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Abstract

This paper presents a robust tracker design method that is specific to the
trajectories of target aircraft. This method assumes that representative trajectories of
the target aircraft are available. The exact trajectories known to the tracker enables
the incorporation of the exact data in the tracker design instead of the measurement
data. An estimator is designed to have acceptable performance in tracking a finite
number of different target trajectories with a capability to trade off the mean and
maximum errors between the exact trajectories and the estimated or predicted
trajectories. Constant estimator gains that minimize the cost functions related to the
estimation or prediction error are computed off-line from an iterative algorithm. This
tracker design method is applied to the longitudinal motion tracking of target aircraft.
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Introduction

The aircraft tracking problem involves the estimation of current aircraft position and the
prediction of the aircraft’s trajectory at a future time based on past and current measurement
data. When tracking a target aircraft, we are faced with several types of uncertainties, such as
real parameter uncertainties, unstructured uncertainties and input uncertainties. Real parameter
uncertainties typically arise because of unknown or time varying coefficients in the mathematical
model of target plant, such as aerodynamic coefficients, mass and moments of inertia, etc.
Unstructured uncertainties arise from the simplification of plant model, that is, the linearization of
a nonlinear target model and the ignorance of the higher order modeling effects such as structural
dynamics. The unknown control input applied by the pilot and the disturbances such as
atmospheric turbulence corresponds to the input uncertainties. When tracking enemy aircraft, the
unknown pilot input is the most dominant uncertainty.

All these uncertainties disturb target vehicle’s motion and change the trajectory of the
target vehicle. Since the ultimate goal of the tracker is to follow the exact trajectory of the target
as closely as possible based on the past and current measurement data, it is highly demanded in
the practical application of target tracker to design a robust tracker whose performance does not
deteriorate seriously when the target trajectory varies by the uncertainties described above.
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An adaptive estimator that updates its parameters based on the latest measurement data,
may not be a practical way of tracking a target aircraft since it requires excessive computational
load in a real-time tracking scenario. Several attempts to design a robust estimator have been
made. Haddad and Berstein [1] developed a state estimator that provides acceptable performance
over a range of parametric uncertainty by minimizing estimation error bound. The H. synthesis

was applied to an estimator design that would be robust against the uncertainties in the input and
initial conditions [2][3]. A robust estimator design method for a target tracker that accounts for
both structured real parameter uncertainties and unknown inputs has been suggested in [4].

In this paper, as a new robust tracker design method, the Multi-Trajectory tracker is
described, which guarantees the robust performance when tracking different trajectories of
different target aircraft or of the same aircraft with different control inputs. In this
Multi-Trajectory approach, a finite number of several trajectories selected by the tracker designer
are considered and the constant estimator gains are computed off-line that minimize the cost
function related to the error between the exact and estimated trajectories.

The cost function of the Mini-p—norm (MpN) estimator introduced in [4][5] is used in this
approach for the computation of estimator gains. The MpN estimator provides a design parameter
that allows a trade off between small estimator error variance and low sensitivity to unknown
parameter variations. Constant Kalman gains that minimize the Mini-p-Norm cost function under
the constraint of the Riccati equation are computed off-line from an iterative algorithm.

In [4] and [5], white Gaussian noise input is assumed as a system input, and therefore the
estimation error variance is used as a performance metric. However, in this paper, deterministic
input is considered and the standard deviation of the errors between the exact and estimated
trajectories is used as a performance metric. The tracker design with the consideration of
trajectories enables us to handle with a nonlinear target system as well as a linear target.

Mathematical Formulation

In a practical tracking problem, the plant is a nonlinear continuous system, whereas
measurement data, which is analyzed on a digital computer, is available only at discrete time
points. The plant and measurement system are described by the following nonlinear differential
equations:

x(t) = F(x(t),u(t),w(t))
z(t) = nh(x(1)) 1)
y(k) = g(x(k),v(k))

where x is a plant state vector, z is a output state vector we want to estimate, y is a
measurement state vector, f, g and % are nonlinear functions of the plant states, u(¢) is a
plant input vector, w(#) is a zero-mean white Gaussian process noise with spectral density
matrix Q,(¢), v(k) is a zero-mean white Gaussian measurement noise with Covariance matrix

R;, and £k is a discrete time index.

The equations with the time index of % denote discrete time equations. It is assumed that
w(t) and v(k) are statistically independent for all ¢ and %. For the design of a linear estimator,
the nonlinear plant and measurement equations of Eq.(1) are linearized into:

2(t)=A)x()+w(t)
z(t)=H(t)x(t) 2)
v(k)=C(k)x(k)+ov(k)
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where the input #(t) is expressed in terms of white noise since the input to the target vehicle
is never known in the tracking scenario.

It is further assumed that for some time interval the system matrices defining the state
space equations are time invariant. It is very common in the design of tracker that the exact
system matrices are unknown to the designer. Instead a different, perhaps, simpler state space
models of the following form must be used:

x(8)=A,x(8)+ w(t)
z(t)=H,x(t) (3)
y(k)= C,x(k)+uv(k)

The continuous estimator model can be approximately expressed by the following discrete
system if the sampling time of measurement is small enough:

2(k+1)=0,x(k) + I',o(k)

2(R) =H, (k) @

at
A ; . . .
where @,=e ‘At, r,=[ fo eA'sais] and A4t is the sampling time of measurement.

Based on this linearized discrete models, a discrete estimator of the following form can be
designed [6]:

x(k+1) = [0,— KC,0,) x(k)+ Ky(k)

- ° 5
z2(k+1) = Hx(k+1) ©

where x is an estimator state vector, Z is an estimator output vector, and K is the Kalman
gain matrix.

In the tracking problem, the true value of z is to be estimated based on the measurement
data y. The objective of this paper is to find the constant values for the estimator gains K that
guarantee the robust performance when tracking several different trajectories. The estimation
system matrices A,, H,, and C, are assumed to be chosen by the designer by whatever method
he prefers.

Multi-Trajectory Tracker Model

When tracking an enemy target

v
vehicle, the enemy vehicle may S, [ ACu ; X, éy
xy=f(x,,8e,)
perform a severe maneuver to escape e

& 5
v
1 [N .
the bullet, and the trajectory of the X x:\fffg) x DC C‘)Y’ A A RERR,
Y
= Y,

Estimator

target vehicle may be difficult to . ,

predict. =The number of target e

trajectories that are expected to be %, [ ACHe X,

#=f(x,.6e,) - é)

encountered  during tracking is
infinite. A finite set of trajectories
that represent typical flight
trajectories are assumed to be known
and the design of a robust tracker
whose performance does not vary
significantly when tracking any of Fig. 1. The block diagram for the Multi-Trajectory
these given trajectories is the main tracker mechanism
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objective of this paper. The problem of selecting typical flight trajectories is not considered
here.

The block diagram in Fig.l shows the mechanism of the Multi-Trajectory tracker. In this
figure, each trajectory belongs to a different nonlinear target model represented by Eq.(1) or the
same target model but with different inputs. One linear discrete estimator is used to track all the
trajectories. The estimator gains are chosen to minimize the cost function related to the errors

between the exact trajectories z, and the estimated trajectories z.

Multi-Trajectory Estimator

In general tracking approaches, there is no other informations but measurement data.
Therefore estimator gains are chosen to minimize the sum of the squares of the deviation y— 33
where §= COJ?. Minimizing this term is related to the fitting of measurement data. In the

Multi-Trajectory approach, typical flight trajectories are selected by the tracker designer and
those exact trajectories known to the tracker enables the incorporation of the exact data in the
tracker design instead of the measurement data. An estimator can be designed which would
minimize the difference between the exact states and the estimated states of interest and minimize

the sum of the squares of the deviation z— Z, i.e. minimize the quantity:

JE = 3, 3% PALR) — 2R W) — A1) 1oy -

where W is a symmetrical positive definite weighting matrix, #, is the number of measurement
data for each trajectories, / is the number of trajectories, f; denotes f of the i-th trajectory,

and P; is the probability of tracking the i-th trajectory.

Multi-Trajectory Predictor

In the last section, a design method for estimating current position is discussed. However,
in the practical application tracker performance depends mainly on the prediction of future position
rather than the estimation of current position. Prediction refers to estimating the states at a
future time. In order to mathematically develop a Multi-Trajectory predictor, the prediction error
defined as below is considered.

e(k+ T,)=2(k+ T,)—2(k+ T,lk)

where T, is the prediction time.
In the predictor design, the following cost function should be minimized.

J(K)= Z} ;:flpi{ [2(k+ T, ) = 2(k+ T, D1 Wla(k+ T,) —2(k+ TR} ,_, (D

The prediction by the tracker is accomplished on the basis of the current estimation
according to the following equations:

x(1)=Ax(t) (8)
Prediction from time #, to time #,+ T, is done by solving Eq.(8):

2(k+ T B =e™"x(k) 9)

The future output state vector z(k+ TJk) in Eq.(7) is computed from the estimated states,
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x(k) by using Eq.(9) and the relation of 2(k+ TJR) = H,x(k+ TJF) .

Mini-p-Norm Tracker

Robust tracking performance can be obtained by introducing a Mini-p—norm(MpN)
estimator with the following cost function which is related to the p—norm of the estimation error
variances calculated for each trajectory [4]:

K= Z(P. (K (10)
where
Ji= Z:l{[z- 21"Wlz— 21}y , (11
z=2z(k), z= z(k) for the estimator and z=2z(k+ T,), z= z(k+ T,l|k) for the predictor.

Note that (P;J)”* ~! has a role of a weight function since Eq.(10) can be rewritten as follows:
K= 2P, 1) (P 12

When P;J; is large, (P;J)?"! is large and when P;J; is small, (P;J)?! is small for
all p > 1. Therefore (P;J)”"! gives more weight to the large contributors in the performance
index and less weight to the smaller ones. When p = 1, the MpN estimator minimizes the sum of
all P;J; (or equivalently, the mean value of P;J;) and when 'p” approaches infinity, it minimizes
the maximum value of P;J; . The choice of the value of 'p’ depends on the designer, that is, 'p’

acts a new design parameter for the robust tracker.
The following section will discuss the mathematical procedure to find estimator gains K,
which minimize J(K) in Eq.(10).

Computation of the Kalman Gains for the MpN Tracker

The computation of the optimal values of estimator gains K minimizing the cost J(K) of
Eq.(10) is not practical or may not be possible if the number of measurement states is more than
one. Instead, as the suboptimal gains which minimize J(K), we can choose the best estimator gains
among the following Kalman gains computed from the steady state discrete Riccati equation [7].

K=0,SHI[H,SHT+ R] ™! (13)
S=0,(I-SHI[H,SHT+ R "'H)SoI+ QI (14)

The last term, FOQOI",,T , of Eq(14). should be used as a design parameter. Since the number

of elements in I',Q,I'7 may be too many to compute, it is desirable to reduce the number of
unknown elements. It may be assumed that the noise entering each channel is independent of and
uncorrelated to each other so that I'y= I and the non-diagonal terms of @, are all zero. Then,

the matrix @, can be expressed as

Qo(l,l) 0 b 0
Q=] ¢ Q22 - 0 (15)
0 0 Qa(n'xnnx,)

where 7, is the order of the tracker model. The best values for Q,(7,7) for i=1,2,, n,
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minimizing J(K) can be obtained by the Newton-Raphson method [8]. Define a design parameter
vector £ as:

E=[Q,(1,1) Q2,2 - QJn,,n )" (16)
The Newton-Raphson iteration is:
E,,H=$"—a(véf)_lv$] (0<a<1) (17)

where subscript ‘n’ is an iteration number and

3 [ 3% it A & |
7.% 06,106, 06106 €10,
A , 9°J 0’7 .. 9
veJ(O=| 3& |, VEi(O=| 9608 35,08, EDE, (18)
oL 8% 13
9. | 3,08, 06,08  9E,0E,

Using the chain rule, we calculate the gradient and second gradient of the cost function J as:

% =2 le P! L—”‘l,ﬁ‘,{[z— 2]TW[—3—§]}f=L (19)
Fﬁ% =2 Z“p(z)— 1) P? L‘"z(g{[z—il TW[—g—é]]fzﬂ)z (20)
v2 %Py L»-ﬁ’;ﬁ%fwtﬁ—én[[z—Q]TW[— agjfém ]]H
-

It is advised to neglect the second gradient term 8437825 since this second derivative
1 m

term approaches its expected value of zero for £ near the true parameter value and the resulting
second derivative matrices may not be positive definite while the computation of this second
gradient term is excessive [9].

The gradient of Z is approximated by

05 2&+ag)— (&)
P 0

where 0&; is a small perturbation of the i-th parameter, ie. Q,(7,7) in our case. The

(21)

magnitude of the perturbation must be small enough to ensure a linear variation in response, and
large enough to avoid round-off errors inherent in the digital computer. The optimal magnitude
of the perturbation depends on the machine precision, the units of the states, and the scaling used.

Applications

The Multi-Trajectory MpN estimator introduced in this paper is applied to the longitudinal
motion tracking of several aircraft. In this longitudinal motion tracking problem, the vertical
position of target aircraft is to be estimated.

The linear equation of longitudinal motion of a target aircraft can be expressed by a 5th
order state equation as shown in Eq.(22) where the state vector has the following elements: the

forward velocity u, the vertical velocity w, the pitch rate g, the pitch angle € and the vertical
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position z. The positive direction of the vertical position (z) is downward. The system input is an
elevator deflection angle &,.

u X, X, - 0 —gcosy, O07[u X,
w Z, Zw Z,4U —gsiny, 0||w Zs,
q|=|MAMZ, Mg+ M, Z, Mg+ M, U — M, siny, 0|| q|+|Ms+M, 2|8, 22
0 0 0 1 0 0| ¢ 0
z 0 1 0 -U 0jl z 0

If the matrix A, of the estimator model could be determined to be identically the same as
the A matrix of the linear plant model, it will be a perfect model. Unfortunately the parameter
values in the A matrix of the plant (target aircraft) are not known and are time-varying. The
optimal values for those parameters may be found along with the optimal estimator gain matrix
K with much more complicated computing algorithm. To concentrate on the main subject of this
paper, the A, matrix are assumed to be chosen properly by the designer.

24 Different Flight Cases

The example of tracking 8 different aircraft is examined where each aircraft experiences one
or more flight conditions. The flight data such as velocity and altitude of 24 different flight cases
were obtained from [10][11] and listed in Table 1. The 24 different trajectories were generated
from the linear plant model of Eq.(22). The deterministic elevator input was applied to the plant
for the simulation of longitudinal motion. The magnitude of this elevator input was adjusted such
that the maximum acceleration in the vertical direction becomes 2g for each flight case where g
is the acceleration of gravity. 2¢ was chosen to represent a moderately large pattern of jinking

maneuver. The exact vertical
Table 1. 24 Difference Flight Cases of 8 Different Aircraft  position data of all the simulated
trajectories are illustrated in Fig.2.

Flight No. | Aircraft | Velocity (ft/sec) | Altitude (ft) | Mass (slug) It 4o sssntiiad that the verteal
FC #1 F-104A 287 0 14126 position (z) of the target is measured
Eg :i ijﬁ 1222 g :gggg and the RMS(Rgot Mean Square)
FC #4 A4D 3 0 22058 measurement noise is 10 ft. To
FC #5 A-4D 447 0 17578 generate measurement data, white
EC #6 A—4D 950 0 17578 noises obtained from a random
FC #7 A-4D 423 15000 17578 number generation program were
FC #8 A-4D 634 15000 17578 multiplied by the measurement noise
FC #9 F-4C 230 0 33197 intensity F, and added to the exact
FC #10 F-4C 893 0 38925 trajectories. In this example, only the
FC #11 F-4C 1228 0 38925 estimation errors are considered, that
Eg ﬁ}i :g: Zgg ‘2888 ;ggg is, the estimator is designed to

i ‘] - . . .

=¥ == 50 0 11250 minimize J(K) in Eq.(10), where P;
FC #15 | NT-33A 28 0 11800 =1/24 and | =24. Mean square
FC #16 | NT-33A 447 0 13700 estimation errors are used for the
FC #17 | NT-33A 782 0 13700 performance comparison of the
FC #18 B-52 627 10000 325000 tracker.

FC #19 B-52 627 10000 406000 Fig.3 illustrates the mean
FC #20 B-52 627 10000 488000 square estimation errors of the
FC #21 B-1 952 0 227790 Multi-Trajectory MpN  estimator
FC #22 | GC-5A 245 0 580756 with p =1, 5, 10, and 50. This figure
FC #23 C-5A 502 0 654399 shows that the mean square
FC #24 C-5A 726 0 654399

estimation error of the 4-th flight
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Time(sec) Flight Cases
Fig. 2. The vertical position of 24 trajectories  Fig. 3. The effect of p on the performance of
generated by a linear simulation the Multi-Trajectory MpN estimator for

the 24 different flight cases

condition is the largest. As p increases, the mean square estimation errors at the 4-th flight
case decrease; therefore the sensitivity to parameter variations reduces. However, the mean
square estimation errors at the other flight cases increase resulting in the increment of the sum
of mean square errors.

Note that the maximum mean square error obtained with p =50 is almost the same as the
one obtained with p =5, while the sum of mean square errors obtained with p =50 is much
larger. Therefore the Multi-Trajectory MpN estimator designed with p =5 may be considered as
the most favorable estimator for this example considering its low sensitivity and low sum of
mean square error.

This example shows that the Multi-Trajectory MpN estimator guarantees the robust
performance when tracking several types of trajectories and with design parameter, p, the
tracker designer can deal with the maximum mean square error and the average mean square
error simultaneously.

Three Maneuvers of a T-38 Aircraft

In this example, a nonlinear target model is considered and the prediction performance of
the tracker is investigated. One level flight and two longitudinal maneuvers (5g pull-up and 2g
dive) of a T-38 aircraft were generated by a nonlinear flight simulator program. These
maneuvers are primarily in the inertial z-direction. The exact trajectories of these maneuvers are
described below:

o Level flight : The aircraft moves in a straight and level flight at the speed of 620 ft/sec.

o 5g pull-up : At the start, the aircraft moves in a straight and level flight at the speed of 620
ft/sec, the pilot pulls up the elevator stick with full thrust to reach as much as a 5g load factor
and then the pilot pushes back the stick to end in a level flight.

o 2g dive : At the start, the aircraft moves in a straight and level flight at the speed of 440
ft/sec, the pilot pushes the elevator stick to dive until the aircraft reaches a negative 2g load
factor, and then the pilot pulls up to end in a level flight.

Target attitude angle measurement as well as position measurement are incorporated in
this example. The RMS noises in the position and pitch angle measurement data are assumed to
be 10 ft and 5 deg respectively. The Multi-Trajectory MpN tracker minimizing in Eq.(10) for 2
second predictions is designed with p =1 and the ‘exact and the predicted trajectories are
compared. The Multi-Trajectory MpN tracker with p =1 minimizes the sum of the mean square
errors when tracking all three maneuvers at the same time.

Fig.4, Fig.5 and Fig.6 show the 2 second predicted trajectories of the Kalman filter designed
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by considering only one maneuver at a time. Note that when considering only one maneuver, the
Multi-Trajectory MpN tracker with p =1 becomes the standard Kalman Filter. The prediction
performance of the Multi-Trajectory tracker considering all three maneuvers is illustrated in
Fig.7.

Table 2 represents the standard deviations of the prediction errors of the Multi-Trajectory
tracker, which considers all three maneuvers, and three Kalman filters each of which is designed
for one maneuver.

The Kalman filter designed for the level flight maneuver shows the excellent prediction
performance as shown in Fig.4 when tracking the level flight maneuver as expected. However,
this Kalman filter has very larger prediction errors when tracking the 5¢ pull-up and the 2g dive
maneuver, This is because the estimator designed only for the level flight does not much rely on
the measurement data and the estimator gains are very small

The Kalman filter designed for the 2g dive maneuver(Fig.5) has a little better prediction
performance when tracking 2g dive maneuver than the Multi-Trajectory tracker. However it
shows definitely larger overshoot in the 5g pull-up maneuver tracking.

The Kalman filter designed for the 5¢ pull-up maneuver(Fig.6) has slightly better prediction
performance when tracking the 5g pull-up maneuver than the Multi-Trajectory tracker. However,
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it shows a little bit worse performance in the 2g dive maneuver tracking.

Table 2 shows that when tracking all three maneuvers, Multi-Trajectory tracker has the
smallest prediction errors. Even though the performance of the Multi-Trajectory tracker is only
slightly better than that of the Kalman filter designed for the 5g pull-up maneuver in this
application, the Multi-Trajectory tracker always guarantees the most robust performance.

Table 2. The standard deviations of the 2 second prediction errors of the Multi-Trajectory
MpN estimator with p=1 and three Kalman filters

Maneuver Types
Tracker Types X )
Level Flight 29 dive 5g pull-up all maneuvers
Kalman filter (Level Flight) 7.1 360.1 147.4 224.7
Kalman filter (2g dive) 378 465 83.7 59.8
Kalman filter (5g pull-up) 33.0 59.1 65.4 54.4
Multi-Trajectory tracker 314 512 67.0 51.9
Conclusions

As a trajectory-based approach for the design of a robust tracker, the Multi-Trajectory
tracker was introduced. The Multi-Trajectory tracker uses the estimator gains that minimize the
p-norm of the estimation or prediction error in tracking several target trajectories. The
introduction of the p—norm provides the tracker designer with a capability to trade off the mean
and maximum estimation or prediction error between the exact trajectories and the estimated
trajectories.

To reduce the computational burden, estimator gains were constrained to be Kalman gains.
The diagonal elements of the process noise intensity matrix were used as design parameters. The
best values of these parameters that minimize the trajectory based cost function were computed
by the Newton-Rapson method, and the steady state Kalman gains were computed by solving the
Riccati equation with these parameter values.

The Multi-Trajectory tracker was applied to the longitudinal motion tracking of target
aircraft. In two examples, the Multi-Trajectory tracker shows the robust performance in tracking
different target maneuvers generated by linear as well as nonlinear simulation models.

The Multi-Trajectory tracker is suitable for the practical application since the estimator
gains are computed off-line and the real estimation errors are considered instead of the estimation
error variance, which is computed under the assumption of the Gaussian white noise input to the
system. This approach would be reliable when the type of trajectory encountered during tracking
is similar to one of the typical trajectories considered in the design. The proper choice of the
typical trajectories, which is beyond the scope of this paper, is important in this approach. During
the initial tracking stage of target aircraft, a set of expected trajectories which is stored as
database for the tracker system could be chosen and then the tracking performance of the
Multi-Trajectory tracker based on these trajectories can be considerably enhanced.
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