive 

control design problem for aeroelastic wing sections with 

structural nonlinearity was solved in Lee and Singh (2009).

Recently, a novel adaptive control scheme was presented 

(Behal et al., 2006b; Gujjula et al., 2005; Platanitis and 

Strganac, 2004; Rao et al., 2006; Reddy et al., 2007), which 

efficiently improved the performance through an extension 

to a wing section with two control surfaces. An adaptive full-

state feedback control law was provided in Platanitis and 

Strganac (2004). However, only an inversion of a nominal 

input gain matrix was used to decouple the control inputs 

without considering the uncertainty. In Gujjula et al. (2005), 

adaptive and Radial Basis Function (RBF) neural network 

controllers were provided in order to compensate for the 

system nonlinearity and compared via simulation. Note that 

a projection operator was adopted to assure that the input 

gain matrix estimate remains invertible. The adaptive control 

design problem for a non-linear 2D wing-flap system in 

supersonic/hypersonic flight speed was addressed in Rao et 

al. (2006). Instead of using projection introduced in Gujjula 

et al. (2005), an ST decomposition of the input gain matrix 

was used in Behal et al. (2006b) to design a singularity free 

controller which was applied on both leading (LECS) and 

trailing edge (TECS) control surfaces but requiring full-state 

feedback with a filtered tracking error. Here, S is a symmetric, 

positive matrix and T is an upper triangular matrix with its 

diagonal elements belonging to the set {+1, -1}. In Reddy et 

al. (2007), an output feedback adaptive control algorithm 

was proposed by utilizing backstepping technique while an 

SDU decomposition (symmetric-diagonal-upper triangular 

factorization) was applied on the input gain matrix to design 

a singular free controller. The aforementioned results under 

control with both TECS and LECS demonstrated better 

dynamic performance than using single control surface. In 

Wang et al. (2010), a modular output feedback controller was 

proposed to suppress aeroelastic vibrations on unmodeled 

nonlinear wing section subject to a variety of external 

disturbance. For details on backstepping design with SDU 

factorization, the reader is referred to Tao (2003).

In this review paper, the latest development on the adaptive 

control design for subsonic and supersonic aeroelastic 

wing section model with one and two control surfaces are 

presented based on authors’ previous work (Behal et al., 

2006a, b; Rao et al., 2006; Reddy et al., 2007; Wang et al., 

2010). In Behal et al. (2006a), control has been designed for a 

wing section model with only TECS and working at subsonic 
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flight speed. For the supersonic/hypersonic wing section 

model, the reader is referred to Rao et al. (2006). Later, three 

control strategies (Behal et al., 2006b; Reddy et al., 2007; 

Wang et al., 2010) were given for the wing section model 

with both TECS and LECS at subsonic flight speed. Adaptive 

control, backstepping adaptive control, and neural network 

control have been implemented given different assumptions 

on this subsonic model while their performances were 

demonstrated in the following sections.

The rest of this paper is organized as follows. In Section 2, 

subsonic and supersonic system dynamics are introduced as 

well as gust and other disturbance model. In Section 3, several 

feedback and feedforward control designs are represented 

based on our previous paper. In Section 4, simulation results 

to confirm the performance of the proposed controllers are 

demonstrated. Conclusion is provided in Section 5.

2. Mathematical Modeling

2.1 Aeroelastic governing equation

A general 2-DOF subsonic pitch-plunge wing section 

model is considered in this paper. This aeroelastic governing 

equation is developed from previous models (Block and 

Strganac, 1998; Edwards et al., 1983; Platanitis and Strganac, 

2004).

 6
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where kh,i and kα,i are explicitly defined in Section simulation. The aerodynamic lift L and moment M will be 

given in the following sections with respect to different aerodynamic models while Lg and Mg are the 

aerodynamic loads produced by an added gust load. 

The wing section model in Eq. (1) with two control surfaces is given in Fig. 1, which can also be used to 

represent the model with only trailing edge control surface by assuming the leading edge control surface is 

rigidly mounted to the main surface (γ≡0 rad).  
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2.3 Unsteady subsonic aerodynamic model 

As extension to include an unsteady subsonic aerodynamic model for the 2-DOF aeroelastic wing section 
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and CuM(t) are the lift and pitching moment coefficients that can be expressed in the following forms  
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where /M U a∞ ∞=  is the undisturbed flight Mach number and a∞ is the speed of the sound.  2/ 1M Mλ = −  
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where /M U a∞ ∞=  is the undisturbed flight Mach number and a∞ is the speed of the sound.  2/ 1M Mλ = −  

(7)
Fig. 1.  Two-dimensional subsonic wing section aeroelastic model 

with both leading- and trailing-edge control surfaces.
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where τ=U∞t/b is dimensionless time variable, ψu1, ψu2, εu1, 

and εu2 are the Wagner’s constants. Note that Eqs. (5) and (6) 
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aerodynamic formulations. However, following Ko et al. 

(1997), the control design for the model with extension to 
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where /M U a∞ ∞=  is the undisturbed flight Mach number and a∞ is the speed of the sound.  2/ 1M Mλ = −  

(8)

where M−=U∞ /a∞ is the undisturbed flight Mach number and 

a∞ is the speed of the sound. λ=M−/ M−2-1 enables one to 

extend the validity of the PTA to the entire low supersonic-

hypersonic flight speed regime. γ− is the isentropic gas 

coefficient, (γ−=1.4 for dry air). Also note that xEA=bx0 while 

x0 and x1 represent the dimensionless locations of the elastic 

axis and of the torsional spring of the flap from the leading-

edge respectively.

2.5 Gust and other disturbance

Based on Marzocca et al. (2001), the aerodynamic loads 

due to the bounded external disturbance can be expressed 

as follows
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disturbances. Here we note that the triangular gust examined in this paper is quite similar to the classical 1-

cosine gust-type function since both of them can be classified as ephemeral disturbances. Meanwhile, our 
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Herein, 2 1Uβ β∞= ∈ℜ  is an auxiliary control input, ( ) 4
1 t ∈ℜx is a new vector of system states,  1
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where 
1, iθ ∀ 2,3, 4i =  are constants. 4

1 1( )y ∈ℜΦ  in Eq. (14) is a smooth vector field that can be linearly 

parameterized as follows 
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where 1, 0
1

p∈ℜγ  is a vector of constant unknowns while γ1,j denotes the jth element in γ1, ( ) 1, 04
1

p×⋅ ∈ℜW  is a 

measurable, nonlinear regression matrix while the notation ( ) 4
1, j ⋅ ∈ℜ ∀W 1, 01,...,j p=  denotes the jth column 

of the regression matrix ( )1 ⋅W . The expressions of γ1 depends on the choice of pitch spring nonlinearity 

polynomial kα(α), see e.g. (Behal et al., 2006a). Also note that the proposed control strategy in this section is 

based on the assumption that the system of Eq. (14) is minimum phase. 

The control algorithm designed in this section aims to drive the pitch angle α to zero by using y1 = α as the 

only measurement available. Thus, compensation is needed for the remaining states via use of state estimators. 

The pitch angle setpoint error ( ) 1
1,1e t ∈ℜ  and state estimation error ( ) 4

1 t ∈ℜx%  are defined as follows 

1,1 1 1, 1 1 1ˆ,de y y= − x x x% = −                             (17) 

where ( ) 4
1ˆ t ∈ℜx  is a state estimate that is yet to be designed. 1

1, dy ∈ℜ  is the reference output. Based on the 
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is a new vector of system states, y1∈R1 is the output variable, 

A1∈R4×4 and B1∈R4 are explicitly defined as follows
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y1,d∈R1 is the reference output. Based on the assumption 

that the model parameters are unknown, the parameter 

estimation error signals σ1,0(t)∈R p1,1 and σ1,1(t)∈R p1,2 can be 

defined as follows
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dynamic estimates for σ1,0 and σ1,1, respectively, and will be designed later. Following the work of Zeng and 

Singh (1998), a bank of filters can be designed as 
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where 
1, iλ ∀ 2,3, 4i =  denotes the standard basis vectors and 
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T= −A A K C  is Hurwitz by choosing gain 

vector 
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By taking the derivative of 
1x%  given in Eq. (17) and substituting for the dynamics of Eqs. (14) and (20), the 

following exponentially stable estimation error system can be obtained 
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υ1,2,i denotes the ith element in υ1,2 given in Eq. (19). Also note that υ1,2,2d can be given as follows 

1, 2, 2 1,1 1, 0ˆT
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where 
1, 0σ̂  and ω1,1(t) denote, respectively, a vector of unknown constants and a measurable regression vector, 

explicitly defined in Behal et al. (2006a). The dynamic adaptive update law for 
1, 0σ̂  is selected as follows 

( )
.

1, 0 1, 2 1,1 1,1ˆ .sign eθ=σ ω                                 (23) 

The next step involves the design of the actual control input ( )tβ  which is reachable through backstepping 

( )
2

1, 2, 2
22 1, 2 22 1, 2 1, 2,3 1, 2 1, 2,1 1, 2, 2 1, 2 1,1

1

ˆ .d T
dmt c e d e k

y
υ
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= − − − + + −⎜ ⎟∂⎝ ⎠
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In the above equation, ( ) 1
1, 2, 2dm tυ ∈ℜ&  denotes the measurable component that is matched with the control input 

(20)

By taking the derivative of x̃1 given in Eq. (17) and 

substituting for the dynamics of Eqs. (14) and (20), the 

following exponentially stable estimation error system can 

be obtained
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assumption that the model parameters are unknown, the parameter estimation error signals  ( ) 1,1
1, 0

pt ∈ℜ%σ  and 

( ) 1, 2
1,1

pt ∈ℜ%σ  can be defined as follows 

1, 0 1, 0 1, 0 1,1 1,1 1,1ˆ ˆ,= − = −% %σ σ σ σ σ σ                           (18) 

where 1,1
1, 0

p∈ℜσ  and 1, 2
1,1

p∈ℜσ  are unknown constant vectors. ( ) 1, 1
1, 0ˆ pt ∈ℜσ and  ( ) 1, 2

1,1ˆ pt ∈ℜσ  are the 

dynamic estimates for σ1,0 and σ1,1, respectively, and will be designed later. Following the work of Zeng and 

Singh (1998), a bank of filters can be designed as 
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( ),
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where 
1, iλ ∀ 2,3, 4i =  denotes the standard basis vectors and 

1, 0 1 1 1
T= −A A K C  is Hurwitz by choosing gain 

vector 
1K  properly. 4

1, j ∈ℜζ 1, 00,...,j p∀ =  and 4
1, i ∈ℜυ ∀ 2,3,4i =  are filtered variables. Given Eq. (19), 

an immeasurable state estimate ( )1ˆ tx  can be patched together as follows 

1, 0 4
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1 2

ˆ .
p

j j j j
j j

θ
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By taking the derivative of 
1x%  given in Eq. (17) and substituting for the dynamics of Eqs. (14) and (20), the 
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where 
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( )
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In the above equation, ( ) 1
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Similar to Zeng and Singh (1998), an auxiliary error signal 

e1,2(t)∈R1 is defined as e1,2=v1,2,2-v1,2,2d where υ1,2,i denotes the 

ith element in υ1,2 given in Eq. (19). Also note that υ1,2,2d can 

be given as follows
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In the above equation, ( ) 1
1, 2, 2dm tυ ∈ℜ&  denotes the measurable component that is matched with the control input 

(22)

where σ̂1,0 and ω1,1(t) denote, respectively, a vector of 

unknown constants and a measurable regression vector, 

explicitly defined in Behal et al. (2006a). The dynamic 

adaptive update law for σ̂1,0 is selected as follows
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In the above equation, ( ) 1
1, 2, 2dm tυ ∈ℜ&  denotes the measurable component that is matched with the control input 

(23)

The next step involves the design of the actual control 

input β−(t) which is reachable through backstepping
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where 
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In the above equation, ( ) 1
1, 2, 2dm tυ ∈ℜ&  denotes the measurable component that is matched with the control input 

(24)

In the above equation, v̇1,2,2dm(t)∈R1 denotes the 

measurable component that is matched with the control 

input β−(t) and can be done away via direct cancellation. υ1,2,i 

denotes the ith element in υ1,2 given in Eq. (19). The estimates 

σ̂1,1 can obtained via the following adaptive update law
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( )tβ  and can be done away via direct cancellation. υ1,2,i denotes the ith element in υ1,2 given in Eq. (19). The 

estimates 
1,1σ̂  can obtained via the following adaptive update law 

.

1,1 1, 2 1, 2ˆ .e=σ �                                    (25) 

For explicit expressions of ( )1, 2, 2dm tυ& , ω1,2,  c22,  d22, and k1,2, the reader is referred to Behal et al. (2006a). A 

Lyapunov stability analysis shows that ( ) ( )1,1 1, 2lim , 0
t

e t e t
→∞

=  and the estimation error ( )1 tx%  is exponentially 

regulated to the origin based on Eq. (21). 

To model the control surface dynamics associated with the quasi-steady aerodynamic equations described 

in Eqs. (1) and (3), the method in Block and Strganac (1998) is utilized and a second-order system is proposed 

as follows 

1,1 1, 2 1 1, 2, 0.p p u pβ β β+ + = ≠&& &                            (26) 

Two different strategies are proposed to include the effect of the dynamics of the flap. In the first strategy, p1,1 

and p1,2 are chosen such that the dynamics of Eq. (26) are faster than the dynamics of Eq. (1). Then, the control 

signal β(t) given in Eq. (24) can be treated as a desired flap deflection βd(t) and the control input u1(t) can be 

simply designed as 

( )1 1,1 1, 2 .d d du t p pβ β β= + +&& &                               (27) 

After defining 1 dε β β= − , the closed-loop system for Eq. (26) becomes 

1 1,1 1 1, 2 1 0p pε ε ε+ + =&& &                                 (28) 

which is an exponentially stable system. Thus, β(t) converges to βd(t) exponentially. However, when the 

dynamics of actuator is slow, the interconnection effect between the dynamics of Eqs. (1) and (26) needs to be 

considered. Given ( ) ( )v t tβ β= & , an auxiliary design variable is defined as ( ) 1
v dt v vβ βη = − ∈ℜ  where  

( )dv tβ
 is a virtual control input that can be given as 

2
1, 2 1d dv U e kβ εβ ε∞= − +&                                 (29) 

where kε is a positive constant. Based on above results and the backstepping technique, the control input u1  

can be designed as follows 

( ) 1
1 2,1 1,1 1, 2 1d vu t p v p p kβ ηβ β ε η− ⎡ ⎤= + + − −⎣ ⎦

&&                         (30) 

where kη is a positive constant. A signal chasing argument and stability analysis in Behal et al. (2006a) show 

(25)

For explicit expressions of v̇1,2,2dm(t), ω1,2, c22, d22, and k1,2, the 

reader is referred to Behal et al. (2006a). A Lyapunov stability 

analysis shows that ( ) ( )1,1 1, 2lim , 0
t

e t e t
→∞

= e1,1(t), e1,2(t)=0 and the estimation 

error x̃1(t) is exponentially regulated to the origin based on 

Eq. (21).

To model the control surface dynamics associated with the 

quasi-steady aerodynamic equations described in Eqs. (1) 

and (3), the method in Block and Strganac (1998) is utilized 

and a second-order system is proposed as follows
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( )tβ  and can be done away via direct cancellation. υ1,2,i denotes the ith element in υ1,2 given in Eq. (19). The 

estimates 
1,1σ̂  can obtained via the following adaptive update law 
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as follows 

1,1 1, 2 1 1, 2, 0.p p u pβ β β+ + = ≠&& &                            (26) 

Two different strategies are proposed to include the effect of the dynamics of the flap. In the first strategy, p1,1 

and p1,2 are chosen such that the dynamics of Eq. (26) are faster than the dynamics of Eq. (1). Then, the control 

signal β(t) given in Eq. (24) can be treated as a desired flap deflection βd(t) and the control input u1(t) can be 

simply designed as 

( )1 1,1 1, 2 .d d du t p pβ β β= + +&& &                               (27) 

After defining 1 dε β β= − , the closed-loop system for Eq. (26) becomes 

1 1,1 1 1, 2 1 0p pε ε ε+ + =&& &                                 (28) 

which is an exponentially stable system. Thus, β(t) converges to βd(t) exponentially. However, when the 

dynamics of actuator is slow, the interconnection effect between the dynamics of Eqs. (1) and (26) needs to be 

considered. Given ( ) ( )v t tβ β= & , an auxiliary design variable is defined as ( ) 1
v dt v vβ βη = − ∈ℜ  where  

( )dv tβ
 is a virtual control input that can be given as 

2
1, 2 1d dv U e kβ εβ ε∞= − +&                                 (29) 

where kε is a positive constant. Based on above results and the backstepping technique, the control input u1  

can be designed as follows 

( ) 1
1 2,1 1,1 1, 2 1d vu t p v p p kβ ηβ β ε η− ⎡ ⎤= + + − −⎣ ⎦

&&                         (30) 

where kη is a positive constant. A signal chasing argument and stability analysis in Behal et al. (2006a) show 

(26)

Two different strategies are proposed to include the effect 

of the dynamics of the flap. In the first strategy, p1,1 and p1,2 

are chosen such that the dynamics of Eq. (26) are faster than 

the dynamics of Eq. (1). Then, the control signal β(t) given in 

Eq. (24) can be treated as a desired flap deflection βd(t) and 

the control input u1(t) can be simply designed as
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After defining ε1=β−βd, the closed-loop system for Eq. (26) 

becomes
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where kη is a positive constant. A signal chasing argument and stability analysis in Behal et al. (2006a) show 
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which is an exponentially stable system. Thus, β(t) 

converges to βd(t) exponentially. However, when the 

dynamics of actuator is slow, the interconnection effect 

between the dynamics of Eqs. (1) and (26) needs to be 
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where kη is a positive constant. A signal chasing argument 

and stability analysis in Behal et al. (2006a) show that ( ) ( )1,1 1, 2lim , 0
t

e t e t
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= 

e1,1(t), e1,2(t), x̃1(t)=0.

3.2 Nonlinear adaptive control for supersonic airfoil

After denoting the nondimensional time τ=U∞t/b and 

nondimensional plunging displacement ξ=h/b variables, 

one can transform the dimensional Eqs. (1), (8), and (9) into 

the nondimensional form Rao et al. (2006), which can be 

further rewritten into the following state space form in order 

to facilitate output feedback control design
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where 2 1Uβ β∞= ∈ℜ  is an auxiliary control input,  ( ) ( ) ( ) ( ) ( ) 4
2 2,1 2, 2 2, 3 2, 4

T
t x t x t x t x t⎡ ⎤= ∈ℜ⎣ ⎦x   is a new 

vector of system states, y2 is the output variable. A2 is the same as A1 while 4
2 ∈ℜB  is defined as 

2 2,1 2, 2 2, 3 2, 4, , ,
T

θ θ θ θ⎡ ⎤= ⎣ ⎦B                              (32) 

where 1
2, 1, 2,3,4i iθ ∈ℜ ∀ =  are constants that are explicitly defined in Rao et al. (2006). Note that 

2,1 0θ ≠  

leads to a relative degree one system. In (31) above, ( ) 4
2 2y ∈ℜΦ  can be linearly parameterized as follows 

( ) ( )
2

2 2 2,1 2 2 2, 2,1, 2
1

( )
p

j j
j

y y yγ
=

= = ∑W WΦ γ                          (33) 

where 2
2

p∈ℜγ  is a vector of constant unknowns while 
2,  jγ  denotes the jth element in 2γ , 24

2,1 2( ) py ×∈ℜW  

is a measurable, non-linear regression matrix while the notation 4
2,1, 2( )j y ∈ℜW  denotes the jth column of the 

regression matrix ( )2,1 2 21,...,y j p∀ =W . Explicit expressions for 
2γ  in terms of model parameters are 

provided in Rao et al. (2006). 

Based on the known structure of the aeroelastic model, our goal in this section is to design a control 

strategy to drive the pitch angle α to zero and adaptively compensating for the parametric uncertainties as well 

as the nonlinearity. Assuming that the only measurement available is the output variable y2 = α while the 

remaining states needs to be estimated through the state estimators, a state estimation error ( ) 4
2 t ∈ℜx%  can be 

designed as follows 

2 2 2ˆ= −x x x%                                   (34) 

where x2(t) is a state vector previously defined in Eq. (31) while ( ) 4
2ˆ t ∈ℜx  is an estimator variable that is yet 

(31)

where β−=U∞
2 β∈R1 is an auxiliary control input, x2(t)=[x2,1(t)  

x2,2(t)  x2,3(t)  x2,4(t)]T∈R4 is a new vector of system states, y2 

is the output variable. A2 is the same as A1 while B2∈R4 is 

defined as
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defined in Rao et al. (2006). Note that θ2,i≠0 leads to a relative 
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where γ̄2∈Rp2 is a vector of constant unknowns while γ̄2, j 

denotes the jth element in γ̄2, W2,1(y2)∈R4×p2 is a measurable, 

non-linear regression matrix while the notation W2,1(y2)∈R4 

denotes the jth column of the regression matrix W2,1(y2)∀j=1, 
..., p2. Explicit expressions for γ̄2 in terms of model parameters 

are provided in Rao et al. (2006).

Based on the known structure of the aeroelastic model, 

our goal in this section is to design a control strategy to drive 

the pitch angle α to zero and adaptively compensating for 

the parametric uncertainties as well as the nonlinearity. 

Assuming that the only measurement available is the 

output variable y2 = α while the remaining states needs to 

be estimated through the state estimators, a state estimation 

error x̃2(t)∈R4 can be designed as follows
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where x2(t) is a state vector previously defined in Eq. 

(31) while x̃2(t)∈R4 is an estimator variable that is yet to be 

designed. The parameter estimation error signal χ2̃(t)∈Rr is 

represented as
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to be designed. The parameter estimation error signal ( )2
rtχ ∈ℜ%  is represented as 

2 2 2ˆχ χ χ= −%                                  (35) 

where ( )2
rtχ ∈ℜ  is an unknown constant parameter vector while ( ) 4

2ˆ tχ ∈ℜ  is its corresponding dynamic 

estimate. The bracketed term in the first Eq. (31) can be linearly parameterized as 

( ) ( )
2

2, 2 2 2 2, 2, 2, 2 2 2 2
1

,  ,  ( )
q

j j
j

y y yβ σ β β
=

= = +∑W W Bσ �                    (36) 

where 2
2

q∈ℜσ  is a vector of constant unknowns while 2, jσ  denotes the jth element in 
2σ ,  

( ) 24
2, 2 2 ,  qy β ×∈ℜW  is a measurable, non-linear regression matrix while the notation ( ) 4

2, 2, j ⋅ ∈ℜW  denotes 

the jth column of the regression matrix ( )2, 2 ⋅W ∀
21,...,j q= . Next, an immeasurable estimation variable 

( ) 4
2ˆ t ∈ℜx  is defined as follows 

2

2 2, 0 2, 2, 2
1

ˆ ,    1, ,
q

j j
j

j qσ
=

= + ∀ = ⋅ ⋅ ⋅∑x ζ ζ                            (37) 

where 4
2, 0 ∈ℜζ  and 4

2, j ∈ℜζ ∀ 21, ,j q= ⋅ ⋅ ⋅  are filter variables such that (Krstic et al., 1995) 

( )
2, 0 2, 0 2, 0 2 2 2

2, 2, 0 2, 2, 2, 2 2

,

,   1, ,

T

j j j y j qβ

= +

= + ∀ = ⋅ ⋅ ⋅

A K C x

A W

&

&

ζ ζ

ζ ζ
                     (38) 

where 4
2 ∈ℜK  is a gain vector chosen so that 

2, 0 2 2 2
T= −A A K C  is Hurwitz. Given that  

2 2 2 2, ,T y=A C x  and 

( )2, 2, 2 ,  j y βW  are known, one can see that the design of Eq. (38) is readily implementable. By taking the 

derivative of Eq. (34) and substituting for the dynamics of Eqs. (31) and (37), one can obtain the following 

exponentially stable estimation error 

.

2 2 2 .=x A x% %                                      (39) 

Although the state estimate of Eq. (37) is unmeasurable, the worth of the above scheme lies in the linear 

parameterizability of the right hand side of the expression of Eq. (37) as well as the exponential stability of the 

estimation error. Based on the structure of Eq. (31), the control input ( )tβ  can be designed as 

( )2,3 2 2, 0, 2 2, , 2 2ˆ,  ,  jyβ ζ ζ χ= −W                              (40) 

where 
2, ,j iζ  denotes the ith element in 

2, jζ  . ( )2, 3 2 2, 0, 2 2, , 2,  ,  T r
jy ζ ζ ∈ℜW  is a measurable regression vector 

such that 

(35)

where χ2(t)∈Rr is an unknown constant parameter vector 

while χ̂2(t)∈Rr is its corresponding dynamic estimate. 

The bracketed term in the first Eq. (31) can be linearly 

parameterized as
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( )2,3 2 2, 0, 2 2, , 2 2ˆ,  ,  jyβ ζ ζ χ= −W                              (40) 

where 
2, ,j iζ  denotes the ith element in 

2, jζ  . ( )2, 3 2 2, 0, 2 2, , 2,  ,  T r
jy ζ ζ ∈ℜW  is a measurable regression vector 

such that 

(36)

where σ2∈Rq2 is a vector of constant unknowns while 

σ2, j denotes the jth element in σ2, W2,2(y2, β−)∈R4×q2 is a 

measurable, non-linear regression matrix while the notation 

W2,2, j(∙)∈R4 denotes the jth column of the regression matrix 

W2,2(∙)∀j=1, ..., q2. Next, an immeasurable estimation 

variable x̂2(t)∈R4 is defined as follows
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rtχ ∈ℜ  is an unknown constant parameter vector while ( ) 4
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where 4
2 ∈ℜK  is a gain vector chosen so that 

2, 0 2 2 2
T= −A A K C  is Hurwitz. Given that  

2 2 2 2, ,T y=A C x  and 

( )2, 2, 2 ,  j y βW  are known, one can see that the design of Eq. (38) is readily implementable. By taking the 

derivative of Eq. (34) and substituting for the dynamics of Eqs. (31) and (37), one can obtain the following 

exponentially stable estimation error 

.
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Although the state estimate of Eq. (37) is unmeasurable, the worth of the above scheme lies in the linear 

parameterizability of the right hand side of the expression of Eq. (37) as well as the exponential stability of the 
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where ζ2, 0∈R4 and ζ2, j∈R4∀j=1, ..., q2 are filter variables 

such that (Krstic et al., 1995)
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where 4
2 ∈ℜK  is a gain vector chosen so that 

2, 0 2 2 2
T= −A A K C  is Hurwitz. Given that  

2 2 2 2, ,T y=A C x  and 

( )2, 2, 2 ,  j y βW  are known, one can see that the design of Eq. (38) is readily implementable. By taking the 

derivative of Eq. (34) and substituting for the dynamics of Eqs. (31) and (37), one can obtain the following 

exponentially stable estimation error 
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Although the state estimate of Eq. (37) is unmeasurable, the worth of the above scheme lies in the linear 

parameterizability of the right hand side of the expression of Eq. (37) as well as the exponential stability of the 

estimation error. Based on the structure of Eq. (31), the control input ( )tβ  can be designed as 
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where 
2, ,j iζ  denotes the ith element in 

2, jζ  . ( )2, 3 2 2, 0, 2 2, , 2,  ,  T r
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such that 

(38)

where K2∈R4 is a gain vector chosen so that A2,0=A2−K2C2
T 

is Hurwitz. Given that A2, C2
Tx2=y2, and W2,2, j(y2, β−) are 

known, one can see that the design of Eq. (38) is readily 

implementable. By taking the derivative of Eq. (34) and 

substituting for the dynamics of Eqs. (31) and (37), one can 

obtain the following exponentially stable estimation error
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Although the state estimate of Eq. (37) is unmeasurable, the 

worth of the above scheme lies in the linear parameterizability 

of the right hand side of the expression of Eq. (37) as well as 

the exponential stability of the estimation error. Based on the 

structure of Eq. (31), the control input β−(t) can be designed 

as
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where ζ2, j,i denotes the ith element in ζ2, j·WT
2,3( y2, ζ2,0,2, 

ζ2, j,2)∈Rr is a measurable regression vector such that
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where the control gain kp > 0 as reported in Rao et al. (2006), ( )2, 2j yΦ  represents the jth element in ( )2 2yΦ , 

x2,1 = y, and 2, 0, iζ  denotes the ith element in 
2, 0ζ . The parameter estimate vector ( )2ˆ tχ  is computed online as 

follows 

( )
.

2 2 2,3 2 2, 0, 2 2, , 2 2,1ˆ sign( ) ,  ,  T
jk y xχ ζ ζ= W                           (42) 

where the definition of k2 can be found in Rao et al. (2006). Given all the preceding facts, it is straightforward to 

prove that ( )2,1lim 0
t

x t y
→∞

= =  and the estimation error ( )2 tx%  is exponentially regulated to the origin, as shown 

in the stability analysis in Rao et al. (2006). 

 

3.3 Adaptive control for a nonlinear wing section with multiple flaps 

For the wing section model described by Eqs. (1) and (3) with both TECS and LECS available, an input-output 

form can be derived for the system as follows 

( ) ( )3 3 3,1 3 3, 2, , , ,h hµ α α= +y f G u&&&& µθ θ                        (43) 

where ( ) ( ) ( ) 2
3 ,

T
t t h tα

∆

= ∈ℜ⎡ ⎤⎣ ⎦y  denotes the output vector, ( ) ( ) ( )2 ,
T

t U t tβ γ
∆

∞= ⎡ ⎤⎣ ⎦u 2∈ℜ  denotes the 

control input vector. 
3µ ∈G 2 2×ℜ  is a constant non-singular (but sign-indefinite), non-symmetric, gain matrix. 

In Eq. (43), 3, 1
3,1

p∈ℜθ  and 3, 2
3, 2

p∈ℜθ  denote unknown model parameter vectors. Since both the leading 

principal minors g3,11 and 
3 3det( )µ∆ = G  of the matrix G3µ are non-zero, a matrix decomposition introduced in 

(Morse, 1993) is used to obtain 
3 3 3µ =G S T  where S3 is a symmetric, positive-definite matrix while T3 is an 

upper triangular matrix with its diagonal elements belonging to the set {+1, -1}. Based on above matrix 

decomposition, Eq. (43) can be rewritten as follows 

( ) ( ) ( ) ( )
2

3
3 3, 2 3 3,1 3, 2 3 3, 2 3 3, 2, , , , , det( )

d
h h

dt
α α= +

y
M f S T u&&θ θ θ θ θ                  (44) 

where ( )3 ⋅ =M adj ( )( )3 ⋅ ∈S 2 2×ℜ  is symmetric p.d., while ( )3 ⋅ =f ( ) ( )3 3µ⋅ ⋅M f ∈ 2ℜ  is an auxiliary vector. The 

control objective in this section is to suppress plunging and pitching oscillations (possibly along desired 

trajectories generated by a reference model) in the presence of parametric uncertainties 
3,1,θ  

3, 2θ . Herein, 

assuming that ( )tα , ( )tα& , ( )h t , and ( )h t&  are measurable, a tracking error 
3 ( )te 2∈ℜ  is defined as 

(41)

where the control gain kp > 0 as reported in Rao et al. (2006), 

Φ2, j (y2) represents the jth element in Φ2 (y2), x2,1 = y, and ζ2,0,i 

denotes the ith element in ζ2,0. The parameter estimate vector 

x̂2(t) is computed online as follows
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Given all the preceding facts, it is straightforward to prove that 
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=x2,1(t)=y=0 and the estimation error x̃2(t) is exponentially 

regulated to the origin, as shown in the stability analysis in 

Rao et al. (2006).

3.3 Adaptive control for a nonlinear wing section 
with multiple flaps

For the wing section model described by Eqs. (1) and (3) 

with both TECS and LECS available, an input-output form 

can be derived for the system as follows
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G3μ∈R2×2 is a constant non-singular (but sign-indefinite), 

non-symmetric, gain matrix. In Eq. (43), θ3,1∈Rp3,1 and 

θ3,2∈Rp3,2 denote unknown model parameter vectors. Since 

both the leading principal minors g3,11 and ∆3=det(G3μ) of the 

matrix G3μ are non-zero, a matrix decomposition introduced 

in (Morse, 1993) is used to obtain G3μ=S3T3 where S3 is a 

symmetric, positive-definite matrix while T3 is an upper 
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where ( )3 ⋅ =M adj ( )( )3 ⋅ ∈S 2 2×ℜ  is symmetric p.d., while ( )3 ⋅ =f ( ) ( )3 3µ⋅ ⋅M f ∈ 2ℜ  is an auxiliary vector. The 
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(44)

where M3(·)=adj(S3(·))∈R2×2 is symmetric p.d., while 

f3(·)=M3(·)f3μ(·)∈R2 is an auxiliary vector. The control 

objective in this section is to suppress plunging and pitching 

oscillations (possibly along desired trajectories generated 

by a reference model) in the presence of parametric 

uncertainties θ3,1, θ3,2. Herein, assuming that α(t), α̇(t), h(t), 

and ḣ (t) are measurable, a tracking error e3(t)∈R2 is defined 
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where 
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where 2 2
3,1

×∈ℜΛ  is a constant, positive definite matrix chosen such that the resulting characteristic polynomial 

is Hurwitz. Motivated by the subsequent stability analysis, a parameter estimation error is also defined in the 

following form 
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s ∈ℜθ contain the unknown system parameters, ( ) 3, 3
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where 2 2
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× ×∈ℜ ∈ℜ� �  are constant, positive definite gain matrices while Proj{•}  is a standard 

parameter projection operator used to ensure that 
3, 3,

ˆ 0s s >y θ  for all time (Behal et al., 2006b). ( )3 ⋅Y 3, 32 p×∈ℜ  

and ( ) 3, 41
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p
s

×⋅ ∈ℜy  are measurable regressors that are explicitly defined as 
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where the strictly upper triangular matrix 
3 3, 2( )T θ  can be defined as follows  

3 3, 2 3 3, 2 3, 2( ) ( ) .= −T T Dθ θ                                (52) 

Notice that this strict upper triangularity allows one to design control in a hierarchical fashion without the 

(49)
(50)

(45)

where y3,d(t)∈R2 is a reference trajectory. In order to 

achieve the desired objective, a sliding surface r3(t)∈R2 is 

assumed as
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where the strictly upper triangular matrix 
3 3, 2( )T θ  can be defined as follows  

3 3, 2 3 3, 2 3, 2( ) ( ) .= −T T Dθ θ                                (52) 

Notice that this strict upper triangularity allows one to design control in a hierarchical fashion without the 

(49)
(50)

(46)

where Λ3,1∈R2×2 is a constant, positive definite matrix 

chosen such that the resulting characteristic polynomial is 

Hurwitz. Motivated by the subsequent stability analysis, a 

parameter estimation error is also defined in the following 

form
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where θ3∈RP3, 3and θ3,s∈RP3,4 contain the unknown system 

parameters, θ̂3(t)∈RP3, 3 and θ̂3, s(t)∈RP3, 4 denote their yet to 

be designed estimates, respectively. Based on above analysis, 

the adaptive control law u can be designed as follows
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where K3∈R2×2 is a constant, positive definite gain matrix. 

D3,2 = diag{sign(g3,11), sign(g3,11)sign(Δ)}is a diagonal matrix 

which is assumed to be known. The estimates θ̂3 and θ̂3, s(t) 

are dynamically generated as follows
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where Γ3∈Rp3,3×p3,3, Γ3,s∈Rp3,4×p3,4 are constant, positive 

definite gain matrices while Proj{•} is a standard parameter 

projection operator used to ensure that y3,s θ̂3,s>0 for all 

time (Behal et al., 2006b). Y3(∙)∈R2×p3,3 and y3,s(∙)∈R1×p3,4 are 

measurable regressors that are explicitly defined as
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and ( ) 3, 41
3,

p
s

×⋅ ∈ℜy  are measurable regressors that are explicitly defined as 
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where the strictly upper triangular matrix 
3 3, 2( )T θ  can be defined as follows  

3 3, 2 3 3, 2 3, 2( ) ( ) .= −T T Dθ θ                                (52) 

Notice that this strict upper triangularity allows one to design control in a hierarchical fashion without the 

(49)
(50)

(51)

where the strictly upper triangular matrix T̄3(θ3,2) can be d
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where 
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where the strictly upper triangular matrix 
3 3, 2( )T θ  can be defined as follows  

3 3, 2 3 3, 2 3, 2( ) ( ) .= −T T Dθ θ                                (52) 

Notice that this strict upper triangularity allows one to design control in a hierarchical fashion without the 

(49)
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Notice that this strict upper triangularity allows one to 

design control in a hierarchical fashion without the possibility 

of any static or algebraic loops. Stability analysis in Behal et 

al. (2006b) shows that ( ) ( )1,1 1, 2lim , 0
t

e t e t
→∞

=r2(t)=0.

3.4 MIMO adaptive output control for aeroelastic 
vibration suppression

First of all, the governing equations in Eqs. (1) and (3) can 

be transformed into the following form in order to facilitate 

output feedback control design
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where 4
4 ∈ℜx  is a vector of system states, [ ] 2

4 ( ) ( ) ( ) Tt h tα
∆

= ∈ℜy t  denotes the output vector, 2( )∈ℜu t  

denotes the control input vector, ( ) 4
4 4 4,  ∈ℜW y ϕ  is an auxiliary vector that captures the system 

nonlinearities, 2 2
4, µ

×∈ℜG  is a constant non-singular (but sign-indefinite), non-symmetric, gain matrix. Note 

that the notation 0j and Ij denote, respectively, the zero and identity matrices of dimension j. ( )4 4 4,  W y ϕ  and 

g4,jk have been explicitly defined in Reddy et al. (2007). In Eq. (53), ( )4 4 4,  W y ϕ  can be linearly parameterized 

as follows 

( ) ( ) ( )

( ) ( ) ( ) ( )

4

4

4 4 4 4 4 4 4, 4, 4
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4, 4, ,1 4 4, , 2 4 4, ,3 4 4, , 4 4
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W y W y W y
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ϕ ϕ
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where 4
4

p∈ℜϕ  is a vector of constant unknowns while 
4, jϕ  is the jth element in 

4ϕ , ( ) 44
4, 4

p
j

×∈ℜW y  is 

the jth column of measurable nonlinear regression matrix W4(y4). Assuming that both the leading principal 

minors g4,11 and 
4,det( )µ

∆

∆= G  of the matrix G4,µ are non-zero, a matrix decomposition introduced in Morse 

(1993) can be utilized to obtain the following result 

 
4, 4 4 4µ =G S D U                                    (55) 

where S4 is a symmetric, positive-definite matrix, D4 is a diagonal matrix with its non-zero elements belonging 

to the set {+1, -1}, and 4U  is a unity upper triangular matrix. For purposes of control design, it's assumed that 

the signs of the leading principal minors of the high-frequency gain matrix G4,µ are known, i.e., the diagonal 

matrix D4 is assumed to be known. The tracking error 2
4 ( )∈ℜe t , state estimation error 

4
4 4, 4,( )

TT T
u b⎡ ⎤= ∈ℜ⎣ ⎦t� � � , and parameter estimation error signals ( ) 4,1

4,1
pt ∈ℜ%ψ , ( ) 4, 2

4, 2
pt ∈ℜ%ψ  can be 

(53)

where x4∈R4 is a vector of system states, [ ] 2
4 ( ) ( ) ( ) Tt h tα

∆

= ∈ℜy t [α(t) h(t)]T 

denotes the output vector, u(t)∈R2 denotes the control input 

vector, W̄4(y4, φ4)∈R4 is an auxiliary vector that captures the 

system nonlinearities, G4,μ∈R2×2 is a constant non-singular 

(but sign-indefinite), non-symmetric, gain matrix. Note 

that the notation 0j and Ij denote, respectively, the zero and 

identity matrices of dimension j. W̄4(y4, φ4) and g4,jk have 

been explicitly defined in Reddy et al. (2007). In Eq. (53), 

W̄4(y4, φ4) can be linearly parameterized as follows
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∆= G  of the matrix G4,µ are non-zero, a matrix decomposition introduced in Morse 

(1993) can be utilized to obtain the following result 
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where φ4∈Rp4 is a vector of constant unknowns while φ4, j 

is the jth element in φ4, W4, j(y4)∈R4×p4 is the jth column of 

measurable nonlinear regression matrix W4(y4). Assuming 

that both the leading principal minors g4,11 and 4,det( )µ

∆

∆= G  

of the matrix G4,μ are non-zero, a matrix decomposition 

introduced in Morse (1993) can be utilized to obtain the 

following result
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where S4 is a symmetric, positive-definite matrix, D4 is a diagonal matrix with its non-zero elements belonging 

to the set {+1, -1}, and 4U  is a unity upper triangular matrix. For purposes of control design, it's assumed that 

the signs of the leading principal minors of the high-frequency gain matrix G4,µ are known, i.e., the diagonal 

matrix D4 is assumed to be known. The tracking error 2
4 ( )∈ℜe t , state estimation error 

4
4 4, 4,( )
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pt ∈ℜ%ψ , ( ) 4, 2
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(55)

where S4 is a symmetric, positive-definite matrix, D4 is a 

diagonal matrix with its non-zero elements belonging to the 

set {+1, -1}, and Ū4 is a unity upper triangular matrix. For 

purposes of control design, it’s assumed that the signs of the 

leading principal minors of the high-frequency gain matrix 

G4,μ are known, i.e., the diagonal matrix D4 is assumed to be 

known. The tracking error e4(t)∈R2, state estimation error 

ε4(t)=[εT
4,μ  εT

4,b]T ∈R4, and parameter estimation error signals 

ψ̃4.1(t)∈Rp4,1, ψ̃4.2(t)∈Rp4,2 can be defined as follows
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defined as follows 

4 4 4, 4 4 4

4,1 4,1 4,1 4, 2 4, 2 4, 2

ˆ,  ,
ˆ ˆ,  

de y y x x
% %

= − ε = −
ψ = ψ − ψ ψ = ψ − ψ

                         (56) 

where ( ) 2
4, d t ∈y C  denotes a sufficiently smooth, bounded desired output vector. 4

4 4, 4,ˆ ˆ ˆ( )
TT T

u b⎡ ⎤= ∈ℜ⎣ ⎦x t x x  is a 

state estimation vector that will be designed later. 4,1
4,1

p∈ℜψ  and 4, 2
4, 2

p∈ℜψ  are unknown constant vectors, 

while ( ) 4,1
4,1ˆ pt ∈ℜψ  and ( ) 4, 2

4, 2ˆ pt ∈ℜψ  are their corresponding estimates that will be given subsequently. In 

Xing and Singh (2000), the entire state of the system is observable by only using the measurement of the pitch 

angle variable. However, in order to rapidly regulate the pitching and plunging displacements in an adaptive 

framework, both the pitching and plunging variables are assumed to be measurable in this problem. Following 

the approach in Krstic et al. (1995), the filter 4
4, 0 4, 0,1 4, 0, 2 4, 0,3 4, 0, 4

T
ζ ζ ζ ζ⎡ ⎤= ∈ℜ⎣ ⎦ζ  can be designed as 

follows 
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where [ ] 4 2
4 1 2 2 2

T
o ok k ×= ∈ℜK I I  denotes a constant gain matrix where the scalars ko1 and ko2 are chosen such that 

4, 0 4 4 4
T= −A A K C  is Hurwitz. 4

4 4, 4,

TT T
u b⎡ ⎤= ∈ℜ⎣ ⎦υ υ υ . Also note that it is straightforward to guarantee the 

boundedness of the filter variables ζ4,0(t), ζ4,j(t), and υ4(t) provided that y4(t) and u(t) remain bounded. Given Eq. 

(57), an immeasurable state estimate 4ˆ ( )x t  can be obtained as follows 

4
4, 2

4 4, 0 4, 4, 4
2 4,1

ˆ .
p

j j
j

µ

µ

ϕ
=

⎡ ⎤
= + + ⎢ ⎥

⎣ ⎦
∑

G 0
x

0 G
ζ ζ υ                          (58) 

By taking the derivative of state estimation error and substituting for the dynamics of Eqs. (53) and (57), the 

following exponentially stable estimation error system is obtained 

4 4 4 .A&ε = ε                                      (59) 

By using the backstepping technique, the control input signal u(t) can be designed as 

4 4, 2 4, 2ˆu D Y= − ψ                                    (60) 

where the unknown parameters in ( )4, 2ˆ tψ  can be dynamically estimated as follows 

.

4, 2 4, 2 4, 2 4,ˆ T
bY %ψ = � υ                                   (61) 

(56)

where y4,d(t)∈R2 denotes a sufficiently smooth, bounded 

desired output vector. x̂4(t)=[x̂4,μ  x̂T
4,b]T∈R4 is a state 

estimation vector that will be designed later. ψ̃4.1(t)∈Rp4,1 and 

ψ̃4.2(t)∈Rp4,2 are unknown constant vectors, while ψ̃4.1(t)∈Rp4,1 

and ψ̃4.2(t)∈Rp4,2 are their corresponding estimates that will be 

given subsequently. In Xing and Singh (2000), the entire state 

of the system is observable by only using the measurement of 

the pitch angle variable. However, in order to rapidly regulate 

the pitching and plunging displacements in an adaptive 

framework, both the pitching and plunging variables are 

assumed to be measurable in this problem. Following the 

approach in Krstic et al. (1995), the filter ζ4,0=[ζ4,0,1  ζ4,0,2  ζ4,0,3  

ζ4,0,4]T ∈R4 can be designed as follows
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By taking the derivative of state estimation error and substituting for the dynamics of Eqs. (53) and (57), the 

following exponentially stable estimation error system is obtained 

4 4 4 .A&ε = ε                                      (59) 

By using the backstepping technique, the control input signal u(t) can be designed as 

4 4, 2 4, 2ˆu D Y= − ψ                                    (60) 

where the unknown parameters in ( )4, 2ˆ tψ  can be dynamically estimated as follows 

.

4, 2 4, 2 4, 2 4,ˆ T
bY %ψ = � υ                                   (61) 

(57)

where K4=[ko1I2  ko2I2]T∈R4×2 denotes a constant gain 

matrix where the scalars ko1 and ko2 are chosen such that 

A4.0=A4−K4CT
4 is Hurwitz. υ4=[υT

4,u  υT
4,b]∈R4. Also note that it 

is straightforward to guarantee the boundedness of the filter 

variables ζ4,0(t), ζ4,j(t), and υ4(t) provided that y4(t) and u(t) 

remain bounded. Given Eq. (57), an immeasurable state 

estimate x̂4(t) can be obtained as follows
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4, 0 4 4 4
T= −A A K C  is Hurwitz. 4

4 4, 4,

TT T
u b⎡ ⎤= ∈ℜ⎣ ⎦υ υ υ . Also note that it is straightforward to guarantee the 

boundedness of the filter variables ζ4,0(t), ζ4,j(t), and υ4(t) provided that y4(t) and u(t) remain bounded. Given Eq. 

(57), an immeasurable state estimate 4ˆ ( )x t  can be obtained as follows 
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By taking the derivative of state estimation error and substituting for the dynamics of Eqs. (53) and (57), the 

following exponentially stable estimation error system is obtained 

4 4 4 .A&ε = ε                                      (59) 

By using the backstepping technique, the control input signal u(t) can be designed as 

4 4, 2 4, 2ˆu D Y= − ψ                                    (60) 

where the unknown parameters in ( )4, 2ˆ tψ  can be dynamically estimated as follows 

.

4, 2 4, 2 4, 2 4,ˆ T
bY %ψ = � υ                                   (61) 

(58)

By taking the derivative of state estimation error and 

substituting for the dynamics of Eqs. (53) and (57), the 

following exponentially stable estimation error system is 

obtained
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defined as follows 
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state estimation vector that will be designed later. 4,1
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4, 2

p∈ℜψ  are unknown constant vectors, 

while ( ) 4,1
4,1ˆ pt ∈ℜψ  and ( ) 4, 2

4, 2ˆ pt ∈ℜψ  are their corresponding estimates that will be given subsequently. In 

Xing and Singh (2000), the entire state of the system is observable by only using the measurement of the pitch 

angle variable. However, in order to rapidly regulate the pitching and plunging displacements in an adaptive 

framework, both the pitching and plunging variables are assumed to be measurable in this problem. Following 

the approach in Krstic et al. (1995), the filter 4
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By taking the derivative of state estimation error and substituting for the dynamics of Eqs. (53) and (57), the 

following exponentially stable estimation error system is obtained 

4 4 4 .A&ε = ε                                      (59) 

By using the backstepping technique, the control input signal u(t) can be designed as 
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signal u(t) can be designed as
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where [ ] 4 2
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o ok k ×= ∈ℜK I I  denotes a constant gain matrix where the scalars ko1 and ko2 are chosen such that 
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By taking the derivative of state estimation error and substituting for the dynamics of Eqs. (53) and (57), the 

following exponentially stable estimation error system is obtained 

4 4 4 .A&ε = ε                                      (59) 

By using the backstepping technique, the control input signal u(t) can be designed as 

4 4, 2 4, 2ˆu D Y= − ψ                                    (60) 

where the unknown parameters in ( )4, 2ˆ tψ  can be dynamically estimated as follows 

.

4, 2 4, 2 4, 2 4,ˆ T
bY %ψ = � υ                                   (61) 

(60)

where the unknown parameters in ψ̂4.2(t) can be 

dynamically estimated as follows
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By taking the derivative of state estimation error and substituting for the dynamics of Eqs. (53) and (57), the 

following exponentially stable estimation error system is obtained 

4 4 4 .A&ε = ε                                      (59) 

By using the backstepping technique, the control input signal u(t) can be designed as 

4 4, 2 4, 2ˆu D Y= − ψ                                    (60) 

where the unknown parameters in ( )4, 2ˆ tψ  can be dynamically estimated as follows 

.

4, 2 4, 2 4, 2 4,ˆ T
bY %ψ = � υ                                   (61) (61)

where Y4,2(∙)∈R2×p 4,2 is a measurable regression vector and 

Y4,2(∙)∈ψ4,2∈R2 can be explicitly defined as follows
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where ( ) 4, 22
4, 2

p×∈ℜY ⋅  is a measurable regression vector and ( ) 2
4, 2 4, 2⋅ ∈ℜY ψ  can be explicitly defined as 

follows 
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Y k Y D e
y y

% %
υ υ

ψ υ − ψ υ υ          (62) 

where 
4, 2 ∈k 2 2×ℜ  is a control gain matrix while d4,2 is a positive scalar gain. 

4, 2 4, 2(.)Y ψ  have been explicitly 

defined in Reddy et al. (2007). Also Note that
4, 4, ,1 4, , 2 4, 4,

T

b b b b bdυ υ
∆
⎡ ⎤= = −⎣ ⎦% % %υ υ υ  while 

2
4, 4, ,1 4, , 2 4 4,

T

b b b bυ υ
∆

⎡ ⎤= = ∈ℜ⎣ ⎦ Dυ υ  is an auxiliary measurable vector. 2
4, 4, ,1 4, , 2

T

bd bd bdυ υ⎡ ⎤= ∈ℜ⎣ ⎦υ   is a virtual 

control input that can be designed as follows 

4, 4,1 4, 4, 4 4, 0 4, 4 2 4, 4,1ˆ( , , , , , ( ) )bd d d j b= − −Y y y y U I&υ ζ ζ υ ψ                     (63) 

where ( )4,1ˆ tψ  is dynamically generated as follows 

.

4,1 4,1 4,1 4ˆ .TY eψ = �                                   (64) 

Note that 4,12
4,1 4, 4, 4 4, 0 4, 4, , 2( , , , , , 0 )

T p
d d j bυ ×⎡ ⎤ ∈ℜ⎣ ⎦Y y y y& ζ ζ  is a measurable regression vector, 4,1

4,1
p∈ℜψ   is 

an unknown parameter vector and ( )4,1 4,1⋅Y ψ  is explicitly defined as follows 
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where 4,1 ∈k 2 2×ℜ  is a control gain matrix and d4,1 is a positive scalar. From the Lyapunov stability analysis 

given in Reddy et al. (2007), one can easily show that ( ) ( ) ( )4 4, 4lim , , 0bt
t t t

→∞
=e %υ � . Thus, the system is globally 

asymptotically stable and all signals in the plant, estimator, and controller stay bounded in closed-loop operation. 

 

3.5 Model-free output control in aeroelastic system subject to external disturbance 

Motivated by Chen et al. (2008), the governing Eqs. (1) and (3) can be transformed into the following input-

output representation to facilitate the model-free output feedback design 

( )5 5 5 5 5, 5,  hd= +x h x x w G u&& & +                            (66) 

where [ ] 2
5 ,  Th α

∆

= ∈ℜx  is the system output vector, [ ] [ ] 2
1 2,  ,  T Tu u β γ

∆

= ∈ℜu =  denotes the control input 

vector, ( )5 5 5,  h x x&  represents uncertain nonlinearities due to the existence of kα(α). w5,hd is the bounded 

(62)

where k4,2∈R2×2 is a control gain matrix while d4,2 is a 

positive scalar gain. Ȳ4,2(∙)ψ̄4,2 have been explicitly defined in 

Reddy et al. (2007). Also Note that v4̃,b=Δ [v4̃,b,1  v4̃,b,2]T=v4̃,b−v4̃,bd 

while v4̃,b=[v4̃,b,1  v4̃,b,2]T=ΔD4v4,b∈R2 is an auxiliary measurable 

vector. v4̃,bd=[v4̃,bd,1  v4̃,bd,2]T∈R2 is a virtual control input that 

can be designed as follows
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Note that Y4,1(y4,d, ẏ4d, y4, ζ4,0, ζ4, j, [v4̃,b,2  0]T)∈R2×p 4,1 is a 

measurable regression vector, ψ̄4,1∈Rp 4,1 is an unknown 

parameter vector and Y4,1(∙)ψ4,1 is explicitly defined as 

follows
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where 4,1 ∈k 2 2×ℜ  is a control gain matrix and d4,1 is a positive scalar. From the Lyapunov stability analysis 

given in Reddy et al. (2007), one can easily show that ( ) ( ) ( )4 4, 4lim , , 0bt
t t t

→∞
=e %υ � . Thus, the system is globally 

asymptotically stable and all signals in the plant, estimator, and controller stay bounded in closed-loop operation. 

 

3.5 Model-free output control in aeroelastic system subject to external disturbance 

Motivated by Chen et al. (2008), the governing Eqs. (1) and (3) can be transformed into the following input-

output representation to facilitate the model-free output feedback design 

( )5 5 5 5 5, 5,  hd= +x h x x w G u&& & +                            (66) 

where [ ] 2
5 ,  Th α

∆

= ∈ℜx  is the system output vector, [ ] [ ] 2
1 2,  ,  T Tu u β γ

∆

= ∈ℜu =  denotes the control input 

vector, ( )5 5 5,  h x x&  represents uncertain nonlinearities due to the existence of kα(α). w5,hd is the bounded 

(65)

where k4,1∈R2×2 is a control gain matrix and d4,1 is a positive 

scalar. From the Lyapunov stability analysis given in Reddy et 

al. (2007), one can easily show that ( ) ( )1,1 1, 2lim , 0
t

e t e t
→∞

= e4(t), v4̃,b(t), ε4(t)=0. 

Thus, the system is globally asymptotically stable and all 

signals in the plant, estimator, and controller stay bounded 

in closed-loop operation.

3.5 Model-free output control in aeroelastic system  
subject to external disturbance

Motivated by Chen et al. (2008), the governing Eqs. (1) 

and (3) can be transformed into the following input-output 

representation to facilitate the model-free output feedback 

design

 19

where ( ) 4, 22
4, 2

p×∈ℜY ⋅  is a measurable regression vector and ( ) 2
4, 2 4, 2⋅ ∈ℜY ψ  can be explicitly defined as 

follows 

4, 4,
4, 2 4, 2 4, 2 4, 4, 2 4, 2 2 4, 4, 2 4, 4

4 4

(.)
T

bd bd
b o u bk d

∂ ∂⎛ ⎞ ⎛ ⎞
= − + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

Y k Y D e
y y

% %
υ υ

ψ υ − ψ υ υ          (62) 

where 
4, 2 ∈k 2 2×ℜ  is a control gain matrix while d4,2 is a positive scalar gain. 

4, 2 4, 2(.)Y ψ  have been explicitly 

defined in Reddy et al. (2007). Also Note that
4, 4, ,1 4, , 2 4, 4,

T

b b b b bdυ υ
∆
⎡ ⎤= = −⎣ ⎦% % %υ υ υ  while 

2
4, 4, ,1 4, , 2 4 4,

T

b b b bυ υ
∆

⎡ ⎤= = ∈ℜ⎣ ⎦ Dυ υ  is an auxiliary measurable vector. 2
4, 4, ,1 4, , 2

T

bd bd bdυ υ⎡ ⎤= ∈ℜ⎣ ⎦υ   is a virtual 

control input that can be designed as follows 

4, 4,1 4, 4, 4 4, 0 4, 4 2 4, 4,1ˆ( , , , , , ( ) )bd d d j b= − −Y y y y U I&υ ζ ζ υ ψ                     (63) 

where ( )4,1ˆ tψ  is dynamically generated as follows 

.

4,1 4,1 4,1 4ˆ .TY eψ = �                                   (64) 

Note that 4,12
4,1 4, 4, 4 4, 0 4, 4, , 2( , , , , , 0 )

T p
d d j bυ ×⎡ ⎤ ∈ℜ⎣ ⎦Y y y y& ζ ζ  is a measurable regression vector, 4,1

4,1
p∈ℜψ   is 

an unknown parameter vector and ( )4,1 4,1⋅Y ψ  is explicitly defined as follows 

4
4, 0,3 4, , 3 4, ,1 41

4,1 4,1 4 4,
4, 0, 4 4, , 4 4, , 2 41

1
4 2 4, 4 4, 4,1 4 4,1 4

( )
( )

( )

p
j j

j
j jj

b d d

ζ ζ
ϕ

ζ ζ
−

=

−

⎡ ⎤⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= + +⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠⎣ ⎦

+ − − + +

∑
W y

Y S
W y

U I S y k e e&

ψ

υ

                  (65) 

where 4,1 ∈k 2 2×ℜ  is a control gain matrix and d4,1 is a positive scalar. From the Lyapunov stability analysis 

given in Reddy et al. (2007), one can easily show that ( ) ( ) ( )4 4, 4lim , , 0bt
t t t

→∞
=e %υ � . Thus, the system is globally 

asymptotically stable and all signals in the plant, estimator, and controller stay bounded in closed-loop operation. 

 

3.5 Model-free output control in aeroelastic system subject to external disturbance 

Motivated by Chen et al. (2008), the governing Eqs. (1) and (3) can be transformed into the following input-

output representation to facilitate the model-free output feedback design 

( )5 5 5 5 5, 5,  hd= +x h x x w G u&& & +                            (66) 

where [ ] 2
5 ,  Th α

∆

= ∈ℜx  is the system output vector, [ ] [ ] 2
1 2,  ,  T Tu u β γ

∆

= ∈ℜu =  denotes the control input 

vector, ( )5 5 5,  h x x&  represents uncertain nonlinearities due to the existence of kα(α). w5,hd is the bounded 

(66)

where x5=Δ [h, α]T∈R2 is the system output vector, u=[u1, 

u2]T=Δ [β, γ]T∈R2 denotes the control input vector, h5(x5, ẋ5) 

represents uncertain nonlinearities due to the existence of 

kα(α). w5,hd is the bounded unknown external disturbance 

terms. G5∈R2×2 is a constant non-singular gain matrix for 

which the constant matrix entries g5, ij are explicitly defined 

in Wang et al. (2010). Based on the matrix decomposition 

introduced in Morse (1993) and the facts that both the 

leading principal minors g5,11 and Δ5 are non-zero, G5 can 

be decomposed as G5=S5D5U5 where S5 is a symmetric 

and positive-definite matrix, D5 is a diagonal matrix with 

diagonal entries +1 or -1, U5 is an unknown unity upper 

triangular matrix. For purposes of control design, it’s 

assumed that the signs of the leading principal minors of the 

high-frequency gain matrix G5 are known. After applying the 

matrix decomposition property and multiplying both sides 

of Eq. (66) with T5=ΔS5
−1∈R2×2, Eq. (66) can be rewritten as
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where T5 is a symmetric, positive definite matrix, 

f5(∙)=ΔS5
−1h5 (∙)∈R2 contains unmodeled nonlinearities, while 

w5,d=ΔS5
−1w5,hd∈R2 represents bounded unknown external 

disturbance terms.

The tracking error e5,1(t)∈R2 for the aeroelastic system 

can be defined as e5,1=Δx5,d−x5 where x5 has been previously 

defined in Eq. (66). Here, x5,d ∈R2 is the desired output vector. 

To simplify the subsequent control design, the following 

auxiliary error signals e5,2(t)∈R2 and filtered tracking error 

r5(t)∈R2 are introduced as
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where the input vector x̄t∈R11 for the nonlinear target 

function can be defined as follows

 21
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T T T T
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and ( )1
5 5, 2 5,12 5, 2 5, 2

ˆd U N v−Φ = − . Note that Z will be designed subsequently. Here d5,2  is the second diagonal 

element for the diagonal matrix D5. 5, ijU  denotes the ijth element of the matrix 
5 5 5 5=U D U D− . 

5,
ˆ

iN  and v5,i 

represent the ith element for vectors 5N̂  and v5, respectively. 

In this section, the adaptive control designs cannot be applied since the model of the wing section and 

external disturbance are unknown. Thus, a neural network feedforward compensator 5N̂  along with 

robustifying term v5 are proposed to compensate for this target function N5 and the disturbance signal w5,d. The 

nonlinear target function N5 defined in Eq. (70) can be approximated as a three-layer neural network target 

function of the form (Lewis et al., 2004) 

( ) ( ) ( )5 5 5 5
T T
nn nn= +N x W V x xσ ε                              (72) 

where 5,1 1
5 1,

T pT
t

+⎡ ⎤ ∈ℜ⎣ ⎦x x=  denotes the augmented input vector while σ(·) is the activation function in the 

form of sigmoid function. ( )5,1 5, 21p p
nn

+ ×∈ℜV  is the ideal first layer interconnection weights matrix while 

( )5, 2 5, 31p p
nn

+ ×∈ℜW  denotes the ideal second layer interconnection weights matrix. Here p5,1 + 1, p5,2 + 1, and p5,3 

are the number of node in the input layer, hidden layer, and output layer, respectively. It's also assumed that the 

ideal weights matrix Wnn and Vnn are constant and bounded such that 
nn nnBF

W≤W  and 
nn nnBF

V≤V , where 

WnnB and VnnB are positive constants and 
F

⋅  denotes the Frobenius norm. ( )5xε  is the functional 

reconstruction error vector and assumed to be bounded in a compact set by ( )5 Nε<xε  where Nε  is an 

unknown positive constant related to the number of hidden nodes p5,2 + 1. Based on Eq. (72) and above 

definitions, the typical three-level neural networks compensator for target function ( )5 5N x  is given in the 

following form 
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updated or learned through on-line weight tuning algorithms of the form 
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(71)

and Φ5=d−1
5,2Ū 5,12(N̂ 5,2−v5,2). Note that Z will be designed 

subsequently. Here d5,2 is the second diagonal element for 

the diagonal matrix D5. Ū 5,ij denotes the ijth element of the 

matrix Ū5=D5U5−D5. N̂ 5,1 and v5,i represent the ith element for 

vectors N̂5 and v5, respectively.
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where x̄5=[1, x̄t
T]T∈Rp5,1+1 denotes the augmented input 

vector while σ(∙) is the activation function in the form 

of sigmoid function. Vnn∈R(p5,1+1)×p5,2 is the ideal first layer 

interconnection weights matrix while Wnn∈R(p5,2+1)×p5,3 

denotes the ideal second layer interconnection weights 

matrix. Here p5,1+1, p5,2+1, and p5,3 are the number of node in 

the input layer, hidden layer, and output layer, respectively. 
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constant related to the number of hidden nodes p5,2+1. Based 
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neural networks compensator for target function N5(x̄5) is 
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where Ŵnn and V̂nn are estimated weights. Motivated by 

Lewis et al. (2004), the estimated weights can be updated 

or learned through on-line weight tuning algorithms of the 
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where Fnn∈R(p2+1)×(p2+1) and Gnn∈R(p1+1)×(p1+1) are positive-

definite, diagonal matrices, k>0 is a scalar design parameter, 

while σ̂=σ(V̂T
nnx̄5). The composite idea weight matrix Znn, 

estimated weight matrix Ẑnn, and the neural network weight 

mismatch matrix Z̃nn are defined as follows
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where Kz is a positive constant. Finally, it is noted that the unknown external disturbance wd and functional 

reconstruction error ( )5ε x  are assumed to be bounded. Stability analysis given in Wang et al. (2010) shows 

that if the control gain matrix K5 defined in Eq. (69) is chosen to be appropriately large, the error signals (r5 and 

nnZ% ) for the closed-loop system are uniformly ultimately bounded. 
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compact set for the control input u . Here 
5N̂  and v5 have been defined in the same manner as in Eq. (69). For 

details of the stability analysis of the output feedback control design, the reader is referred to Atassi and Khalil 

(1999). Also note that according to the observer theory, there is a trade off between the speed of state 
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where Kz is a positive constant. Finally, it is noted that 

the unknown external disturbance wd and functional 

reconstruction error ε(x̄5) are assumed to be bounded. 

Stability analysis given in Wang et al. (2010) shows that if 

the control gain matrix K5 defined in Eq. (69) is chosen to 

be appropriately large, the error signals (r5 and Z̃nn) for the 

closed-loop system are uniformly ultimately bounded.

When the only measurements available are the pitching 

and plunging displacements, a high gain observer (HGO) 
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where α5,i ∀ i=1, 2 are gain constants and ε̄ is a small 

positive constant. Note that ê5,2= r̂5−ê5,1. In order to suppress 

the peaking phenomenon due to using HGO, the full-state 

control design of Eq. (69) can be modified into an output 

feedback saturated control as follows
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where sat(∙) stands for standard saturation function 

and saturation is applied outside an appropriately defined 

compact set for the control input u . Here N̂5 and v5 have 

been defined in the same manner as in Eq. (69). For details of 

the stability analysis of the output feedback control design, 

the reader is referred to Atassi and Khalil (1999). Also note 

that according to the observer theory, there is a trade off 

between the speed of state reconstruction and the immunity 

to measurement noise (Ahrens and Khalil, 2009). As we 

know, the HGO could quickly reconstruct the unknown 

system states through applying a large enough observer gain. 
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However, a large gain could also magnify the measurement 

noise (Vasiljevic and Khalil, 2008). A switch control strategy 

introduced in Ahrens and Khalil (2009) can be employed to 

address this problem.

4. Numerical Simulations and Comparisons

In this section, the simulation results for the 2-DOF 

aeroelastic wing section models with one and two control 

surfaces at subsonic/supersonic flight speed regimes were 

presented. The parameters for the wing section model with 

one control surface at subsonic speed were the same as the 

ones used in Ko et al. (1997) and Behal et al. (2006a), which 

are given in Table 1. For the supersonic wing section model 

in the nondimensional form, the parameters were chosen 

the same as Rao et al. (2006) and represented in the Table 2. 

The corresponding parameters for the subsonic wing section 

model with two control surfaces, which have been used in 

(Platanitis and Strganac, 2004; Reddy et al., 2007; Wang et 

al., 2010), are listed in Table 3. The desired trajectory xi,d, ẋ i,d,  

and ẍi,d, in the following sets of simulation were all simply 

selected as zero.

The first set of simulation, under the control designed in 

Table 1. Wing section parameters used in Section 3.1

Parameter Value Parameter Value

a = -0.4 b = 0.135 m

Iα = 0.065 kg ∙ m2 ρ∞ = 1.225 kg / m3

m = 12.387 kg xα = [0.07873 – (b + ab)]/b

Ch = 27.43 kg/s Cα = 0.036 N ∙ s

Clα = 6.28 1/rad Cmα = (0.5 + a) 1/rad

Clβ = 3.358 1/rad Cmβ = - 0.635 1/rad

kh,i = 2844.4 kα,i = [2.8, 62.3, 3709.7, 24195.6, 48756.9]

Table 2. Wing section parameters used in Section 3.2

Parameter Value Parameter Value

xα = 0.25 b = 1.5 m

Ch/m = 0.01 Cα/Iα = 0.01

x0 = 0.5 x1 = 0.75

λ = 1 γ = 1.4

rα = 0.5 U∞ = 565.2 m/s

µ = 50 kα,3/kα,1 = 5

ωh = 376.8 rad/s ωα = 376.8 rad/s

Table 3. Wing section parameters used in Section 3.3-3.5

Parameter Value Parameter Value

a = -0.6719 b = 0.1905 m

s = 0.5945 m ρ∞ = 1.225 kg / m3

rcg = -b(0.0998 + a ) m xα = rcg / b

Ch = 27.43 kg/s Cα = 0.036 N ∙ s

kh,i = 2844.4 mwing = 4.340 kg

Icgw = 0.04342 kg ∙ m2 I = 0.04697 kg ∙ m2

mw = 5.23 kg mT = 15.57 kg

Clα = 6.757 1/rad Cmα = 0 1/rad

Clβ = 3.774 1/rad Cmβ = -0.6719 1/rad

Clγ = -0.1566 1/rad Cmγ = -0.1005 1/rad

kα,i = [12.77, 53.47, 1003] Iα = Icam+Icgw+mwing rcg
2  kg ∙ m2
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Section III-A, was run at freestream velocity U∞=20 m/s on the 

subsonic wing section model with only TECS available. The 

initial conditions for the system states were selected as α(0) 

= 0.1 rad, h(0) = 0 m, and state estimates values were simply 

set to zero. Figure 2 demonstrates the closed-loop plunging, 

pitching, and control surface deflection when the actuation 

was turned on at time zero. It’s straightforward to see that in the 

presence of active control, the system states were stabilized 

to zero fairly rapidly. Also note that the proposed adaptive 

control strategy was able to quickly regulate the plunging and 

pitching displacements with a large parametric uncertainty. 

When the fast actuator dynamics was introduced, the 

difference in pitching time history was imperceptible from 

when there were no dynamics considered, since the poles of 

the actuation dynamics did not interact with the closed-loop 

poles of the pitching and plunging dynamics. However, one 

could expect that the inclusion of slow actuator dynamics 

would degrade transient performance.

When the trailing edge flap was actuated at time t = 0 s, 

Figure 3 illustrates the open and closed loop plunging and 

pitching deflection associated with the control input signal 

design in Section 3.2 for the supersonic aeroelastic model 

given in Eqs. (1), (8), and (9). With the following initial 

conditions: ξ=h/b=0.1;α=0.0 rad, the first set of simulation 

was carried out in the subcritical flight speed regime, 

M̄=2<M̄ flutter=2.15. From Fig. 3, oscillations in the pitching 

axis can be suppressed within 1 s while the vibrations in the 

plunging axis were lightly damped and can be suppressed 

only in about 2.5 s. A second set of simulations is shown 

in Fig. 4 for a freestream velocity above the flutter speed, 

M̄=3>M̄ flutter=2.15 where two cases have been considered. In 

the first case, the control was turned on from t = 0 s, while in 

the second case, the control was turned on at t = 6.5 s such 

that an LCOs was experienced due to the non-linear pitch 

stiffness and the aerodynamic nonlinearities. It’s clear to see 

that the control was very effective if it was turned on at t = 0 

s and the oscillations could be suppressed within 1 s. When 

the control was turned on t = 6.5 s, the proposed control was 

still able to rapidly stabilize the pitching displacement within 

1.5 s and the plunging displacement within 4 s. Also note that 

in above cases that the control deflection remained within 

the actuator capabilities. Simulation results clearly showed 

that the adaptive control strategy was able to quickly stabilize 

the pitching and plunging responses even in the presence of 

large uncertainty in the parameters.

The model described in Fig. 1 was also simulated using the 
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Fig. 2. Closed-loop aeroelastic responses with and without actuation dynamics U∞ = 20 m/s. 
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Fig. 3. Open-/closed-loop plunging, pitching and control deflections time-histories in                       
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supercritical flight speed regime, M  = 3. 

Fig. 3.  Open-/closed-loop plunging, pitching and control deflec-
tions time-histories in subcritical flight speed regime,  
M̄=2<M̄flutter=2.15.
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Fig. 4.  Open-/closed-loop plunging, pitching and control deflections 

time-histories in supercritical flight speed regime, M̄=3.
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controller defined in Section 3.3. The model parameters have 

been chosen to be identical to those utilized in Platanitis 

and Strganac (2004), and both the TECS and LECS were 

constrained to vary between ±15 deg. The initial conditions 

for the system states were selected as α(0) = 0.1 rad, h(0) = 

0 m, α̇(0) = 0 rad/s, and ḣ(0) = 0m/s, while the initial values 

for the parameter estimates were selected as θ̂3,i(0)=0, ∀ i=1, 

..., 17 and θ̂3,s(0)=0.0049. The first simulation was run with a 

freestream velocity of U∞ = 8 m/s < U∞ = 11.4 m/s. Given both 

the trailing and leading edge flaps were turned on at time t = 

0 s, the vibrations in plunging and pitching were suppressed 

within 1 s in Fig. 5. A second set of simulations was carried 

out with similar initial conditions for freestream velocities at 

U∞ = 13.15m/s above the flutter velocity. Initially, the system 

was allowed to evolve without control to produce LCOs until 

t = 15 s. It can be seen, Fig. 6, that both the pitching and 

plunging LCOs were suppressed within 2 s.

Figure 7 demonstrates the responses when both the LECS 

and TECS were actuated at t = 0 s under the control designed 

in Section 3.4 at U∞ = 8 m/s. The initial conditions for pitch 

angle α(t) and plunge displacement h(t) were chosen as α(0) 

= 0.1 rad and h(0) = 0 m while all other variables ḣ(t), α̇(t), ḧ(t), 

α̈(t), state estimate variable, as well as unknown parameters 

ψ̂4.1(t) and ψ̂4.2(t) were initially set to zero. Both the leading 

edge β(t) and trailing edge γ(t) flaps were constrained to vary 

between ±15 deg. It can be seen that both the pitch angle 

and plunge displacements were settled down in less than 1 s. 

The second simulation under the same control law was run 

at post-flutter velocity i.e., U∞ = 13.15 m/s with same initial 

conditions. In order to obtain the LCOs, the control was 

turn off until t = 15 s. At t = 15 s, both the trailing and leading 

edge actuators were switched on and the pitching LCOs was 

suppressed faster than plunging LCOs, whereas the plunging 

LCOs took around 2 s to settle in Fig. 8.

Finally, the simulation results for the algorithms introduced 

in Section III-E are presented. The initial conditions for pitch 

angle α(t) and plunge displacement h(t) were chosen as α(0) 

= 0.1 rad and h(0) = 0 m while all other variables ḣ(t), α̇(t), 

ḧ(t) and α̈(t) were initially set to zero. Since xd, ẋd, and ẍd were 

all bounded signals and chosen to be zero for all time, they 

can be removed from the input set x̄t. Thus, the simplified 

input set can be given as x̄t=[xT, ẋT, ||Ẑ||F]T∈R5. p1, p2, and p3 

were given as p1 = 5, p2 = 10, and p3 = 2. The number of hidden 

layer nodes was chosen through a trial and error method in 

order to obtain best performance. In the following sets of 

simulation, both the leading edge β(t) and trailing edge γ(t) 

flaps were constrained to vary between ±15 deg. The initial 

weight Ŵ is chosen to be zero while the initial weight for V̂ 

is randomly chosen between -1 and +1. Under the proposed 

model-free control, three sets of simulations were carried 
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Fig. 6. Closed-loop pitching, plunging, and control surface deflections with both trailing edge control surface 

and leading edge control surface actuations for U∞ = 13.15 m/s >U∞ = 11.4 m/s. 
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Fig. 6.  Closed-loop pitching, plunging, and control surface deflec-
tions with both trailing edge control surface and leading edge 
control surface actuations for U∞ = 13.15 m/s >U∞ = 11.4 m/s.
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Fig. 5. Closed-loop pitching, plunging, and control surface deflections with both trailing edge control surface 

and leading edge control surface actuations for U∞ = 8 m/s < U∞ = 11.4 m/s. 

Fig. 5.  Closed-loop pitching, plunging, and control surface deflec-
tions with both trailing edge control surface and leading edge 
control surface actuations for U∞ = 8 m/s < U∞ = 11.4 m/s.
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out based on three types of external disturbances introduced 

in (Leishman, 1994). Under the triangular gust disturbance 

defined in Eq. (11), Fig. 9 illustrates that the proposed model-

free control drove the plunge and pitch displacements to 

zero in less than 3 s at pre-flutter speed. At post flutter speed 

U∞ = 13.28 m/s > UF = 11.4 m/s, the closed loop response of 
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Fig. 7. Closed-loop pitching, plunging, and control surface deflections with both trailing edge control surface 

and leading edge control surface actuations for U∞ = 8 m/s < UF = 11.4 m/s. 
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Fig. 8. Closed-loop pitching, plunging, and control surface deflections with both trailing edge control surface 

and leading edge control surface actuations for U∞ = 13.15 m/s > UF = 11.4 m/s. 

Fig. 7.  Closed-loop pitching, plunging, and control surface deflec-
tions with both trailing edge control surface and leading edge 
control surface actuations for U∞ = 8 m/s < UF = 11.4 m/s.
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Fig. 8. Closed-loop pitching, plunging, and control surface deflections with both trailing edge control surface 

and leading edge control surface actuations for U∞ = 13.15 m/s > UF = 11.4 m/s. 

Fig. 8.  Closed-loop pitching, plunging, and control surface deflec-
tions with both trailing edge control surface and leading edge 
control surface actuations for U∞ = 13.15 m/s > UF = 11.4 m/s.
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Finally, the simulation results for the algorithms introduced in Section III-E are presented. The initial conditions 
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In the following sets of simulation, both the leading edge β(t) and trailing edge γ(t) flaps were constrained to 

vary between ±15 deg. The initial weight Ŵ  is chosen to be zero while the initial weight for V̂  is randomly 

chosen between -1 and +1. Under the proposed model-free control, three sets of simulations were carried out 

based on three types of external disturbances introduced in (Leishman, 1994). Under the triangular gust 

disturbance defined in Eq. (11), Fig. 9 illustrates that the proposed model-free control drove the plunge and 

pitch displacements to zero in less than 3 s at pre-flutter speed. At post flutter speed U∞ = 13.28 m/s > UF = 11.4 

m/s, the closed loop response of the system under graded gust given in Eq. (12) are given in Fig. 10. One can 

easily see the convergence of the plunging and pitching displacements to the origin under the proposed method. 

Under a sinusoid-like gust represented in Eq. (13) at post flutter speed U∞ = 13.28 m/s > UF = 11.4 m/s, one can 

see that the proposed model-free controller successfully suppressed plunging and pitching displacements in less 

than 1.5 s from Fig. 11. 
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Fig. 9. Closed-loop pitching, plunging, and control surface deflections with both trailing edge control surface 

and leading edge control surface actuations for U∞ = 8 m/s < UF = 11.4 m/s under triangular gust. 

Fig. 9.  Closed-loop pitching, plunging, and control surface deflec-
tions with both trailing edge control surface and leading edge 
control surface actuations for U∞ = 8 m/s < UF = 11.4 m/s under 
triangular gust.
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Fig. 10. Closed-loop pitching, plunging, and control surface deflections with both trailing edge control surface 

and leading edge control surface actuations for U∞ = 13.28 m/s > UF = 11.4 m/s under graded gust. 
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Fig. 11. Closed-loop pitching, plunging, and control surface deflections with both trailing edge control surface 

and leading edge control surface actuations for U∞ = 13.28 m/s > UF = 11.4 m/s under sinusoidal gust. 
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and leading edge control surface actuations for U∞ = 13.28 m/s > UF = 11.4 m/s under sinusoidal gust. 
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the system under graded gust given in Eq. (12) are given in 

Fig. 10. One can easily see the convergence of the plunging 

and pitching displacements to the origin under the proposed 

method. Under a sinusoid-like gust represented in Eq. (13) 

at post flutter speed U∞ = 13.28 m/s > UF = 11.4 m/s, one can 

see that the proposed model-free controller successfully 

suppressed plunging and pitching displacements in less 

than 1.5 s from Fig. 11.

5. Conclusions

In this paper, several control strategies have been 

reviewed and represented with focus on adaptive control 

schemes. The state estimation methods, control design, and 

stability analysis results are presented in some detail, and are 

elaborated from the authors’ contributions to the literature. 

All these control strategies are focused on the advanced 

single-input and multi-input multi-output adaptive feedback 

control strategies developed for lifting surfaces operating at 

subsonic and supersonic flight speeds. The corresponding 

concepts involving backstepping adaptive control design 

and neural networks are also presented in above paper. 

From the theoretical and numerical results, the efficacy 

of the proposed methods toward suppressing aeroelastic 

vibration and LCOs in supersonic/subsonic flight speed is 

demonstrated.

This paper intends to contribute to the bulk of knowledge 

of active aeroelastic control of lifting surfaces. Advanced 

adaptive control system architectures sensing the changes 

in flight environment, automatically schedule the control 

gains and feedback to promote more optimal response 

characteristics to suppress flutter instabilities and limit 

cycle oscillations, and improved aerodynamic efficiency will 

be required to enhance maneuverability and operational 

effectiveness of revolutionary air vehicles.
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