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Adaptive Kalman Filter Design for an Alignment System
with Unknown Sway Disturbance
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Abstract

The initial alignment of inertial platform for navigation system was considered.
An adaptive filtering technique is developed for the system with unknown and varying
sway disturbance. It is assumed that the random sway motion is the second order
ARMA(Auto Regressive Moving Average) model and performed parameter
identification for unknown parameters. Designed adaptive filter contain both a Kalman
filter and a self-tuning filter. This filtering system can automatically adapt to varying
environmental conditions. To verify the robustness of the filtering system, the
computer simulation was performed with unknown and varying sway disturbance.
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Introduction

The initial alignment of the inertial navigation system has a great deal of importance. For
vehicle navigation systems, the navigation accuracy mainly depends on the accuracy of the initial
alignment [1][2][3]. It is often noted that the conventional control and estimation methods does not
have good results in the presence of random sway motions during the initial alignment [4]. Since,
the accuracy of alignment depends on the sensor noise and acceleration disturbance, it is reasonable
to consider the stochastic uncertainties and to construct a robust controller for varying disturbance.
Since the accuracy of an alignment system varies with the environmental disturbance which is
actually unknown, the corresponding filter gain must be switched for different operation conditions.
Extended Kalman filter and parameter identification algorithms were applied to reduce the effect
of random disturbance [5]. Also, a self-tuning filter algorithm is tried for multivariable process and
dynamic ship positioning problem [6]. This type of multivariable adaptive filtering algorithms is not
tried for the navigation system of vehicles such as airplanes and missiles.

In this paper, an adaptive filtering technique is developed for an alignment system with
unknown and varying sway disturbance. The proposed filtering system can automatically adapt to
varying environmental conditions. This filtering system contains a Kalman filter, a self-tuning
filter and a optimal feedback controller. The random sway motion was assumed as the unknown
second order model and parameter identification was performed for the unknown parameters. These
estimated parameters and sway state values are used to estimate the alignment system states.
Therefore, for designed filtering system, the Kalman filter can calculate state values in the presence
of varying environmental disturbance. The robustness of the proposed adaptive filtering system
was verified by the computer simulation with the variation of sway disturbance parameters.
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Initial Alignment System

Initial Alignment
The alignment problem can be described as following state space equation.

x = Fx+Bu+ Guw (1)

Where x is the state vector representing misalignment angles, F, B, Gare constant matrixes, w is the
gyro-drift, » is the control input. This equation illustrates the relation among the alignment error
dynamic motion, the gyro-drift, the misalignment angles and the gyro torque control inputs.

The measurement equation is represented as follows.

z=Hx+v (2)

Where 2z is the measurement vector, H is the constant matrix and v is the accelerometer
uncertainty error. And the signal » and » are white gaussian noises.

The Alignment Error Model

All of the known major sources of error for an alignment system may be considered as
followings.
The gyro drift rate errors, the gyro torque errors, the accelerometer errors, the accelerometer
alignment errors, the gyro alignment errors, the system alignment errors, the altitude errors, and
so on. The error state vector for all mechanization is composed of the system's attitude and
position errors,

x={ey, €g, €p, 0L, &I, Oh;} (3)

Where {ey, €z, ep} is the north, the east and the vertical down components of the attitude error,
respectively, JL is the latitude error, &/ is the terrestrial longitude error and &#; is the altitude
error.

The attitude error will be defined as the orthogonal transformation error between platform
and geographic axes. A rigorous, detailed error model of the real-world inertial alignment system
contains 50 or more error states. However, H. Winter reported that the error sensitivity studies,
13 states are really significant as far as ground alignment of inertial platforms [2]. We are
interested in the case, however, that sway acceleration is severe, the alignment system can be
assumed third order model for simplicity. For simplicity, 3 misalignment angles (North, East and
Vertical Down misalignment angles) were treated. Fig. 1, represents the diagram of error dynamics
and measurement model. The error model is described as following form.
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Fig. 1. Error Dynamics and Measurement Model
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l‘?zv 0 —Qsing 0 Ey
Eg|=|8sine¢ 0 Qcoso||Eg|+ |dE (4)
By 0 —Qcos ¢ 0 E, dD

where @ is the earth rate, ¢ is the latitude of alignment, [dN dE dD]7 are gyro drift rates and
[Ey Eg EplT are three misalignment angles.
The measurement equation is as following form.

Ey
7] = [0 20 1|2 + [ ©

where bz, by are white gaussian accelerometer uncertainty errors.

Structure of Alignment System

In this paper, it can be assumed that the alignment system model is composed of platform
error dynamics and sway disturbance model. The former represents system dynamic characteristic
and the latter represents a subsystem excited by external disturbance. These two motions can be
determined separately and the total motion is the sum of each of them. Since the main disturbance
frequency is vary with environmental conditions, the corresponding Kalman filter gain must be
tuned. The alignment problem is to control the platform motion with the output which contains both
the system output y and the disturbance y,.
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Fig. 2. Alignment System with Platform Error Dynamics and Disturbance model

The structure of the system is represented in Fig. 2. The system can be represented by the
following state-space equations.

x(t+1) = Ax(D + Bu(t) + w(d (6)

WD = Cx(¥)
2(t) = y(H + () + v,

where the signal w and » are a white gaussian process noise and a measurement noise having
diagonal covariance, respectively. The plant measurement equation contains the disturbance signal
v« which is a colored noise.

(7

It is assumed for the moment that the disturbance signal y, can be measured, and hence =z

can be calculated. The state x can be estimated using a conventional Kalman filter. It is assumed
that a time invariant model for the system motion is known and detectable and that the noise is
stationary. The Kalman gain matrix is computed as following equations.

Predictor - x(4t—1) = Ax(t—1lt—1) + Bu(t—1) (8)

y(4t—1) = Cx(4t—1) 9)
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P(4t—1) = AP(t—1t—DA" + DQD" (10)
Corrector = x(4f) = =x(4t—1) + K(De(d (11)
yd) = Cx(4d (12)

P(4) = P(4t—1) — K(5) CP(4t—1) (13)

K(1) = P(4t—=1CT [CP(4t—=1)CT + R™! (14)

where hat(") notation represents the estimation values. The matrix K is the Kalman filter gain,
P is the error covariance matrix. The signal e(#) is represented by following equations.

e = 2 — y(dt—=1) — v, (P (15)

Actually, in above equations the disturbance signal y.(f is not measured from z(#)
separately, thus the signal «(#) can not be calculated.

Sway Disturbance

Modeling of Random Sway Motion

D) The sway motion is the environmental
disturbance caused by the random external
wind or the wave forces. It has energy at low
frequency so that it is the main cause of
accuracy decay and time consuming problems
for alignment system. Therefore, it is desired
that the stochastic consideration of this
uncertainties for design of an alignment
o2t X system which is operated under sway
o2l 50 100 —150 200 250 300 disturbance.
T = The modeling of random sway is beset
Fig. 3. Autocorrelation Function of Random  with practical difficulties, therefore sway have
Sway Motion been measured experimentally. From Fig. 3,
autocorrelation function of random sway
motion, it is clear that the random sway disturbance represents periodic behavior. The
autocorrelation function model of the random variable with periodic behavior has the form.
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$re = e " cosuld (16)
where ¢°, 8 and w are chosen on the basis of the physics of the situation or to fit the
empirical autocorrelation data. Two state variables are necessary to represent the random

variables with above autocorrelation function. For the test aircraft specification HFB 320, the
sway has been measured exponentially [4]. The following parameters have been worked out.

#(D) = e M (cosl) (17)
w,=27nf =3.33x107%, = Ew,=2.33 X102 (18)

w=w,(1—&)2=2.378 x10 * (19)
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ARMA(Auto Regressive Moving Average) Model of the Random Sway Motion

The external disturbance is represented by the colored noise model. The random sway
disturbance can be represented with varying mean frequency, ARMA model. It is assumed that
the order of the polynomial matrices, AfLz"') and C/z"') is the second and the first order,
respectively. The simulations were performed using two coloring filters driven by white noise of
the following forms.

Xqg = Agxg + D;& (20)
Ya = Caxq

where A, =
¢ 0 A}

a diagonal covariance matrix .. the matrices Az ")and C/z"!)are assumed to be square as follows.

Ay 0 ] D, = [lg u DO”] and £ (¢ represents an independent white gaussian which has
d.

ALz D=L+A, 2z "+A, 272+ +A, z ™ 1)
ClzH=Cz7' + GGz +++C, 2 " (22)

where A/ z")is regular. The order of the polynomial matrices is known, but the coefficient matrices

are treated as unknown, since in practice the wave disturbance spectrum varies slowly with
environmental condition.

Adaptive Kalman Filter Algorithms

Disturbance Estimator

The disturbance estimator can be designed from the equations (20) to (22). It is assumed that
the disturbance motion is the second order ARMA model. Define the new variable m,(# as the form.

mfD) = e(t) + v, (9 (23)

where m, is assumed the output of sway disturbance model with white measurement noise e having
covariance matrix 2. The innovation signal model is represented by following equation.

ALz DmA = DLz"Ye(d) (24)

where e is a random noise having covariance matrix 2. The optimal estimation value of y,(#) can
be obtained by following equation [5][6].

ya(dt) = my(d — AS'D,,e(d) (25)

State Estimator

For the initial alignment system, both system dynamic motion signal and the
environmental disturbance signal are measured with two accelerometers simultaneously.
Therefore, the disturbance signal y/{# is not separately measurable and must be replaced in

the above Kalman filter by y,(4). The adaptive filter algorithms have both a Kalman and a
self-tuning filter and can produce the motion estimates by the following equations [7].

predictor : x(4t—1) = Ax(t—1)t—1) + Bu(t—1) (26)

Y(At—1) = Cx(4t—1) 27)
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corvector © x(4) = x(4t—1) + K(D e(d (28)

YD = Cz(d) (29)
And if the signal n4? is defined as the difference between y(# and its estimation value y,(4%),
ie. ndD=yAD— y,(40the following equations are derived.

2D = A m(t—11i—1) + K() nfd (30)

= CAx(t—1t—1)
where, x(4f) denotes the change brought about by replacing y«(# as ,(49. And y(dt—1) is

the difference between y(#t—1) and y(4¢—1) ie y(dt—1) = y(4t—1) — 3(4t—1The state
estimates are corrected by using the estimated value y(4¢t—1) Thus, the corrected estimate is
given the form.

YD = ) — y(dt—1) (32)
Parameter Identification

If the estimation value of m, is defined as my ie. mq(d) = mqy(£)— W 4¢—the following
equation is satisfied [7].

ALz my() =Dz Ne(t) = Ay(z™") y(4t—1) 33)

y; can be treated as a constant during the small calculation period. If the new parameter s(f) is
defined as the form, s( = AfLz7!)3(4i—1xhen the equation. (33) becomes the following form.

ALz my() = DLz"Ne(t) — s(d) (34)

This equation can be represented in the conventional parameter identification method [7].
ma() = ¢(Ho + e(d (35)

For the second order model, the following parameters must be identified for each ith channel.
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o (D=0 — my(t—1), — my(t—2) ; e;(t—1), e(t—2) ; 1] (36)
0/=lan,an du.dy; si (37)

The structure of designed adaptive filter system having a Kalman filter, self-tuning filter and a
feedback controller is represented in Fig. 4

Simulations

The simulation block was constructed with Matlab and Simulink. Fig. 5 shows the closed
loop simulation block diagram having a self-tuning filter, a fixed gain Kalman filter and an optimal
feedback controller. The purpose of the initial alignment is to control the three axes(North, East,
Vertical Down) misalignment angles within small values. For the computer simulations, the initial
3 misalignment angles are set as 2mrad, 2mrad and 100mrad, in order. The optimal controller gain
K. is calculated by the steady state Riccati equation. The performance index function has the form.

ST O T r T
J= lim S E{f_r(x Q-+ uTRu)dt) (38)

wl) = — K. x(D (39)

It is not considered that the problem of actuator torque limits when the linear optimal
controller is designed. But for the simulation of designed control system, the nonlinearity of
actuators was considered by introducing saturation elements between controller and actuators, i. e.,

Ugi = U; ;U S U jmax
U jmax ; ui> U jmax

(40)

Fig. 6 represents a typical form of sway disturbance used in this simulations. The simulation
parameters are summarized in the following Table 1. Fig.7 represents the estimated parameter a,
d and s for one channel. Three misalignment angles with time are shown in Fig. 8. The filtering
system can align the two horizontal(North and East axes) misalignment angles within less than
0.1mrad and for the vertical down(D axis) misalignment angle can be aligned the angle less than
1mrad within 3 minutes.
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Fig. 5. Simulation Block Diagram
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Sway Motions

Table 1. The Simulation Parameter Values.

N-axes 2 mrad
E-axes 2 mrad
D-axes | 100 mrad 4

4.25e-15 rad/sec?

Initial values of
misalignment angle

sway_N (rad/sec*2)

Variance of

gyro drift rates g
Variance of . 32
accelerometer bias 9.66-8 m/sec e
Variance of Random g
; 1.86e—6 m?/sec!
Sway acceleration e 2% = Ty &0 20 20
Center frequency of time (sec)
N et | 00053 ~ 0053 Hz _ _
Sway acceleration Fig. 6. Sway Disturbance
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Conclusions

An adaptive filtering technique is developed for the intial alignment of inertial platform
with varying sway disturbance. This filter can replace conventional fixed gain Kalman filter.
Also, this adaptive filtering algorithm can be easily implemented to a actual vehicle navigation
system owing to its low computation burden. The implementation of this type of self-tuning
filter is fine solution to an aerial vehicle having unknown and varying environments. The
designed filter can satisfy the desired accuracy performance in the presence of gyro drifts and
acceleration uncertainties. Especially, for the case that the random acceleration is severe and
varying, the filtering system can automatically adapt to the varying environmental conditions.
The robustness is verified with unknown and varying disturbance with the large variation of
its parameters. The result of this studies can be applied to the systems which have severe
environmental conditions, but do not have automatic adaptation to the varying disturbance.
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