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Abstract

The repetitive vibrating action of an aerodynamic load causes an external fuel tank’s horizontal fin to experience a shorter life 

cycle than its originally predicted one. Store separation analysis is needed to redesign the fin of an external fuel tank. In this 

research, free-drop tests were conducted using 15% scaled models in a subsonic wind tunnel in order to analyze the store 

separation characteristics of an external fuel tank. The store separation trajectory based on grid tests was also obtained to verify 

the results of the free-drop tests.  The results acquired from the free-drop tests correlated well with the grid tests in regards to 

the trajectories and behavior of the stores separated from the aircraft. This agreement was especially noted in the early stages of 

the store separation.
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1. Introduction

The external fuel tank of an F-5 E/F has a fuel capacity of 150 

gallons. Furthermore, this particular fuel tank is cylindrically 

shaped with a cone-type nose and tail. The tank has vertical 

and horizontal fins that ensure longitudinal and directional 

stability if the tank needs to separate safely from an aircraft. 

Fatigue crack propagation has occurred frequently at the 

after-joint corner of the horizontal fin, which is composed 

of magnesium alloy. Fatigue crack extension occurs mainly 

because of the repetitive vibrating action of an aerodynamic 

load. Thus, the life cycle of the horizontal fin is shortened, 

resulting in a demand to replace magnesium alloy (Kang 

and Yoon, 2008). In order to investigate a new material that 

can replace magnesium alloy and to suggest an optimized 

design, the analyses of separation problems are required. 

Store separation analysis is defined as the determination 

of the position and altitude histories of a store after it is 

deliberately separated or ejected from the aircraft while the 

store is still in the complex non-uniform flow field near the 

aircraft (Spahr, 1974). In earlier studies, store separation was 

conducted mainly in a hit or miss fashion–the stores would 

be dropped from the aircraft at gradually increasing speeds 

until the store closely approached or sometimes actually hit 

the aircraft. Traditionally, separation testing has relied on 

flight tests which comprised a difficult, time-consuming, and 

expensive process (Kim et al., 2006). During the 1960’s, the 

captive trajectory system (CTS) method for store separation 

wind tunnel testing was developed. Prior to this, the free-drop 

testing had been used. The grid test technique is provided as 

an alternative method to the CTS technique (Cenko, 2009). 

Aerodynamic grid data are used to compute trajectories after 

testing, and they allow for numerous parametric studies 

(Veazey, 2004). Recently, the need of wind tunnel testing has 

been recognized for store separation analysis. Such testing 

could be used in the preliminary design stages, ultimately 

reducing the number and magnitude of full-scale flight drop 

tests.

In this research, free-drop tests were conducted using a 

15% scaled model to analyze store separation characteristics 

of external fuel tanks for various flight conditions. In addition, 

off-line 6-degree of freedom program for store separation was 

developed. Store  separation trajectories based on grid tests 

were also obtained to verify the results of free-drop tests.
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2. Free-Drop Test

2.1 Dynamic similarity

Wind tunnel models of most aircraft and external stores 

must be scaled down in order to fit within the wind tunnel test 

section. During free-drop tests, researchers should consider 

the effects caused by gravity and inertial force. When a 

model is scaled down, aerodynamic forces and moments 

decrease in proportion to the characteristic area of the 

model. However, the effect of gravity decreases in proportion 

to the volume of the model. Therefore, free-drop test models 

must be designed to meet dynamic similarity criteria to the 

actual full scale simultaneously with geometric similarities. 

There are three methods for achieving dynamic similarity: 

Froude scaling, heavy scaling, and light scaling (Them and 

Chiang, 1970). 

In this study, the Froude scaling method was employed. 

Each parameter is calculated using following expressions 

(Barlow et al., 1999),
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where λ is a scale factor between the model and full scale, 

and ρ is the density of air. In this research, λ is 0.15. The 

ratio of material density is set to 1 because the difference of 

density can be neglected. The ratio of density (ρmodel/ ρreal) is 

set to 1 because an external fuel tank generally separates at 

low altitudes. 

2.2 The moment of inertia

In order to calculate the moment of inertia (MOI) of a 

real fuel tank, the period is measured using the bifilar swing 

method as shown in Fig. 1. The MOI is calculated using the 

following expression (Yoon et al., 2009),
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where, T is time in seconds for one cycle, D is distance 

between cables, W is the weight of model and L is the 

length of cable, respectively. Then, the MOI of the model 

was calculated by applying the Froude scaling method. The 

model was set to meet the calculated MOI by adjusting the 

internal mass.

2.3 Ejector modeling 

Since the store is released from the body of an aircraft by 

means of piston type ejectors, ejector modeling is a highly 

important parameter. Ground tests of ejectors are the best 

source for data to build and validate building and validating 

ejector models (Keen et al., 2009). These results are given 

in Table 1. The initial downward ejection pressure was 

0.413MPa. Ejector modeling and layouts are illustrated in 

Fig. 2.

Table 1. Measurements and calculated ejection pressure

Item Average Maximum

Measured 
Pressure

Front 4.23 MPa 11.5 MPa
Rear 5.04 MPa 11.02 MPa
Average 4.64 MPa 10.8 MPa

Force
Real 4.4 MN 10.3 MN
Modeling 1.6 N 13.9 N

Calculated pressure 0.275 MPa 0.489 MPa

2.4 Experimental setup and process

A subsonic wind tunnel located at the Republic of Korea 

Air Force Academy was used for conducting the experiment. 

The facility is a continuous, closed-loop, subsonic wind 

tunnel with a test section of 2.45 m high, 3.5 m wide and 

8.7 m long. The turbulent intensity is less than 0.05% for 
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the available test section speed range from 5 to 92 m/s. The 

contraction ratio is 7.26:1, flow angularity is less than 0.1°, 

and the axial turbulence intensity is 0.04% at the free stream 

velocity of 74 m/sec (Cho et al., 2009).

The experimental scheme of a free-drop test is illustrated 

in Fig. 3. The aircraft model was mounted under the ceiling of 

the test section. The store attached on the aircraft was ejected 

by air pressure controlled with a solenoid valve. The control 

of the solenoid valve was synchronized with a high-speed 

camera (500 fps) using a valve control box. The dynamic 

motion of the tank separation from aircraft was filmed by the 

high-speed camera. There was a recovering net in the lower 

portion of the test section in order to protect the models and 

the structure of test section (Yoon et al., 2008).

3. Grid Test

3.1 Determining grid points

Grid points must be located at which the aerodynamic 

loads acting on the tank would be measured must first be 

measured. Grid points were determined by free-drop in 

order to make the covered area large enough for all potential 

trajectories and narrow enough for test efficiency. Grid points 

and the reference coordinate system used for longitudinal 

(X), lateral (Y), and vertical (Z) positioning are shown in Fig. 

4.

The reference line was defined from the results of the free-

drop test; the reference point was (X2, Y2, Z1). Along the 

longitudinal axis X1 was set to be located 32 mm forward and 

had a 3.3° inclined angle with respect to the reference line, 

and X3 was set to be located 64 mm backward and had a 9.9° 

inclined angle with respect to the reference line. Along the 

lateral axis Y1 was set to have a 4° inclined angle with respect 

to the reference line, and Y3 was set to have a 8° inclined 

angle with respect to the reference line. Along the vertical 

axis, 15 points were chosen in order to have a population of 

dense positions close to the airplane. Therefore, aerodynamic 

forces and moments were measured on 135 points.  

3.2 Experimental setup and process

In general, the grid test was performed to validate the free-

drop trajectories. The experimental setup for grid testing 

is shown in Fig. 5. The setup consists of a probe traverse 

system (PTS), PTS computer and balance data measurement 

computer. The store was mounted on the PTS installed in the 
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force increased both of the horizontal and vertical distances 

after the store is separated from aircraft launcher.

The photo image results of the free-drop test are presented 

in Figs. 7-10. Each photo image consists of pictures at same 

time interval. The time interval between the frames of each 

picture was 60 ms.

There were four sets of flight conditions of interest. The 

first in Fig. 7 was Mach number and an angle of attack, (a) M∞ 

= 0 and α = 0°. The second was (b) M∞ = 0.34 and α = 0° which 

is considered as the normal separation condition. The third 

was (c) M∞ = 0 and α = 10°. The last was (d) M∞ = 0.34 and α = 

10° which is considered as an unusual separation condition. 

Comparisons of Figs. 7(a) and (b) were investigated in order 

to examine the influence of velocity on the system. When 

comparing the results of Fig. 7(d) with those of Fig. 7(b), a 

reduced separated distance was observed at a high angle 

of attack. As observed, the higher angle of attack was more 

dangerous than the normal situation.

To investigate the effectiveness of the horizontal fin area, 

attitudes of the separated store were acquired with various 

fin areas. The results of the three free-drop test trajectories 

with various fin areas are presented in Fig. 8, and indicate 

that a discernible difference exists between fins-on and fins-

off. That is, the horizontal fin is essential to longitudinal static 

stability.

The horizontal position of the center of gravity (cg) 

affects the attitude of the separated store. As the cg moves 

aft, the results show that the longitudinal static stability 

of the store decreases. The store in Fig. 9(a) illustrates the 

original cg position, and the store in Fig. 9(b) illustrates a cg 

position 40mm backward. As shown in Fig. 9, the cg position 

influences the horizontal separated distance as well as the 

vertical separated distance because of the affected attitude 

of the separated store.
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An assumption that we maintained during the test 

described above is that the fuel tank is full during normal 

store separation because store separation happens only 

during an emergency after take-off. But, for a situation such 

as dogfighting, unusual separation must be considered. 

Separation of an empty fuel tank is the most dangerous 

scenario because ratio of volume to mass is the highest 

(Keen et al., 2009). A comparison of separation behavior 

was evaluated for the two cases–with fuel and without fuel. 

This comparison is presented in Fig. 10. The most significant 

influence of aerodynamic interference on the store can be 

observed for an empty fuel tank. Because no uniform flow 

by a covering net existed, the attitude of the store changed 

in the end portion of the trajectory. This analysis indicates 

a strong dependence on the separation trajectory to the 

quantity of fuel. 

4.2 Grid test

Wind tunnel data are the basis for high fidelity grid test 

trajectory predictions. Thus, the computer program uses 6 

degree-of-freedom trajectory calculations to compute the 

motion of the store (Kang et al., 2010). 

As the store separation data were obtained from the grid 

test at each grid points, trajectory simulation using these 

data after extrapolation can be compared with the free-

drop test results. This comparison was conducted in order 

to verify the result of the free drop tests. Examination of the 

computational and observed displacement histories in Fig. 

11 exhibits an excellent agreement between the two. Notable 

differences between the computational and observed 

results appear in the latter part of the pitch angle history. 

This is considered mainly due to the recovering net which is 

installed in the lower portion of the test section.
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 To investigate the effectiveness of the horizontal fin 
area, attitudes of the separated store were acquired 
with various fin areas. The results of the three free-
drop test trajectories with various fin areas are 
presented in Fig. 8, and indicate that a discernible 
difference exists between fins-on and fins-off. That is, 
the horizontal fin is essential to longitudinal static 
stability. 
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  The horizontal position of the center of gravity (cg) 
affects the attitude of the separated store. As the cg 

moves aft, the results show that the longitudinal static 
stability of the store decreases. The store in Fig. 9(a) 
illustrates the original cg position, and the store in Fig. 
9(b) illustrates a cg position 40mm backward. As 
shown in Fig. 9, the cg position influences the 
horizontal separated distance as well as the vertical 
separated distance because of the affected attitude of 
the separated store.  
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cases–with fuel and without fuel. This comparison is 
presented in Fig. 10. The most significant influence of 
aerodynamic interference on the store can be observed 
for an empty fuel tank. Because no uniform flow by a 
covering net existed, the attitude of the store changed 
in the end portion of the trajectory. This analysis 
indicates a strong dependence on the separation 

                             (a) 0 mm                                          (b) 40 mm

  

(c) M∞ = 0, α = 10°        (d) M∞ = 0.34, α = 10° 

Fig. 7. Comparision for trajectories with flight conditions. 

 To investigate the effectiveness of the horizontal fin 
area, attitudes of the separated store were acquired 
with various fin areas. The results of the three free-
drop test trajectories with various fin areas are 
presented in Fig. 8, and indicate that a discernible 
difference exists between fins-on and fins-off. That is, 
the horizontal fin is essential to longitudinal static 
stability. 

  
(a) 100% fins              (b) 80% fins 

  
(c) 50% fins             (d) Fins off 

Fig. 8. Comparison for trajectories with areas of fins (M 

= 0.34, α = 0°).  

  The horizontal position of the center of gravity (cg) 
affects the attitude of the separated store. As the cg 

moves aft, the results show that the longitudinal static 
stability of the store decreases. The store in Fig. 9(a) 
illustrates the original cg position, and the store in Fig. 
9(b) illustrates a cg position 40mm backward. As 
shown in Fig. 9, the cg position influences the 
horizontal separated distance as well as the vertical 
separated distance because of the affected attitude of 
the separated store.  

  
(a) 0 mm             (b) 40 mm 

 

Fig. 9. Comparison for store dropping patterns and 

trajectories with the center of gravity (M = 0.34, α = 0°).  

An assumption that we maintained during the test 
described above is that the fuel tank is full during 
normal store separation because store separation 
happens only during an emergency after take-off. But, 
for a situation such as dogfighting, unusual separation 
must be considered. Separation of an empty fuel tank is 
the most dangerous scenario because ratio of volume to 
mass is the highest (Keen et al., 2009). A comparison 
of separation behavior was evaluated for the two 
cases–with fuel and without fuel. This comparison is 
presented in Fig. 10. The most significant influence of 
aerodynamic interference on the store can be observed 
for an empty fuel tank. Because no uniform flow by a 
covering net existed, the attitude of the store changed 
in the end portion of the trajectory. This analysis 
indicates a strong dependence on the separation 

Fig. 9. �Comparison for store dropping patterns and trajectories with 
the center of gravity (M = 0.34, α = 0°). trajectory to the quantity of fuel.  

  
(a) Full                  (b) Empty 
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4.2 Grid test 

Wind tunnel data are the basis for high fidelity grid 
test trajectory predictions. Thus, the computer program 
uses 6 degree-of-freedom trajectory calculations to 
compute the motion of the store (Kang et al., 2010).  

As the store separation data were obtained from the 
grid test at each grid points, trajectory simulation using 
these data after extrapolation can be compared with the 
free-drop test results. This comparison was conducted 
in order to verify the result of the free drop tests. 
Examination of the computational and observed 
displacement histories in Fig. 11 exhibits an excellent 
agreement between the two. Notable differences 
between the computational and observed results appear 
in the latter part of the pitch angle history. This is 
considered mainly due to the recovering net which is 
installed in the lower portion of the test section. 

 

 

 

Fig. 11. Comparison of the grid test and free-drop test 

(M = 0.34, α = 0°).  

5. Conclusions 

Several cases were investigated using free-drop tests 
to examine the store separating characteristics of 
external fuel tanks. From the results, the analyses 
showed that the store could be satisfactorily ejected at 
a Mach number of 0.34. However, serious store 
separation problems occur only if the center of gravity 
is too backward for high attitudes and with fins-off.  

Grid tests were also conducted in order to validate 
the accuracy of the free-drop test. The free-drop test 
and grid test trajectories correlated well with one 
another, especially in the critical early stages of the 
store separation. 
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5. Conclusions

Several cases were investigated using free-drop tests to 

examine the store separating characteristics of external fuel 

tanks. From the results, the analyses showed that the store 

could be satisfactorily ejected at a Mach number of 0.34. 

However, serious store separation problems occur only if the 

center of gravity is too backward for high attitudes and with 

fins-off. 

Grid tests were also conducted in order to validate the 

accuracy of the free-drop test. The free-drop test and grid 

test trajectories correlated well with one another, especially 

in the early stages of the store separation.
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4.2 Grid test 

Wind tunnel data are the basis for high fidelity grid 
test trajectory predictions. Thus, the computer program 
uses 6 degree-of-freedom trajectory calculations to 
compute the motion of the store (Kang et al., 2010).  

As the store separation data were obtained from the 
grid test at each grid points, trajectory simulation using 
these data after extrapolation can be compared with the 
free-drop test results. This comparison was conducted 
in order to verify the result of the free drop tests. 
Examination of the computational and observed 
displacement histories in Fig. 11 exhibits an excellent 
agreement between the two. Notable differences 
between the computational and observed results appear 
in the latter part of the pitch angle history. This is 
considered mainly due to the recovering net which is 
installed in the lower portion of the test section. 
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