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Abstract

This paper discusses the development of the control system of a mini quadrotor in Konkuk University for indoor applications. 

The attitude control system consists of a stability augmentation system, which acts as the inner loop control, and a modern 

control approach based on modeling will be implemented as the outer loop. The inner loop control was experimentally satisfied 

by a proportional-derivative controller; this was used to support the flight test in order to validate the modeling. This paper 

introduces the mathematical model for the simulation and design of the optimal control on the outer loop control. To perform 

the experimental tests, basic electronic hardware was developed using simple configurations; a microcontroller used as the 

embedded controller, a low-cost 100 Hz inertial sensors used for the inertial sensing, infra-red sensors were employed for 

horizontal ranging, an ultrasonic sensor was used for ground ranging and a high performance propeller system built on an 

quadrotor airframe was also employed. The results acquired from this compilation of hardware produced an automatic hovering 

ability of the system with ground control system support for the monitoring and fail-safe system.
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1. Introduction

Quadrotor development has gained popularity among 

academic researchers. Developments in research led to the 

proposals of several techniques and methods of modeling 

for the simulation and control design of quadrotor (Altug et 

al., 2002; Bouabdallah et al., 2004; Hoffmann et al., 2007a; 

Jenie and Budiyono, 2006; Mian and Wang, 2008). Quadrotor 

structure and dynamics are simpler than conventional 

helicopter rotors or coaxial-rotors, allowing quadrotor to 

have less control complexity (Canetta et al., 2007; Coelho 

et al., 2007). However, the quadrotor is an unstable system. 

Consequently, the first design issue that must be addressed 

for an autonomous system is developing and implementing 

an attitude stabilization control.

Progress has been achieved during the preparation stage 

in regards to quadrotor development over the course of 

one year. Since the quadrotor contains four powerful rotors 

running at very high revolutions, many obstacles have 

been met and must be overcome. A most pressing obstacle 

is developing an attitude sensing quality. The vehicle 

experiences a high magnetic field produced by the brushless 

motors. Additionally, the vehicle experiences a very high 

vibration from the propulsion system. Only an adequate 

sensor can measure correct values in both circumstances. 

Consequently, we must develop a light-weight device that is 

to be attached on the frame. The challenge finding a low-cost 

inertial sensor performs well.

2. Quadrotor System

The propulsion system comprises 20cm diameter double 

blade propellers and brushless motors assembled on a very 

stiff design of the mainly carbon-fiber airframe. The flight 

control system is driven by an NXP LPC1768, an ARM-7 

microcontroller that operates in 100 MHz of system clock, 

and consists of data acquisition system for acquiring six 

degree of freedom inertial sensor data from XA3300 at 

maximum 100 Hz of frequency and a flight controller that 

processes the control algorithm. The microcontroller directly 

drives the four channels for four electronic speed controllers 
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through an i2c protocol; thus, we feel confident in achieving 

a fast response propulsion system rather than using a pulse-

width modulation speed controller.

Figure 1 illustrates the quadrotor system’s ability to be 

controlled autonomously by the ground control system 

through the 900 MHz of radio modem; otherwise, the pilot 

can take over manually using radio control. The flight control 

system also has ability to auto lock the command input in 

the standby mode as a safety system, and then receives some 

special command input as a password to unlock.

A 1,200 mAh 11.1V Li-Po battery was used to drive all 

the electronics and the four 2,500 rpm/V brushless motors. 

The battery health system in the flight controller prevents 

an uncontrolled situation such as the power going down or 

controls the exhausts during the flight, making the quad-

rotor land automatically. 

Figure 2 shows the three elements required during the 

flight test; the quadrotor itself, the radio controller for manual 

piloting and ground control software on a personal computer 

for monitoring and autopilot. In Table 1 we provide the detail 

of weight of the quadrotor.

3. Quadrotor Modeling

We introduce our quadrotor model based on the dynamics 

involved in the quadrotor as shown in Fig. 3. The main 

motion factor is the four cross configuration rotor’s speed; 

the motion can be varied by changing this speed (Bresciani, 

2010; Leishman, 2002). 

3.1 Equation of motion

The thrust (T1, T2, T3, T4) of each rotor are generated 

from rotation speed of the motors (Ω1, Ω2, Ω3, Ω4) and the 

aerodynamics of the propeller blade. The thrust generation 

represented as following equation: 
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control system. As shown in Fig. 4, the model was divided 
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where Cr is thrust coefficient, ρ is air density, A is blade 

area and Rrad is the blade radius. Quadrotor motion is 
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Table 1. Detail of weight

Component Weight (kg)

Motor + propeller × 4 0.128

Speed controller × 4 0.052

Microcontroller board 0.092

Radio modem transceiver 0.041

Inertial sensor 0.016

Battery 0.117

Radio control receiver 0.010

Air frame 0.126

Total 0.582
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center of interconnection, Iü is the moment of inertia and ki  

drag coefficient which are assumed to be zero in this project 

due to low speed condition.	

3.2 Simulation software

We built the model on MATLAB/Simulink software 

for simulation and as basic reference for designing the 

control system. As shown in Fig. 4, the model was divided 

into several blocks. Each block required its own validation 

process according to the real system. In general it takes into 

consideration the rotor dynamics and quadrotor dynamics. 

We used the rotor transfer function from a previous 

modeling project (Putro, 2010) with an additional response 

time delay due to the communication exchange between 

microcontroller and speed controller. 

4. Control System and Experiment

For validation purposes, we implemented a proportional-

derivative controller on the quadrotor in order to acquire 

flight data to compare to the simulation. (Gurdan et al., 2007; 

Hoffmann et al., 2007b).

4.1 Proportional-derivative control

A control input using a standard helicopter joystick 

radio control was employed in which at least four control 

parameters exist: the vertical control (δcol), longitudinal 

cyclic (δlong), lateral cyclic (δtat) and directional control (δped). 

The input sensitivity regulated by: Kδcol, Kδped, Kδlong and Kδtat are 

necessary for satisfying certain maneuverability. 

Thus, the system inputs are:
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where ψk; ψk; θk are the outputs of attitude control loop.

The first control algorithm that we implemented is shown 

in the Fig. 5. The system consists of a damper and an attitude 

holding for the roll, pitch and yaw. The control linkage is 

represented by the rotor dynamics of the devices that link 

the control output to the dynamics of the vehicle in certain 

constants (Jenie and Budiyono, 2006). The base controller 

uses a reference of zero, also known as the equilibrium, due 

to the hovering mode of the quadrotor. Experiments were 

conducted to determine the control parameters one by one 

for the all members of the SISO from the inner loop to the 

outer.  

Firstly we implemented the proportional control described 

by Eq. (11) for the damper, utilizing the rate gyro sensor data 

to stabilize the angular rate in each axis.
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Where:

CD(s)	 : rate damping controller

gT	 : rate gyro

kp	 : proportional gain for rate damping

CAH(S)	: attitude holding controller

θtcf(s)	 : input reference

θ(s)	 : current position

kD+kds	: PD gain for attitude holding    

C(s)	 : total control output
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the joystick of the radio control that was recorded in the flight 

data. The compensator adjusts the throttle coefficient factor 

due to the battery voltage drop during flight. 
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In order to achieve the hover flight mode, we assumed 
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data. 
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model needed to be linearized around its operating point. 
We decided to linearize the validated model through the 
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Fig. 6. The inner-loop controller of roll, pitch and yaw angle 

stabilization in real system. 
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Fig. 8. Control system as the inner-loop of roll, pitch and yaw 

angle stabilization on simulation. 
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this result.
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Simulink/MATLAB utilities of the control design and analysis 

with some defined trim conditions. We considered the trim 

conditions from the stable condition of the quadrotor during 

the hover mode. The trim condition of each control inputs 

and attitude angles are shown in Table 2.
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Finally, we generated flight data from the simulation in 
order to build a comparison to the real flight data. The 
model generated results that were similar to the real flight 
data. 
 

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1
Roll

a
n
g
le

 (
ra

d
)

 

 

0 5 10 15 20 25
-0.1

-0.05

0

0.05

0.1
Pitch

a
n
g
le

 (
ra

d
)

 

 

0 5 10 15 20 25
-0.3

-0.2

-0.1

0

0.1

0.2
Yaw

time(s)

a
n
g
le

 (
ra

d
)

0 5 10 15 20 25
-10

-5

0

5

10
dLon

jo
s
ti
c
k
 (

%
)

0 5 10 15 20 25
-10

-5

0

5

10
dLat

jo
s
ti
c
k
 (

%
)

0 5 10 15 20 25
-6

-4

-2

0

2
dPed

time (s)

jo
s
ti
c
k
 (

%
)

Flight Data

Model

 
Fig. 10. Validation of Euler angle in roll, pitch and yaw according 
to input excitation from joystick as delta longitudinal, lateral and 

pedal. 
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As shown in Fig. 10, a comparison result of real flight 
data and simulation according to the same input excitation 
from radio control. The attitude was stabilized, and we 
confidently plan to design and implement an optimal 
control based on this result. 
 
4.3 Linearized quadrotor model 

The validated model was a non-linear model; thus, the 
model needed to be linearized around its operating point. 
We decided to linearize the validated model through the 
Simulink/MATLAB utilities of the control design and 
analysis with some defined trim conditions. We considered 
the trim conditions from the stable condition of the 
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each control inputs and attitude angles are shown in Table 2. 
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As shown in Fig. 10, a comparison result of real flight 
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control based on this result. 
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As shown in Fig. 10, a comparison result of real flight 
data and simulation according to the same input excitation 
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By changing Q and R we obtained the result shown in Fig. 
11 with the gain matrix as: 
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Fig. 11. Control responses to stabilize the attitude by linear-

quadratic controller in simulation. 
 

In order to validate the results acquired from the 
simulation, we intend to implement the linear-quadratic in a 
real time system for future studies. Our future work will 
entail improving the K matrix, since the value obtained 
from K matrix appears to be too high in comparison to the 
control gain in the real system.  
 

5. Concluding Remarks 

The quadrotor has already been built has exhibited the 
ability to fly with an inner-loop control. The model has 
already been established, with the inclusion of the same 
feedback control as that of an actual system, such as the 
stability augmentation system. Validation in the hover 
mode was satisfactorily satisfied for designing an optimal 
control based on modeling, such as an linear-quadratic 
controller that has already been implemented during 
simulation. Since the simulated system showed slight 
differences in comparison to an actual system, future 
improvements are necessary. The gain parameter obtained 
from the simulation can be easily added to the embedded 

controller in order to improve the performance of the 
quadrotor attitude control.  

 
6. Further works 

Continuing research for this project is necessary in 
order to establish an autonomous control system using 
modern approaches for real vehicles. We plan to implement 
the linear-quadratic controller as well as other modern 
control techniques in future work. Showing comparative 
results of real flight test data using several modern control 
methods are part of our plans for improvement. An altitude 
holding system will be added to perform a fully 
autonomous hover control system. The quadrotor will then 
be ready to use in flying robot applications. 
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