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Abstract

A new co-evolutionary algorithm, of which the convergence speed is accelerated
by neural networks, is proposed and verified in this paper. To reduce computational
load required for co-evolutionary optimization processes, the cost function and
constraint information is stored in the neural networks, and the extra offspring group,
whose cost is computed by the neural networks, is generated. It increases the offspring
population size without overloading computational effort; therefore, the convergence
speed is accelerated. The proposed algorithm is applied to attitude control design of
flexible satellites, and it is verified by computer simulations and experiments using a
torque-free air bearing system.
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Introduction

A great number of control techniques for aerospace systems have been proposed. The earlier
groups are mainly based on the classical PID design approaches(e.g.[1][2]), while the others
employed the advanced modern control approaches(e.g.[3]-[5]). The latter methods provide fine
performance, sometimes even better than that of the classical ones. However, many of them are
too complicated to go on board and have few flight histories. Generally, aerospace engineers are
still hesitating to employ new technologies that aren’t flight-proven yet.

Meanwhile, well-designed classical controllers provide fair performance, and are already
flight-proven. However, the performance of them mainly depends on the designer’s inspiration. To
clear up the difficulties, directly optimizing controller gains is often employed[6].

Evolutionary algorithms with proper cost selection automate the gain selection process. It is
an appropriate tool for problems with a single cost function and no constraint. However, many of
practical design problems fall into constrained optimization problems. Robustness-stability
conditions can be formulated as constraints, and physical constraints like actuator limits can be.

Recently developed Co-Evolutionary Augmented Lagrangian Method (CEALM), which is
powerful for solving constrained optimization problems, is one of solutions[7]. Once the cost is
properly chosen, the Lagrangian function is formulated, and augmented for convexity. Setting and
solving given design problem as a minimax game between the controller gain group and the
Lagrangian multiplier group, we obtain the optimal controller, which satisfies all the constraints.
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The CEALM is suitable for the practical controller design problems that have a few requirements[8].

For general evolutionary optimization techniques, the cost value is frequently computed,
resulting in a heavy computational load. In this paper, a new co-evolutionary algorithm, whose
convergence is accelerated by neural networks, is proposed. Cost evaluation is the most
time-consuming process in practical optimization problems, but conventional evolutionary
algorithms use cost information only for fitness evaluation. In the new algorithm, the cost
information is not discarded but stored in the neural networks for further use. The neural networks
is trained from the early stages of evolution. After sufficient training is achieved, the Extra
Offspring group, whose cost is computed by neural networks, is generated. It increases, doubles
or triples the offspring population. For most practical problems, the computational load required for
neural network training or computation is much smaller than that required for evaluation of the
original cost. Therefore, the convergence of the population is accelerated.

In this paper, acceleration methods for co-evolutionary algorithms are proposed. As an
application, a single axis attitude control of a flexible space structure is considered. Finally, it is
verified by nonlinear computer simulation, and experimentally demonstrated on a torque-free air
bearing test facility.

Accelerated Co-evolutionary Algorithms

Acceleration Methods

For most practical optimization problems, the cost is determined by complicated functions
such as integration or transcendental functions. Moreover, the evolution-based algorithms need cost
evaluations very frequently, which results in a heavy computational load and time[9]. Increasing
population size is definitely the best way to help the groups converge in the early stages of the
evolution, but in that case, every single generation takes much more computation time, and
termination time itself doesn’t always reduce. The population size is one of the parameter that
directly determines the convergence speed. Usually, the population size is experimentally
determined for increasing population leads to increased computational load.

The accelerated evolutionary algorithms are motivated from the universal approximation
property of the multilayer feedforward neural networks[10]. In the new algorithm, the cost
information is reused to train the neural networks. The neural network weights are adapted
whenever the cost is evaluated. After the cost evaluation process, the Extra Offspring group whose
cost is computed by the neural networks is generated. The number of extra offspring population
is to be determined exploratory. The larger extra population size tends to accelerate the
convergence more, but can lead itself to wrong evolutionary directions. Hence, proper selection of
the size determines the convergence characteristics. A similar size of the normal offspring group’s
is a modest choice. One might vary the size from generation to generation to improve the
convergence speed. After the extra offspring generation, the ordinary offspring group and the extra
offspring group proceed to the fitness check step together.

Accelerated Co-evolutionary Algorithms

Co-evolutionary algorithms are originally developed for solving minimax problems[6][11], and
can bhe applied to constrained optimization problems with Co-evolutionary augmented Lagrangian
method[7]. It simulates a competitive evolution of two groups of opposite objectives; one tries to
minimize the given cost function while the other tries to maximize. Same rules for reproduction,
and mutation of evolutionary algorithms can be adopted for co-evolutionary algorithms.

The core idea of accelerated co-evolutionary algorithms is an improvement of that proposed
in [12], with introduction of the extra offspring concept. The neural networks learns cost information
and constraint information, and the extra offspring group of the two groups are generated. Each
group evolves in the following way, in the accelerated co-evolutionary algorithm(ACEA).
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A Numerical Example

. Cost evaluation for extra offspring (cost obtained by neural network computation)

Ex.1) For the following plant, find the proportional feedback gain that maximizes the closed-loop

system agility, with the overshoot less than 20%.

Plant Dynamics : G(Q:ﬁ

The design statement is equivalent to the following constrained optimization problem.

Minimize : — min(|w,|)

Table 1. ACEA Parameters for the example

Subject to : max(y)<1.2

Number of Parents( N, ) 20
where w, is the natural frequency of the Number of Offspring( N, ) 50
closed-loop system, and y is the output -
historics. Number of Extra Offspring( N, ) 50

The parameters in Table 1 are Selection Type (g, 2)

employed for the acceleration scheme. The Singl hidden 1aver
sigmoid activation function is employed for Network Type Sigmoid
the neural network implementation.

Number of Hidden Nodes 10

The co-evolution histories are
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presented in Fig. 2 and Fig. 3. Histories by the accelerated algorithm and the conventional
algorithm are provided for comparisons. represents the deviation of the best cost from the
optimal cost . The deviation history is appended for fair description of convergence. The
proposed algorithm clearly accelerates the convergence. Almost all of the trials in the
accelerated algorithm converged in tolerance of within the 15'th generation, while the
original algorithm did not.

(@) K histories (a) K histories

(b) J histories

(c) Je histories (c) Je histories
Fig. 2. ACEA histories Fig. 3. CEA histories
( N,:N,:N,, = 20:50:50) ( Ny:N,: =20:50)
Applications

Flexible Space Structures

Future space missions will need extremely high technology, which are unreal today, and
spacecrafts will be equipped with complex electronics and structures. Then, more complicated
attitude control is required for considering oscillatory motion caused by the structures[13].
Usually, very stiff materials are selected for structures so that the natural frequency becomes
higher. In fact, small external force/torque is exerted on a satellite in the space environment,
non-stiff materials are enough. Stiff materials are preferred not only for structural safety, but
also for easy attitude control in this case. If attitude control algorithm confidently covers the
structural vibration, more flexible and light materials can be used and it enables inexpensive
production, and low-cost launch. Some experimental, brave missions employ non-metal flexible
structures, wires, thin panels, and membranes, etc[14]. That makes attitude control harder.

In this chapter, a single axis attitude control of flexible space structures is concerned. A
flexible satellite is mathematically modeled, and an attitude controller is to be designed by the
accelerated co—-evolutionary algorithm.

Dynamic Modeling

The flexible structures are simplified to the two-body system connected to each other by
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flexible wires. The free-body diagram of the two-body system is shown in Fig. 4.
From the dynamic equation of rotational motion,

J,6,=4rFsing¢+ T,
Joby=—4rFsing
Jity= T

Fop=(m+my)g

48,
myg
Fig. 4. Simplified free-body diagram

Table 2. Mechanical Properties of the System

Ty (kgm®) Jo Ckgm®) T kgm®) my (kg ) r(m) 1(m)
0.232 0.0783 2.387e-4 3.98 0.110 0.775

Table 3. Parameter I[dentification

Estimated |dentified
Zero( z) +2.77¢ —0.0695 +2.796:
Pole( p) 0, £3.217 0, —0.0145+3.157:
Torsional
Stiffness( K) 0.609 0.577

The subscript 1, 2 and w represents the upper body, the lower body, and the reaction wheel,
respectively. [ is the length of the wire, and » represents the horizontal distance between the center
of rotation and the wire link. ¢ represents the torsional deflection angle of the wire with respect
to the vertical center plane, which can be restated with 4, and 6, for small ¢ and (8,—6,).

lp=nr6,— 6,)

F, which is the tensile force exerts on each wire, can be represented by the appendage
mass my.
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4

Defining a new constant K, which stands for the torsional stiffness,

F=

ngy?

7
The system dynamic equations are completed as follows.

K=

00 _K/f| K/, q /7

a0 0 K/f:z — K/ | a + 0 T.
10 0 0 0, 0 ¢
01 0 0 0, 0

Poles and zeros of the natural oscillatory motion are located at,
m'grz
2=*i| —
. (f|+]’:)m-)g7’2
= + AT Bl Y= LA
»=0, AZV Nl

The numerical data, and identified parameters, which are used for simulation are provided
in Table 2 and Table 3.

Table 4. Nonlinear modeling of the reaction wheel

T,=—0.0075Nm (Tema< —0.0075Nm )
Tw=Toma (—0.0075Nm < T oy < 0.0075Nm)
T,=0.0075Nm (0.0075Nm < T oma)

T | Flexible | [ 1] 0
= Satellite R !

Fig. 5. Single axis attitude dynamics of FSS
Controller Structure

The reliability of the systems is one of the most important factors for the space projects.
Overall, the simpler parts offer the more reliability[15]. Therefore, classical PID control methods,
which are very simple, are frequently applied for spacecraft computers of limited memory and
speed.

The controller structure applied in this paper is a PD controller, which employs rate feedback
and rotation angle feedback. Then the attitude controller acquires the function of flexibility control
just by gain parameter variation, because the PD style is a very popular controller structure for
attitude control of rigid spacecrafts. Hence, the reliability is hardly degraded. The confidential flight
history of the classical controllers also encourages us to employ them.
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With a simplified actuator/sensor modeling, the single axis attitude dynamics including a PD
controller is given in Fig. 5. The root locus/classical design techniques usually do not provide full
analyses for practical designs, while constrained optimization techniques such as co-evolutionary
algorithms can handle various constraints and can consider nonlinearities on models[8]. In the next
section, the gain parameters are selected by the accelerated co-evolutionary algorithm.

Numerical Results

To apply optimization techniques to the design problem, the cost function is defined as the
following integral form. The cost is zero when the response is identical to the reference model
response, and increases as it deviates more from the reference.

1
J=10 [ 161= 0, dt

The second order system below is a good candidate reference model.

6re/ _ Q(fr
9cmd - 52+ZZQ,,+.Q%,

The reference model with the natural frequency £2,=0.3(rad/s) and the damping ratio Z=1
provides a proper long-period dynamics. The reference system is chosen to be sufficiently relaxed
that it wouldn't interfere the unmodeled wheel dynamics.

For vibration mode handling, the following constraint is considerd.

£>0.08

where ¢ is the damping ratio of the vibration mode. As the identified natural frequency is
3.16(7ad/s), the constraint lets the excited vibration be suppressed before the settling time.

The neural network structure for the CEALM is shown in Fig. 6. A simple type of
feed-forward neural networks with a single hidden layer is used for function approximation. The
cost and constraint violation information is stored in the networks. The hidden layer consists of
twenty neurons, which have the hyperbolic tangent function as an activation function. The
Levenberg-Marquardt algorithm is used for fast network training. The evolution parameters appear
in Table 5.

Comparison of the cost histories shown in Fig.7 are based on 10 runs, respectively. In
addition, the results from original co-evolutionary algorithms with similar size of offspring
population are presented for a comparison. To analyze the convergence speed, an alternative
expression of the cost, Jr is defined as the following way.

]E=| =7 |
where J is the optimal cost. Then, as a reasonable convergence index, g¢, and f¢ is introduced,

and examined. g¢ is the generation number for Ji's convergence with a tolerance of 10°, and
tc, the computation time to converge in the same tolerance.

Table 5. ACEA Parameters for the FSS Problem

Number of Parents( N, ) 20
Number of Offspring( N, ) 50
Number of Extra Offspring( N, ) 50
Selection Type (g, 1)
Netwerk Typs Slnglesrimg:ﬁgiré layer/
Number of Hidden Nodes 20
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Fig. 6. Neural network structures for Acc. CEALM

Table 6. Convergence Characteristics

ACEA CEA (N,=50) CEA (V,=100)
K; 1.0854 1.0854 1.085
K, 0.23107 0.23107 0.23107
J(Cos?) 7.283779 7.283779 7.283779
gc(gen) 32 29 53
tc(sec) 1700 2800 3000
Constraint Satisfied Satisfied Satisfied

— ACEA(N, N, N,=50, N =50)
CEA(N = 220.N,250)
__CEA1N 20,N0=100)

—
4ACEAIN zoN =50,N,, =50 )
CEA(ND 20,N,250)
- CEA(N,= 20,N2=100) 10°

L L L \ s L L \ L
40 50 60 70 80 90 100 0 500 1000 1500 2000 2500 3000 3500 4000

generation time(sec)
(a) Generation plot (b) Time plot

Fig. 7. Jr convergence histories

The parameters correctly converged to the estimated optimum in every trial. Compared to the
original co-evolution history, the accelerated co-evolution history fluctuates more in earlier
generations, for the newly proposed algorithm includes the neural network elements that can cause
some approximation error. However, with the evolutionary selection processes, the fluctuation
diminishes quickly.

Here, a new plot with another scale is presented for description of acceleration properties
(Fig. 7(b)). As the computation time required for one generation differs from that of another, the
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abscissa needs to be converted to the time scale. The scope of interest is highlighted on the cost
history only. The computational results are obtained with the MATLAB on a Pentium III-500
desktop. The term time means the CPU time purely consumed by the computation process.

The generation plot implies that the newly proposed algorithm of ( N,:N,:N, =20:50:50),
approximates the original algorithm of ( N,:N,=20:100), with reduced computation time. The time
plot tells that the new algorithm is the fastest among the three.

The results from the three are summarized in Table 6. Every figure in the table represents
the median value.

Now, the attitude controller is ready to be complete. Fig. 8 presents the simulation results
for a step command, for . The optimal controller provides fine performance with excited vibration
damped within 20 seconds. The damping ratio is slightly above 0.08, the constraint bound. The
optimal controller designed by the newly proposed algorithm will be experimentally verified in the
next section.

Experimental Verification

In the previous section, it is certified that the optimal controller provides so fine
performance in the nominal condition. The cost is determined to have enough agility for usual
missions while not interfering the unmodeled wheel dynamics. Beside the unmodeled wheel
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Fig. 8. Numerical results Fig. 9. Experimental results
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dynamics, tiny friction in the air bearing system also generates small disturbance torque. The
air bearing system is meant to provide a torque-free condition for tests, but it definitely cannot
produce the perfect condition. The friction torque is not so serious that the imperfection can be
regarded as a disturbance torque condition in the orbital environments. The modeling feasibility
and robustness to the disturbance is confirmed in this section.

The experimental result for the optimal controller is presented in Fig. 9. The inquietude in
the start quickly diminishes, and the vibration excited during the slew maneuver is also
suppressed well. A small peak in the angular acceleration history(at about 25sec) is supposed to
be the effect of the hidden wheel dynamics, and the wheel speed gradually decreasing after the
settlement is for the friction in the air bearing system.

The experimental maneuver confidently follows the reference model, and the vibration
absorption is well beyond the constraint bound. The gain parameters selected by the proposed
algorithm work well for the large slew maneuver while rapidly suppressing the excited vibration.

Concluding Remarks

In this paper, the accelerated co-evolutionary algorithms are proposed, and an attitude
controller for a flexible satellite is designed by the proposed algorithm.

With a proper cost and constraint definition, the co-evolutionary algorithm provides
confidential controller parameters. The accelerated algorithm lets the optimizing parameters
converge faster than the original co-evolutionary algorithm does. The algorithm employs neural
networks, which stores the cost and constraint information in its weights. The networks is
trained whenever the cost is evaluated, and after sufficient training, the extra offspring group,
whose cost is obtained by the neural network computation, is generated. As the neural network
computation and training is composed of simple matrix calculations, increasing the offspring size
by that way doesn’t overload the computational load. Therefore, increased population size
quickly converges the parameters without heavy computational load. The proposed algorithm
fairly accelerated the convergence. Careful selection of neural network parameters or training
algorithm will provide more rapid convergence characteristics.

As an application, an attitude controller for flexible space structures is designed by the
proposed algorithm. The flexible structures are mathematically modeled ,and the design problem
is formulated as a constrained optimization problem. The feasibility of design is numerically
verified by the nonlinear simulation and experimentally demonstrated on a torque-free air
bearing facility.
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