
1. Introduction

Formation flying, autonomous rendezvous and proximity 

operations typically require the high precision determination 

of relative attitude and position. The vision-based navigation 

(VISNAV) system can determine these types of information 

during the terminal phase of a rendezvous (Junkins et al., 

1999). The VISNAV system has several advantages such as 

variable sensor size à different size sensors, wide sensor field 

of view, rapid image processing, relatively simple electronics, 

and minimal  six-degree of freedom (DOF) data errors (2 

mm in position estimates and 0.01o in attitude estimates at 

rendezvous) (Gunnam et al., 2002). Recently, space missions 

have relied on global positioning systems (GPS) that are 

integrated with other sensors including inertial navigation 

systems (INS), star trackers, and so on. A GPS-only navigation 

system may not be effective in space missions because it 

is subject to errors, integrity problems due to multipaths 

and other sources, or outage due to blockage, atmospheric 

ionization during re-entry and delta-v maneuvers (Gaylor 

and Lightsey, 2003). Although an integrated GPS/INS 

navigation system may meet the navigation requirements of 

all flight phases of a spacecraft in near-Earth orbit by system 

complementation, the VISNAV system only can meet the 

navigation requirement in the terminal phase of rendezvous 

without any limitations in GPS navigation. The sensor 

measurements used in this work are based on a VISNAV 

system which compromises an optical sensor of new kind 
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combined with the specific flight sources (beacons) to 

achieve  selective or “intelligent vision.” The sensor is made 

of a positioning sensing diode (PSD) placed in the focal plane 

of a wide angle lens (Junkins et al., 1999; Kim et al., 2007). A 

PSD-based sensor is mounted on the deputy vehicle, with 

structured-frequency light emitting diode (LED) beacons 

mounted on the chief vehicle. When the rectangular silicon 

of the PSD is illuminated by the energy from the beacon 

focused by the lens, and this illumination generates electrical 

currents in four directions. These currents can be processed 

with appropriate electronic equipment to estimate the energy 

centroid of an image (Kim et al., 2007). Intelligent vision uses 

the PSD to see only specific light sources, by modulating the 

frequency domain of the chief light and applying relatively 

simple analog signal processing (demodulation). A more 

detailed description of the VISNAV system can be found in 

Junkins et al. (1999) and Kim et al. (2007).

The extended Kalman filter (EKF) has been widely used in 

state estimation. The EKF is based on the approximation of 

the state distribution as a Gaussian random variable (GRV) 

which is propagated through first-order linearization of the 

nonlinear system. The EKF is a suboptimal filter because 

of the truncation of the higher-order terms to linearize a 

system. This truncation can cause large errors in the true 

posterior mean and the covariance of the transformed GRV, 

which may lead to suboptimal performance of estimation 

and sometimes divergence of the filter. The EKF may not be 

able to cope with realistic initial conditions, leading to filter 

divergence. Alternatives that can avoid the loss of higher-

order terms are the unscented Kalman filter (UKF) and 

the particle filter. In this work, the UKF is applied to state 

estimation, because of its robustness under realistic initial 

conditions. The UKF is an extension of the traditional Kalman 

filter. It estimates nonlinear systems and performs the 

unscented transformation. The unscented transformation 

uses set of samples, or sigma points, that are determined 

from the a priori mean and covariance of the state. The sigma 

points completely capture the true mean and covariance of 

the GRV, and when propagates through a nonlinear system, 

they capture the posterior mean and covariance accurately 

to the third order of the Taylor series expansion for any 

nonlinearity (Lefferts et al., 1982). The ability of the UKF to 

estimate nonlinearities accurately makes it attractive for 

estimations of spacecraft relative attitudes and navigation, 

because of course, the state and observation models of 

spacecraft relative attitude estimation and navigation are  

inherently nonlinear.

In attitude representation, Euler angles, quaternions, 

classical Rodrigues parameters (or Gibbs vector), and 

modified Rodrigues parameters are typically used. Among 

these parameters, quaternions are attractive because there is 

no singularity and the kinematic equation is bilinear. As with 

the EKF, the direct application of the UKF with a quaternion 

parameterization of attitude yields a non-unit quaternion. 

The weighted sum of the quaternion samples in the UKF 

does not produce a unit quaternion space because the UKF is 

formulated in a vector space and the quaternion samples do 

not belong to a vector space but lie on a nonlinear manifold. 

To overcome this shortcoming, a quaternion multiplication, 

after neglecting higher-order terms in the error quaternion 

linearization, allows the four-component quaternion to 

be effectively replaced by a three-component error vector 

for the predicted covariance computation and quaternion 

update.

This guarantees that the quaternion unit normalization 

is maintained in the filter (Cheon and Kim, 2007; Crassidis 

and Markley, 2003; Shuster, 1993; VanDyke et al., 2006). 

The vision-based relative spacecraft attitude and position 

estimation based on the EKF under ideal initial conditions 

was researched by Kim et al. (2007). For example, Crassidis 

proposed using the UKF only for spacecraft absolute attitude 

estimation with realistic initial attitude and gyro bias 

measurements. Based on this previous research, this paper 

presents an extension of the UKF formulation to estimate the 

relative attitude, the relative position, and the relative velocity 

instead of the absolute attitude estimation only using the 

VISNAV sensor approach coupled with gyro measurements 

from each spacecraft. The necessary equations for relative 

attitude estimation between two spacecraft are derived. 

The gyro biases of the chief and deputy spacecraft are 

estimated. Like the standard EKF, the direct use of UKF with 

a quaternion parameterization of the attitude leads to a non-

unit quaternion estimate. To overcome this complication, 

this study employs an alternative approach that uses a three-

component attitude-error vector to present the quaternion 

error vector (Shuster, 1993). Several three-component 

representations are possible, including the Gibbs vector, 

which has a singularity at 180o, and the vector of modified 

Rodrigues parameters (MRPs), which has a singularity at 

360° (Shuster, 1993). Since this approach uses only a three-

component representation for the attitude errors, singularity 

is never encountered in practice. Updates are performed 

using quaternion multiplication, naturally maintaining the 

normalization constraint. The error-state vector derived 

in relative attitude estimation is appended to include 

information on the relative position and velocity, the radius 

and the radial rate of the chief, and the true anomaly and 

its rate. Thus, the objective of this paper is to propose a 

VISNAV system which estimates the relative attitude, relative 

position, and relative velocity between the chief and the 
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deputy spacecraft using the UKF under realistic initial error-

conditions. 

2. Relative Equations of Motion

This section provides an overview of the model used to 

describe the relative position and attitude of a bounded 

out-of-orbit plane formation. From this formation, the 

relative equations of motion are then derived. Measurement 

equations are then derived for the VISNAV sensor, providing 

line-of-sight (LOS) vectors between the chief and the deputy 

spacecraft. This section presents the relative equations of 

motion and the methods to establish closed relative orbits. 

The chief inertial position vector is denoted as rc, while 

that of the deputy inertial position vector is expressed as 

rd. The relative position vector σ is expressed in Cartesian 

coordinate components as γ=(x, y, z)T. The rotating reference 

frame used here is the common local-vertical-local 

horizontal (LVLH) Clohessy-Wiltshire (CW) frame. To derive 

the relative equations of motion expressed in CW Cartesian 

coordinates, the deputy position vector is written as rd=rc+ γ. 

This geometry is illustrated in Fig. 1.

If the relative orbit coordinates (x, y, z) are small compared 

to the chief orbit radius rc, then the equations of motions are 

given by

(1a)

(1b)

(1c)

where p is semilatus rectum of the chief, rc is the chief 

orbit radius and θ̇ is true anomaly rate of the chief. These 

equations of motion are used as the system dynamic model 

in the filter. The true anomaly acceleration and chief orbit-

radius acceleration are given by

(2a)

(2b)

For generation of bounded relative motion to be used in 

the simulations, the initial condition at perigee is given by 

Schaub and Junkins (2003)

(3)

where τ and e are the mean motion and the eccentricity of 

the chief, respectively. The equations of motion hereassume 

that all perturbations are ignored. In reality, of course, there 

are many perturbations acting on the spacecraft. To validate 

the estimated states that yield the simulation results discussed 

below, the relative position and velocity are computed 

from two orbits expressed in Earth-centered inertial (ECI) 

reference coordinates and simulated by the high precision 

orbit propagator (HPOP) of satellite tool kit (STK) (Analytical 

Graphics Inc.). The true equations of motion, including the 

perturbations for the chief and deputy, are given by

(4a)

(4b)

where μ is the gravitational coefficient and ∑
n

i
Fi the 

acceleration produced by the perturbations. In the geometry 

of the chief and deputy spacecrafts with the 3-1-3 rotation 

sequence illustrated in Fig. 2, the relative position and 

velocity vectors are derived from the position and velocity 

vectors using the inertial coordinates of the two spacecrafts. 

The Euler angles of the rotation sequence are as follows: 

Ωc, which is the right ascension of the ascending node, ic, 

which is the inclination angle, and θc which is the argument 

of latitude of the chief spacecraft. The position and velocity 

vectors of the deputy in the inertial coordinate are then 

expressed as

(5)

(6)
Fig. 1. �General type of spacecraft formation with bounded relative 

motion.
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where C is the 3-1-3 rotation sequence, C=C3(uc)C1(ic)

C3(Ωc), uc, ic and Ωc is the argument of latitude, the inclination 

and the right ascension of the ascending node of the chaser, 

respectively. γ· is the relative velocity. 

Also, 

(7)

From Eqs. (5) and (6), the relative position and velocity 

vectors are determined as

(8)

(9)

3. �Review on Relative Attitude Kinematics, 
Sensor Models and Unscented Kalman	
Filtering

This section briefly reviews the attitude kinematic 

equations using quaternions, the sensor models, and the 

UKF. In addition, a generalization of the Rodrigues parameter 

is briefly discussed. The quaternion is defined by q=[pT  q4]T, 

with p=[q1  q2  q3]T=êsin( /2) and q4=cos( /2), where ê is the 

axis of rotation and  is the angle of rotation. Since a four-

dimensional vector is used to describe three dimensions, 

the quaternion components cannot be independent of 

each other. The quaternion satisfies the normalization 

constraint qTq=1. The (relative) attitude matrix is related to 

the quaternion by

(10a)

with 

(10b)

(10c)

where I3×3 is the 3×3 identity matrix and [ρ×] is a cross 

product matrix since a×b=[a×]b, with 

(11)

Quaternion multiplication permits successive rotations. 

Here, the convention of Lefferts et al. (1982) and Shuster 

(1993) is adopted, in which multiplies what? by the same order 

as the attitude matrix multiplication, A(q´)A(q)=A(q´⊗q). 

The composition of the quaternion is bilinear, with

(12)

Also, the inverse quaternion is given by q−1=[−pT  q4]. Note 

that q´⊗q−1=[0  0  0  1]T, which is the identity quaternion. The 

quaternion kinematics equation is given by

(13a)

where

(13b)

The local error-quaternion, denoted by δq=[δpT  δq4] and 

defined in the UKF formulation, is represented using a vector 

of generalized Rodrigues parameters (Crassidis and Markley, 

2003; Schaub and Junkins, 1996; Schaub and Junkins, 2003)

(14)

where a is a parameter from 0 to 1, and g is a scale factor. 

Note when a = 0 and g = 1, then Eq. (14) gives the Gibbs vector. 

Furthermore, with a = g = 1, then Eq. (15) gives the standard 

vector of MRPs. The effects of λ and the other parameter a 

to be explained later are demonstrated by simulations in 

Crassidis and Markley (2003). For small errors, the attitude 

portion of the covariance is closely related to the attitude 

estimation errors for any rotation sequence, given by a simple 

factor (VanDyke et al., 2006). For example, the Gibbs vector 

linearizes the half angles. g=2(a+1)is chosen so that ||δp|| is 

equal to  for small errors. The inverse transformation from 

||δp|| to δq is given by8

(15a)

(15b)

Vision-based discrete-time attitude measurements for 

a single sensor are given by Crassidis and Markley (2003), 

Gunnam et al. (2002), Junkins et al. (1999), and Kim et al. 

(2007)

(16)
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where b i denotes the ith observation and the sensor error 

vi is characterized as being approximately Gaussian. This 

satisfies

(17a)

(17b)

where E{ } denotes expectation and I3×3 denotes the 3×3 

identity matrix. Multiple (N) vector measurements can be 

concatenated to form 

(18)

The advantage of using the model in Eq. (17b) is that 

the observation covariance in the UKF formulation can 

effectively be replaced by a nonsingular matrix given by 

σi
2I3×3 (Schaub and Junkins, 1996; Shuster, 1990; Shuster and 

Oh, 1981). Hence, the observation covariance matrix used in 

the UKF from all available LOS vectors is given by

(19)

A common sensor that measures the angular rate is a rate-

integrating gyroscope. For this sensor, a widely used model is 

given by Crassidis and Markley (2003) and Kim et al. (2007)

(20a)

(20b)

where  is the continuous-time measured angular rate, β 

is the drift rate, and ηv and ηu are independent zero-mean 

Gaussian white noise processes with 

(21a)

(21b)

where δ(t-τ) is the Dirac delta function. In the standard 

EKF formulation, given a post-update estimate β̂+
k, the 

post-update angular velocity of the chief or deputy and its 

propagated gyro bias are

(22a)

(22b)

Given the post updates ω̂+
k and q̂+

k, the discrete-time 

propagation of the relative equation of Eq. (13) is given by 

Kim et al. (2007) 

(23)

With

(24a)

(24b)

where

(25a)

(25b)

and Δt is the sampling interval. Note that the matrices 

Ω̄(ωdk
) and Γ̄(ωck

) also commute. In this section, the UKF 

is also reviewed. Many difficulties in the EKF arise arises 

because of its linearization of a nonlinear system. To 

overcome the disadvantages of the EKF, the UKF uses an 

unscented transformation. Unlike the EKF, the UKF does 

not require Jacobian and Hessian computations. Rather, the 

UKF uses a minimal set of sigma points, deterministically 

chosen from the error covariance and propagated through 

the true nonlinear system to capture the posterior mean and 

covariance of the Gaussian random variable accurately for 

the third order Taylor series expansion for any nonlinearity 

(Cheng et al., 2006; Julier and Uhlmann, 2004; Wan and Van 

Der Merwe, 2000). (…to capture …covariance …accurately 

for the …)Consider the system model of discrete-time 

nonlinear equations 

(26a)

(26b)

where xk is the n×1 state vector and yk is the m×1 observation 

vector. Note, that a continuous time model can always be 

expressed in the form of Eq. (26a) through an appropriate 
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numerical integration scheme.7 The process noise vector 

wk and observation noise vector vk are assumed to be zero-

mean and white Gaussian noise, and the covariances of 

these vectors are given by Qk and Rk, respectively. From the 

n×n covariance Pk, a set of (2n+1) sigma points Xk∈
2n+1 can 

be generated by the columns of the matrices (n+λ)Pk . The 

general formulation for the propagation equations begins 

with a set of sigma points with corresponding weights Wi, 

according to the following: 

(27a)

(27b)

(28a)

(28b)

where the matrix Q̄k for attitude estimation  is related only 

to the process noise covariance for Eq. (26a). However, Qk is 

not the corresponding covariance due to the second term in 

Eq. (26a). Note γ= (n+λ)  and λ are convenient parameters in 

taking advantage of whatever knowledge is available of the 

higher moments of the given distribution. In scalar systems, 

where n = 1, a value of λ = 2 leads to sixth order errors in 

the mean and variance that are of sixth order. For higher 

dimensional systems, choosing λ = 3−n minimizes the mean-

squared-error up to the fourth order (Banani and Masnadi-

Shirazi, 2007; Cheon and Kim, 2007). However, caution is 

required when λ is negative since the predicted covariance 

may become a positive semi-definite covariance matrix. Also, 

when n+λ tends to zero, the mean tends to be that calculated 

by the truncated second-order filter. The matrix square root 

(Pk+Q̄k)  can be calculated by a lower triangular Cholesky 

factorization (Julier et al., 1995). From Eq. (27), the matrix χk  

of 2n+1 sigma vectors χi, k is formed as 

(29)

The transformed set of sigma points is evaluated for each 

of the points by 

(30)

where χk+1(i) is the ith column of χk. The predicted mean 

x̂k̄+1 and the predicted covariance Pk̄+1 are computed using a 

weighted sample mean and the covariance of the posterior 

sigma point vectors as

(31)

(32)

The mean observation is given by 

(33)

(34)

The predicted output covariance Pk
yy
+1 is given by

(35)

The innovation covariance Pk
vv
+r is then computed by

(36)

The filter gain Kk+1 is computed by

(37)

and the cross correlation matrix is given by

(38)

The estimated state vector x̂+
k+1 and updated covariance 

P+
k+1 are given by

(39)

(40)

4. Unscented Relative Attitude Filter

This section shows the derivation of the UKF for 

relative attitude estimation. In general, the UKF cannot be 

implemented directly with the equations in Section III because 

of the violation of the unit quaternion constraint. It is difficult 

to compute the means of a set of sigma points because the 

rotation represented by the quaternion does not belong to a 

vector space, but lies on a nonlinear manifold. Furthermore, 

the quaternion is constrained to the three-dimensional 
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unit sphere of a four-dimensional Euclidian space. The 

quaternion predicted mean using Eq. (31) is not guaranteed 

to maintain a unit quaternion because the quaternion is not 

mathematically closed for addition and scalar multiplication. 

This limitation makes the straightforward implementation of 

the UKF with quaternions undesirable. On the other hand, 

an EKF can be designed using this approach, in which the 

quaternion normalization is performed by “brute force.” 

To use the UKF, an unconstrained three component vector 

is used to represent the attitude error quaternion. First, the 

state vector is defined as 

(41)

where δp̂+
k is the updated vector of generalized Rodrigues 

parameters, and β̂+
ck and β̂+

dk are the updated gyro bias of the 

chief and the deputy spacecraft, respectively. Using δp̂+
k from 

Eq. (14), the nominal quaternion is propagated and updated. 

The overall covariance is a 9×9 matrix, and this three-

dimensional representation is unconstrained. The use of Eq. 

(31) causes no difficulty, providing an attractive method of 

attitude representation. First, the vector χk(i) in Eq. (27) is 

partitioned into 

(42)

where χk
δp is the attitude-error, χk

βc(i) is the chief gyro bias 

and χk
βd(i) is the deputy gyro bias. Since the unit quaternion 

is not closed for addition and subtraction, the transformed 

sigma points of the quaternion are not simply constructed, 

while the sigma points for the gyro bias are calculated by Eq. 

(27). Rather, the transformed sigma points of the quaternion 

are also quaternions satisfying the normalization constraints 

and should be scattered around the current quaternion 

estimate on the unit sphere. Therefore, the transformed 

quaternion sigma points are generated by multiplying 

the error quaternion by the current estimate. To generate 

quaternion samples evenly on the unit sphere around the 

current quaternion estimate, both the error quaternion and 

the inverse of the quaternion δq+
i,k and (δq+

i,k)−1 are used. The 

sigma point quaternions are then computed using 

(43a)

(43b)

(43c)

where δq+
k (i)=[δρ+

k
T  δq+

4,k (i)]T is represented by Eq. (15) as

for i

= 1, 2, …, 18 (44a)

(44b)

Eq. (40a) clearly requires that χk
δp(0) be zero since the 

attitude error is reset to zero after the update, and this 

resetting moves information from one part of the estimate 

to another part. For the definition of sigma points, the gyro 

bias part of the chief and the deputy from γ Pk+ Q̄k in Eq. 

(29) are denoted as ζk
βc and ζk

βd, respectively. The sigma points 

corresponding to the quaternion actually depend on the 

quaternion itself, regardless of the chief and the deputy bias. 

All sigma points are constructed as

(45)

Now these transformed quaternions are propagated 

forward to k+1 by Eq. (46) as 

(46)

where the estimated angular velocities of the chief and the 

deputy are given by Eq. (47) as

(47a)

(47b)

Note that χk
βc(0) is the zeroth-bias sigma point given by 

the current estimate χk
βc(0)= β̂+

ck
, χk

βd(0)= β̂+
dk

. The propagated 

quaternion is computed using

(48)

Note that q̂−
k(0) is the identity quaternion. Finally, the 

propagated sigma points can be computed using the 

representation of Eq. (14) as 

(49a)

(49b)

(024-036)10-32.indd   30 2011-04-12   오전 7:32:03



31

Lee.et.al    Vision-Based Relative State Estimation Using the Unscented Kalman Filter

http://ijass.org

with [δρ−T
k+1(i)  δq−

4k+1(i)]T= δq−T
k+1(i). Furthermore, from Eq. 

(22b)

(50a)

(50b)

The predicted mean and covariance can now be computed 

using Eqs. (31) and (32), respectively. The output covariance, 

innovation covariance, and cross-correlation matrices are 

computed using Eqs. (35), (36), and (38), respectively. Next, 

the state vector and covariance are updated using Eqs. (39) 

and (40) with x̂k̄+1=[δp̂+
k

T  β̂+
ck

T  β̂+
dk

T ]T. The quaternion is then 

updated using 

(51)

Note that δq+
k+1=[δρ+T

k+1  δq+
4k+1

]T is represented by Eq. (15) as

(52a)

(52b)

Finally, δp̂+
k+1 is reset to zero for the next propagation. 

5. �Relative Attitude, Position and Velocity	
Estimation

This section shows the derivation of the necessary 

equations for both relative attitude estimation and relative 

navigation, accounting for relative position and velocity. The 

state vector in the attitude-only formulations shown in the 

previous section is now appended to include the relative 

position and velocity of the deputy, the radius and radial rate 

of the chief spacecraft and the true anomaly and its rate. This 

appended vector is given by Kim et al. (2007) 

(53)

The nonlinear state-space model follows Eqs. (1) and (2) 

as 

(54)

In this formulation, the chief radius and true anomaly 

are estimated, along with their respective derivatives. If this 

information is assumed to be known initially, then these 

states can be removed and their observed values can be 

added as process noise in the state model. The necessary 

equations for relative attitude estimation between two 

spacecraft are derived in Kim et al. (2007). Among the 

three ways to represent the state presented in Kim et al. 

(2007) based on the EKF, this work selected the estimation 

of relative attitude and individual gyro biases for the chief 

and the deputy spacecraft. From the derived error-state 

dynamics, the discrete-time covariance matrix is computed 

and is applied equally to the UKF. The linearization process 

makes the following assumptions, which are valid to within 

first-order (Lefferts et al., 1982):

(55a)

(55b)

where δα is a small angle-error correction. Then, the error-

state dynamics for the relative attitude estimation is given by 

Kim et al. (2007)

(56)

with 

(57a)

(57b)

where

(58a)
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(58b)

and the spectral density matrix of the process noise w is 

given by

(59)

For the estimation of relative attitude and the states in Eq. 

(53) together, the error-state vector for the chief and deputy 

gyro bias case is now a combination of Eqs. (53) and (57a) 

as

(60)

with the obvious definitions of Δγ, Δγ·, Δr, Δr·c, Δθ and Δθ·. 
The matrices F and G used in the EKF covariance propagation 

are also used for the UKF sigma point generation in Eq. (27) 

and for the predicted output covariance Eq. (35). These 

augmented matrices are given by

(61)

where X̂ denotes the estimate of X. The partial derivative 

f(X)/ X is straightforward, but for brevity, is not shown 

here. The augmented matrix Gaug is given by

(62)

Defining the new process noise vector as w=[ηT
cv  ηT

dv  ηT
cu  

ηT
dv  wx  wy  wz]T

15×1, the new augmented matrix Qaug is given by

(63)

Solutions for the state transition matrix F in Eq. (56) and 

the discrete-time process noise covariance are intractable 

due to the dependence of both on the attitude matrix (Kim 

et al., 2007). For the convergence of the state, wx, wy, wz in Eq. 

(63) should be properly tuned experimentally, considering 

the scale of the relative disturbances that exist in HPOP 

modeling. A numerical solution is given by van Loan for fixed 

parameter systems, which includes a constant sampling 

interval, the time invariant state, and covariance matrices 

(Brown and Hwang, 1997; Van Loan, 1978). First, a 38×38 

matrix, Ā, is formed as 

(64)

Then, the matrix exponential of Eq. (64) is computed as

(65)

where Φ is the state transition matrix of F in Eq. (56) and 

Q̄aug is the augmented discrete-time covariance matrix. 

The state transition matrix and discrete-time process noise 

covariance are then given by

(66a)

(66b)

6. Simulation Results

6.1 Bounded relative motion

In this section, the performances between UKF and EKF 

approaches are compared several times through simulated 

examples using STK for realistic relative navigation between 

the International Space Station (ISS), which is the chief, and 

the Space Shuttle, which is the deputy. For this simulation, 

a bounded relative motion constraint is applied using Eq. 

(3). The ground tracks and orbits of the two spacecrafts 

appear almost identical. The scenario begins at the perigee 
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of the chief and proceeds over ten hours of bounded relative 

motion. The initial condition for the vector X in appropriate 

units of meters, meters per second, radians and radians per 

second is given by

X(t0)=[200  200  100  0.01  -0.45723  0.01  

6.73173488×106  0  0  0.0011437]
(67)

The simulation time for the relative motion between the 

two spacecrafts is 600 minutes, and step size is 10 seconds. 

The orbit period of the chief is nearly 92 minutes. For the 

entire simulation, the true relative attitude is simulated by 

propagating Eq. (23) using an initial quaternion given by 

q(t0)=[ 2 /2  0  0  2 /2]T and angular velocities given by 

ωc=[0  0.0011  −0.0011] rad/sec and ωd=[−0.002  0  0.0011] 

rad/sec. The gyro noise parameters are given by σcu=σdu= 10

×10−10 rad/sec3/2 and σcv=σdv= 10×10−5 rad/sec1/2 (Kim et al., 

2007). The initial biases for each axis of both the chief and the 

deputy gyros are given as 1 deg/hr. Six beacons are assumed 

to exist on the chief, and their configuration is shown in Fig. 

2. These beacons are assumed to be visible to the PSD on 

the deputy throughout the entire simulation run. Simulated 

VISNAV measurements are generated using Eq. (16) with 

a standard observation deviation of 0.0005 degrees. Each 

covariance sub-matrix for attitude, gyro biases, position and 

velocity is assumed to be isotropic, a diagonal matrix with 

equal elements.

To validate the estimated relative position and velocity, a 

simulation truth model is generated with Eq. (1) by adding 

acceleration disturbances to the right side, which are 

modeled as zero-mean Gaussian white-noise process (Kim 

et al., 2007). However, this model may not be sufficiently 

realistic. To address this issue, a high-fidelity propagator may 

be used instead to generate “true” spacecraft ephemerides. 

For a more realistic validation, both spacecrafts are modeled 

with HPOP of STK (Analytical Graphics Inc.) using the force 

model in Table 1. The simulated truth model is computed 

using Eqs. (5-9). 

Table 1. Inertial propagation force model

High precision orbit propagator

Gravity field degree and order (70 × 70)
Atmospheric drag
Solar radiation drag
Third body gravity (Moon and Sun)

The first simulations with both the UKF and the EKF 

are performed under ideal conditions, i.e. with no initial 

attitude errors, initial bias estimates set to zero, and no initial 

position and velocity errors. The initial attitude covariance is 

set to Patt=I3×3(deg)2, and the initial chief and deputy gyro bias 

covariances are each set to ??. Pbias=4I3×3(deg/hr)2, the initial 

position covariance is set to Ppos=5I3×3m2 and the initial velocity 

covariance is set to Pvel=0.02I3×3(m/s)2. The initial variance for 

the chief position is set to 1,000 m2 and the velocity variance 

is set to 0.01 (m/s)2. The initial variance for the true anomaly 

is set to 1×10−4 (rad)2, and the rate variance is set to 1×10−4 

(rad/sec)2. The gyro and LOS are both sampled at 10 seconds 

intervals for 600 minutes. Also, a = 1 with g = 4, which gives 

four times the vector of MRPs for the error representation, 

and λ = 1 is chosen for these simulations. Figure 3 shows the 

Fig. 2. Beacons configuration in Clohessy-Wiltshire frame4. 

(a) Chief bias estimate

(b) Deputy bias estimate

Fig. 3. Gyro bias estimate.
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accurate estimation of the chief and deputy biases. Figure 4 

shows the attitude errors and respective 3σ bounds derived 

from the UKF and the EKF.

Figure 5 shows that the norm of the attitude errors is less 

than 10−1 deg. Figure 6, the estimated relative orbit, shows that 

the error is bounded by less than ±0.5 m in three-dimensional 

space. Figures 7 and 8 show the relative position and velocity 

errors. There is no significant difference between the UKF 

and the EKF under this ideal condition. These results indicate 

that the UKF does not give any advantages in this case.

In the second simulation, errors of −10° in yaw, −15° 

in pitch and −25° in roll are added to the initial condition 

attitude estimate using Eq. (54), with the bias estimate set to 

zero. The initial attitude covariance is set to (20 deg)2, and 

the initial bias covariance is unchanged. Whereas the EKF 

never converges, the UKF converges to a value below 0.2° in 

attitude errors and respective 3σ bounds before one period 

of the chief as shown in Figs. 9 and 10. The attitude estimated 

by the EKF is not appropriate in this case. 

(a) Extended Kalman filter 

Fig. 6. Estimated relative orbit.

(b) Unscented Kalman filter

Fig. 4. Attitude errors and 3σ bounds.

Fig. 7. Relative position errors. 

(b) Unscented Kalman filter

Fig. 5. Norm of attitude errors. Fig. 8. Relative velocity errors.
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In the third simulation, with initial biases set to zero, the 

initial attitude error is set to zero. Instead, errors of (10 m, 

−10 m and 10 m) are made in the initial relative position 

and errors of (0.5 m/s, 0.5 m/s and 0.5 m/s) are made to the 

relative initial velocity. The EKF takes long time to converge. 

In addition, it never converges to a value below 0.1° in 

attitude errors and respective 3σ bounds stably as shown in 

Fig. 11, whereas the UKF converges to a value near 0.1° from 

the beginning in Fig. 1

The fourth simulation portrays the most realistic 

situation. All initial attitude, bias, position, and velocity 

errors are considered together as in the second and the 

third simulations. The estimation performance of the 

EKF deteriorates throughout the simulation, whereas the 

UKF converges to below 0.2 degrees attitude errors and 

respective 3σ bounds as shown in Figs. 13 and 14. In all these 

simulations, the UKF demonstrates its robustness under the 

initial error conditions. 

Fig. 9. Norm of attitude errors.

Fig. 11. Norm of attitude errors. Fig. 14. Attitude errors and 3σ bounds.

Fig. 10. Attitude errors and 3σ bounds. Fig. 13. Norm of attitude errors.

Fig. 12. Attitude errors and 3σ bounds.
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7. Conclusions
This work extended a previously suggested approach for 

absolute attitude estimation to relative attitude estimation 

and navigation of spacecrafts based on the use of the UKF, 

and evaluated the performance of this extended approach 

for bounded relative motion to verify its robustness under 

initial error-conditions. This work also employed the 

quaternion expression, which was represented by a three-

dimensional vector of generalized Rodrigues parameters, 

to maintain a unit quaternion constraint. For estimations of 

relative attitude, relative position and velocity, the error-state 

vector was combined. The simulation results using the UKF 

were compared with those for the EKF. The states estimated 

by the UKF converged more quickly and precisely with the 

initial error conditions. The estimated relative position and 

velocity were validated by comparing them with the state 

computed from the two orbits generated by HPOP in STK. 

Thus, the implemented UKF demonstrated its robustness 

and showed improved estimation results under realistic 

initial error-conditions. This research shows that the VISNAV 

system using the UKF can provide precise information on 

relative attitude, and relative position and velocity under 

initial error-conditions. 
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