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Abstract

This paper considers the robust and optimal three-axis attitude stabilization of
rigid spacecraft with inertia uncertainties. The attitude motion of rigid spacecraft
described in terms of either the Cayley-Rodrigues parameters or the Modified
Rodrigues parameters is considered. A class of robust nonlinear control laws with
relaxed feedback gain structures is proposed for attitude stabilization of rigid
spacecraft with inertia uncertainties. Global asymptotic stability of the proposed
control laws is shown by using the LaSalle Invariance Principle. The optimality
properties of the proposed control laws are also investigated by using the
Hamilton-Jacobi theory. A numerical example is given to illustrate the theoretical
results presented in this paper.
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Introduction

Since spacecraft systems are subject to parametric variations and uncertainties mainly
caused by structural induced disturbances and poorly known parameters in space application, the
robust control problem of rigid body has been studied by many researchers [1-5]. These results
on the robust control of rigid body have mainly used the four-dimensional parameter description
of the orientation, known as quaternions. In this paper the problem of the robust and optimal
three-axis attitude stabilization of rigid spacecraft with inertia uncertainties is addressed. The
complete (i.e. dynamics and kinematics) attitude motion of rigid spacecraft described in terms of
either the Cayley-Rodrigues parameters ([6]) or the Modified Rodrigues parameters ([6], [7]) is
considered. Both can be viewed as normalized versions of quaternions and reduce the number of
coordinates necessary to describe the kinematics from four to three by eliminating the unity
length constraint associated with the unit quaternion. Hence they are minimal and reduce the
complexity of the kinematics, while the unit quaternion is non-minimal and is subject to the unity
length constraint.

Recently there have been some studies for attitude stabilization of rigid body using minimal,
three-dimensional parameterizations for the kinematics [8-12]. In [8], a proportional-derivative
type of stabilizing control law using the Cayley-Rodrigues parameters was proposed for attitude
regulation of rigid body, and an adaptive control law with the adaptation process of inertia matrix
is also presented. In [9], a class of linear stabilizing control laws is developed for attitude

* (Graduate Student
** Professor
E-mail : mjtahk@fdclkaist.ackr, TEL : 042-869-3718, FAX : 042-869-3710



2 Yonmook Park and Min-Jea Tahk

stabilization of rigid body with the kinematic description in terms of either the Cayley-Rodrigues
parameters or the Modified Rodrigues parameters. In [10], the results of [9] were extended to the
design of nonlinear control laws with scalar feedback gains, and the optimality characteristics of
the nonlinear control laws were investigated. In [11], a design method yielding the optimal
feedback control law for regulation of rigid body motion with the Cayley-Rodrigues parameters
was presented by using the inverse optimal control approach ([13], [14]). Especially, in [12], the
optimal fuzzy control law that has the robustness with respect to a class of input uncertainties
was first proposed for attitude stabilization of rigid spacecraft with the kinematic description
using the Cayley-Rodrigues parameters.

Though the studies of [10] and [11] result in well-established optimal stabilization designs
for rigid spacecraft, both have a common drawback that the exact knowledge of the system
parameters is required to adopt the optimal attitude control law in real application. In many
practical situations, however, systems may have unknown parametric uncertainties and, therefore,
the optimal designs of [10] and [11] may not be adopted in practice. A design method that may
overcome this problem can be found in [12], where a fuzzy control method that does not require
the exact system parameters is utilized to design the optimal attitude control law for rigid
spacecraft. But the design of [12] requires undesirable high control gains. Also the designs of [11]
and [12] have particular controller structures, and this may restrict the design of the optimal
controller that has a tolerance in choice of the feedback gain structure. Thus an alternative design
method which can consider the robustness issue as well as the optimality in performance with a
tolerance in design of the feedback gain structure may be needed, which is the main motivation
of this paper.

With the above motivation, in this paper a new class of robust and optimal control laws
using minimal kinematic parameters and positive definite gain matrices is presented for the
optimal attitude stabilization of rigid spacecraft with inertia uncertainties. Global asymptotic
stability of the proposed control laws is shown by using the LaSalle Invariance Principle ([15]).
The present paper may be viewed as the extension of the result of [2], where the unit quaternion
is used for describing the kinematic equations. In [2], the conditions for the existence of the
closed-loop equilibrium solutions were addressed for the known control law that was already
stated in [16], and the explicit stability proof of the closed-loop system was given. Besides the
different kinematic parameterizations, the proposed method guarantees global asymptotic stability
of the closed-loop system for any choice of positive definite gain matrices, while the study of [2]
guarantees only local asymptotic stability for such cases. Also the optimality properties of the
proposed control laws are provided by using the Hamilton-Jacobi theory ([17]).

This paper is organized as follows: First, preliminaries regarding a rigid body model with
inertia uncertainties are given. Next, a new class of robust control laws is proposed for attitude
stabilization of rigid spacecraft with inertia uncertainties. Also the optimality properties of the
proposed control laws are investigated. Then, a numerical example is given to illustrate the
theoretical results and to compare the results with those of existing design methods. Finally, this
paper is concluded with several remarks.

Rigid Body Model with Inertia Uncertainties

The dynamics of the rotational motion of rigid body with inertia uncertainties are
described by the following set of differential equations:

Ut oaD)ow=S)U,+2Do+u, o) =a, @

where J, and AJ denote the nominal value of the inertia matrix and the inertia matrix
uncertainty, respectively, o= [w; w, w3]1"€R® is the body angular velocity vector in a

body-fixed frame, and == [%;, u, u3]1T€ R? is the control torque vector. Note that, throughout
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this paper, J is defined as

J&J, + Al va)
The matrix S(w) denotes a 3x3 skew symmetric matrix defined as
0 w3 — W2
S ( a)) e — w3 0 (] (3)
[} — W) 0

In this paper the dynamics of the body orientation with respect to the inertia frame is
given in terms of either the Cayley-Rodrigues parameters ([6]) or the Modified Rodrigues

parameters ([6], [7]). Let e=R® and ¢=R denote the Euler axis and Euler angle, respectively.
Then, the Cayley-Rodrigues parameters and the Modified Rodrigues parameters are defined by

o= etan (4/2) 4@
and
o2 etan ($/4), ®)

respectively. The kinematic description using the Cayley-Rodrigues parameters can describe

eigenaxis rotations up to 180 deg, whereas the Modified Rodrigues parameters remains valid for

eigenaxis rotations up to 360 deg. Note that, however, the possible singular configurations

corresponding to the body orientation can be avoided by applying any control law over an

arbitrarily short period of time to move the body away from the singular configuration [10].
The kinematic equations in terms of the Cayley-Rodrigues parameters take the form

o= Hw, o(0) =0, 6
where
H(p)2 & [I,— S(0) + 00" ] W)
and I; denotes the 3x3 identity matrix. Also, the kinematic equations in terms of the Modified
Rodrigues parameters take the form
o=G(dw, o) =0, 8)
where

alf(l=0"0)\, _ T
Glo)& 5 [( 5 )13 S(o) + oo ] )
Note that H(p) in Eq. (7) and G(o) in Eq. (9) have the following property

o H(p) = % (1+070)0", VeeR (10)
and

0" G(o) = %(1 +070)e”, VoeR, 1)
respectively [10].

Main Results

Robustness Results

In this section a class of robust stabilizing control laws is developed for two cases of the
complete attitude motion of rigid body with inertia uncertainties. The proposed approach makes
use of the structural properties of the rigid body dynamics. More specifically, note that the state
equations given by Eq. (1) and Eq. (6), or Eq. (1) and Eq. (8), describe a system in cascade
interconnection. That is, each kinematics subsystem in Eq. (6) and Eq. (8) is controlled only
indirectly through the angular velocity vector w. Thus « is first regarded as a virtual control
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input for the subsystem in Eq. (6) or Eq. (8), and the complete system given by Eq. (1) and Eq.

(6), or Eq. (1) and Eq. (8), is then considered with x as the actual control input. This

consideration plays a main role for constructing robust stabilizing control laws in this paper.
Let w4 be the desired control input o that stabilizes each kinematics subsystem in Eq.

(6) and Eq. (8). Then, the following results hold.

Proposition 1: Consider the kinematics subsystem in Eq. (6). Then
(i) the control law
Was= —kpp 12)

with a positive scalar £,>0 globally asymptotically stabilizes the system at the origin,
(ii) the control law
wa= —H"(0) K,p (13)

with a positive definite matrix K,>(0 globally asymptotically stabilizes the systems at the origin.

Proof: (i) Consider the Lyapunov function candidate
V="rk,In(1+070), (14)

where In(-) denotes the natural logarithm. Taking the time derivative of V along the
trajectories of the closed-loop system and using the property in Eq. (10) yield

T T
(7 — _ 0o 0 P 0 T
v Zk"( 1+pr) ki( 1+.0Tp)(1 teele (15)
= —KpTp=<0.

Then, global asymptotic stability of the closed-loop system follows from the LaSalle Invariance
Principle and the radially unboundedness of V ([15]).
(ii) Consider the Lyapunov function candidate

V=1 0"K,p. (16)

Taking the time derivative of V along the trajectories of the closed-loop system yields

V= 0"K,0o= —p"K,H(Q)H (p) K,p

= —[H () K, 0] TLH" (0) K,0]<0. (17)

Then, global asymptotic stability of the closed-loop system follows from the LaSalle
Invariance Principle and the radially unboundedness of V as in part (i). This completes the
proof. |

Proposition 2: Consider the kinematics subsystem in Eq. (8). Then
(1) the control law
Oas= — koo (18)

with a positive scalar k,>0 globally asymptotically stabilizes the system at the origin,
(ii) the control law
@ des = _‘GT(U)KUG (19)

with a positive definite matrix K,>0 globally asymptotically stabilizes the systems at the origin.

Proof: (i) The following Lyapunov function candidate
V=2k,n(l + 0"0) (20)
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and the property in Eq. (11) are employed to establish the proof. The rest is straightforward and
is omitted.
(ii) The proof follows from using the following Lyapunov function candidate

V= —5 o"K,o. 1)
As in part (1), the rest is straightforward and is omitted. This completes the proof. B

Now consider the complete system given by Eq. (1) and Eq. (6) with « as the actual
control input. Then the following robust stabilization results are obtained from Proposition 1 and
the structural properties of the rigid body dynamics.

Theorem 1: Consider the systems in Eq. (1) and Eq. (6). Then
(i) the control law
U= — koo — K,0 (22)

with a positive scalar #,>0 and positive definite matrix K,>0 globally asymptotically stabilizes

the systems at the origin,
(i1) the control law

uy= —H (p)K,0— K,0 (23)
with positive definite matrices K,>0 and K,>0 globally asymptotically stabilizes the systems at
the origin.

Proof: (1) Consider the Lyapunov function candidate
Vi= 5 o"Jo+kn(1+0"0). (24)

Taking the time derivative of V; along the trajectories of the closed-loop system and using the
property in Eq. (10) yield
- . T.
Vi= oo+ zk,,(Tﬁ;—p

= —w"K,w<0.

T
)(1 toTow e

T
) = a)T[—kpp— K,w] + kp(T;%Tp

Because V) is radially unbounded, every trajectory is included in a bounded set 2., which is

given by
Q.= {(w,0eRxR | Vi<¢]}, (26)

for all values of ¢;>0 . Also, because V; is continuously differentiable, positive definite and

7,20, V(w,0)eR xR, 27)

it is concluded that every trajectory approaches the largest invariant set M, in a set E,, which
is given by

E={(0,0)eRrxR | V1=0) ={(0,)eR*xR* | 0=0} (28)

as t—oo by the LaSalle Invariance Principle. In the set M , it is obtained that = 0 . This implies
that =0 from (1) and o=0 from (22). Hence, it is concluded that

M={(0,)eR*XR | 0=0,0=0). (29)

Moreover this conclusion is global because V), is radially unbounded.
(ii) Consider the Lyapunov function candidate

V= —21— wJo+ % 0"K,0. (30)
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Taking the time derivative of V, along the trajectories of the closed-loop system yields

Vo= w"Jo+0"K,0=0"[-H (o) K,p — K,0] + 0" K,H(p) w

= -0 K,0<0. (1)

Then global asymptotic stability of the closed-loop system follows from an argument as in part
(i). This completes the proof. [ |

Similarly the following results are obtained for the complete system given by Eq. (1) and
Eq. (8) by considering Proposition 2 and the structural properties of the rigid body dynamics.

Theorem 2: Consider the systems in Eq. (1) and Eq. (8). Then
(i) the control law
U= — koo — K0 32)

with a positive scalar £,>0 and positive definite matrix K,>(0 globally asymptotically stabilizes
the systems at the origin,
(i) the control law

ug= — G (0)K,0— K,0 (33)

with positive definite matrices K,>0 and K,> (0 globally asymptotically stabilizes the systems at
the origin.

Proof: (i) The proof is given by considering the following Lyapunov function candidate
V= —%wfjwzk,lnu +670) (34)

and using the property in Eq. (11). The rest is straightforward and is omitted.
(ii) The proof follows from considering the following Lyapunov function candidate

Vi= 4o+ 4 0"K,0. (35)
As in part (i), the rest is straightforward and is omitted. This completes the proof. [ ]

Remark 1: From Theorems 1 and 2, it is evident that the control laws given by Eaq. (22),
Eq. (23), Eq. (32), and Eq. (33) have the robustness with respect to inertia uncertainties of rigid
spacecraft because they are independent to the inertia of the body.

KRemark 2: For two control laws of #, in Eq. (22) and «. in Eq. (32), if the K,>0 is set
to be k,I; with a positive scalar &,> 0, then these two control laws with K, = k,I; take the
forms of the control laws reported in [10]. Thus the %, and u. can be regarded as the
generalization of the control laws presented in [10] in the aspect of the feedback gain structure.
Also the control laws of %, in Eq. (23) and #, in Eq. (33) have feedback gain structures with
positive definite gain matrices. This observation shows that the control laws presented in this
paper have more relaxed feedback gain structures than the control laws reported in [10]. Thus the
proposed control laws allow us to control each input channel with different feedback gains for the
three-axis attitude stabilization of rigid spacecraft.

Optimality Results

In this section the optimality properties of the control laws given by Eq. (22), Eq. (23), Eq.
(32), and Eq. (33) are investigated by using the Hamilton-Jacobi (H-]) theory ([17]).
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The following theorem shows that the control laws given by Eq. (22) and Eq. (23) are
associated with the optimal control problems for the systems in (1) and (6).

Theorem 3: Consider the systems in Eq. (1) and Eq. (6) and let

x=[a" p7]7. (36)
Then
(i) the control law u, in Eq. (22) is optimal with respect to the cost function

T =+ [T Qur+ 2a Nx+ u R, (37)

(ii) the control law u, in Eq. (23) is optimal with respect to the cost function

Tolx, w) = —% fow(xTng+ 2u"Nox + u"Ryu) dt, (38)
where
0[5 2] 6718 ey
0; KK,' 03 K,H(p)K,'H"(p)K, (39)

Nl—[o3 kK,']l, No=[0; K 'HT(p)K], R=R,=K,'

and 0; denotes the 3x3 zero matrix.

Proof: (i) Using the H-J theory ([17]), the following H-] equation is obtained for the optimal
control problem for the systems in Eq. (1) and Eq. (6) with the cost function T, in Eq. (37)

97,
o 0 '
_ m;n {_% TKm‘lu+—%kppTK71u+—%‘kuTK_lp-f-—%kz Tk o (40)
a7
+F o Kot S S@ 0+ T + S LH) 0],

where 07 ,/0w (or, 37 ,/dp ) denotes the gradient of T, with respect to the vector w (or, o )

and is given by the row vector. Clearly, the optimal x, which is denoted by #*, that minimizes
the right hand-side term in Eq. (40) is given by

T
u" = —ka—Kw]_l(%) : (41)

Then the substitution of Eq. (41) into Eq. (40) gives

0= —% 0 K a)+[ By
_ 8'31 1 __1 37 ‘1K 07, (42)
7 2 OJw J ol ( dw )
Note that the positive definite function V; in Eq. (24) solves Eq. (42). Indeed, note that
Vi _ o, Vi 2ke”
) =w J, a0 l+pr- (43)

Moreover, if 7, in Eq. (42) is replaced by V; in Eq. (24) and the property of #”S(w) =0, Yws R’
and Eq. (10) are used, then it is obtained that the solution of Eq. (42) is V; in Eq. (24). Therefore
the optimal control law given by Eq. (41) takes the form of %, in Eq. (22).

(ii) The H-J equation for the optimal control problem for the systems in Eq. (1) and Eq. (6)
with the cost function T, in Eq. (38) is given by
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37, _
~at 0 _
- min {—% WK ut % o K HO K, ut 5 u"KS H (o) Ko "
4 —% o K, H(o) K, 'H™(0) K,0 + —% K,
Then the optimal « minimizing the right hand-side term in Eq. (44) is given by
e H () K.p—K ,—1(&)1 45)
e @ ow ’
and the H-J equation in Eq. (44) with «" in Eq. (45) is given by
a7
0=—é— Koo+ |5 T S(0)] ap »
_ ajz - 1 975 3T, \"
JHT ) Ko — & 52 T KL (—aw )

Note that the positive definite function V, in Eq. (30) is the solution of Eq. (46). This can be shown
by noting that

CAZ oV,
o ¢ . do
replacing 7, in Eq. (46) by V, in Eq. (30), and using the property of w’S(w)=0, VosR®.
Thus the optimal control law given by Eq. (45) takes the form of %, in Eq. (23). This completes
the proof. [ ]

= pTKp, 47)

Similarly the optimality properties of the control laws in Eq. (32) and Eq. (33) are given as
follows.

Theorem 4: Consider the systems in Eq. (1) and Eq. (8) and let

x=[w" ¢"]". 48)
Then
(1) the control law %, in Eq. (32) is optimal with respect to the cost function

Ta(x, w)= —% fom(xTQ;,x+ 2uTNyx+ u” Ryw)dt, (49)

(ii) the control law u, in Eq. (33) is optimal with respect to the cost function

T ylx, W)= —% fow(xTQ4x+ 2u"Nyx+ u"Ryu)adt, (50)
where
Q= Ko [ 03 ,
05 sz 0; K,X)K,'G"(0)K, (51)

Ny=[05 kK,'], Ny=[03 K,'G"(0)K,], Ry=R,=K,'.
Proof: (i) Using the H-] theory provides the following H-] equation for the optimal control
problem for the systems in Eq. (1) and Eq. (8) with the cost function T3 in Eq. (49)

375
~—a ~ 0

% koo K u+ —% ko TK o+ —% BoTK's  (52)

+ Lokt L s o+ 7wl + 2 Gw 3

1 uTK(,,_lu+

Il

3

=]
?
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Then the optimal # that minimizes the right hand-side term in Eq. (52) is given by

T
u*= — k- ij“(%) , (53)
and the substitution of Eq. (53) into Eq. (52) gives
0= 4 o Keo+ [ L3 1 s+ L2 6o
2 dw do = (54)
093 ;-1 1 0F3 -1y -1 973
ke I 0T g5 I KT ( aw)-
Note that the solution of Eq. (54) is V3 in Eq. (34). This can be shown by considering
T
Vs _ 1y Vi _ ke (55)

o " T T 14470
and using the property of w”S(w)=0, VweR® and Eq. (11). Therefore the optimal control law
given by Eq. (53) takes the form of . in Eq. (32).

(ii) The H-]J equation for the optimal control problem for the systems in Eq. (1) and Eq. (8)
with the cost function T, in Eq. (50) is given by

81,
at
= rmn{—%— WTK u+ —% oTK,G() K] u + —é «TK;'GT(0) K,0
+ —% o"K,G(0)K,;'GT(0) K,0 + —% 0w K,0

+ 2L s e+ T + e 9w},

Then the optimal # minimizing the right hand-side term in Eq. (56) is given by

T
u'= —GT(a)K,,a—Kw]‘l(%) , (57)

and the H-J equation in Eq. (56) with «* in Eq. (57) becomes

0= _leK,ﬂw-f-[&]_lS(w)]ﬁ- Ad G(o)]cu
2 dw do (58)
_ 97,4 f_IGT(O')KU__l 07, JK ]—1( 07,4 )T
dw ¢ 2 dw @ dw
Now consider
601;4 =l 38124 =7 K, (59)

and use the property of w”S(w) =0, VY weR®. Then it can be shown that V, in Eq. (35) solves
Eq. (58). Thus the optimal control law given by Eq. (57) takes the form of x, in Eq. (33). This
completes the proof. ]

A Numerical Example

In this section, to demonstrate the theoretical results presented in this paper and to
compare the performance of the proposed controller with those of existing optimal controllers, a
numerical example presented in [11] and [12] is considered in this section.

In simulation, the inertia matrix of rigid spacecraft is assumed as

J= diag (10, 15, 20) (kg - m?), (60)

where diag implies the diagonal matrix. A rest-to-rest maneuver is considered, thus (0) =0 . The
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initial orientation conditions in terms of the Cayley-Rodrigues parameters are given by
0(0) = [1.4735 0.6115 2.5521]17 and in terms of the Modified Rodrigues parameters are given by
o(0) = [0.3532 0.1466 0.611817 . These initial conditions correspond to the Euler axis and Euler angle
pair e(0) = [0.4896 0.2032 0.8480]1" and ¢(0) = 2.5 rad. Throughout the simulation, the feedback
gains for the proposed controllers were set to be k,=k,=20, K,= diag(2, 3, 4),
K,= diag (20, 21, 22), and K,= diag(6, 7, 8).

The simulation results for the system given by Eq. (1) and Eq. (6) with each controller u,
in Eq. (22) and %, in Eq. (23) are shown in Figs. 1 and 2. Also the simulation results for the
system given by Eq. (1) and Eq. (8) with each controller #. in Eq. (32) and u, in Eq. (33) are

depicted in Figs. 3 and 4. In Figs. 1-4, the solid, dash-and-dot, and dashed lines represent the
trajectory of the first, second, and third component of the corresponding vectors, respectively.

(a) (a)
1 . 05
E of y A e S g ° o oeemmcsmacaaoca
H —= b —
8 1 & 7, 13
TN o, 505 '\_/. ©,
3 - 3
2 ) . 1
0 5 10 15 20 25 30 0 5 10 15 20 25 30
(b) (b)
3 T T 3 T T
‘ — | — 0
2p 0 2p P2
e 1P P3 BN 3
\s
o+ \.,\_, ™ - 0 S —
- — 1
0 5 10 15 20 25 30 0 5 10 15 20 F3 30
() ©)
20 — r T : 20 -
_ op/,/c",—- e mmaanee _ob
£ - 3 {
= i ¥
<0, — Uy || 320,' — Uy
> a0l - Ve | 40} Yoz |
— —_—
50 . . . . . 60 \ " n .
0 5 10 15 20 25 30 (] 5 10 15 20 25 30
Time (sec) Time (sec)

Fig. 1. Responses of the systems in Eq. Fig. 2. Responses of the systems in Eq.

(1) and Eq. (6) with the controller
in Eq. (22): (a) Angular velocities
response; (b) Cayley—-Rodrigues
parameters response; (c) Control
inputs response.

(a)

(1) and Eq. (6) with the controller
u, in Eq. (23): (a) Angular
velocities response; (b) Cayley—
Rodrigues parameters response;
(c) Control inputs response.

(a)

- 04
% 0\;\_4 ’—"ié = goi\\ o —
=05} . o, P Vi _ .
2 = . m: R N m:
o 5 10 15 20 25 30 g s 0 15 20 » 30
(b) (®)
1 . 1 . -
— o, —%
o5 %2 05F " %2
o [0 % o [T 9%
OF " S e U
05y 5 70 15 20 > 30 0% s 0 15 20 > 30
() (€)
5 . - 2 - .
_OF e ok = S
E v £ L7
2 s/ E—n 22y — g |
7.0 :: St :: H
% 5 10 15 2 25 30 ) 5 70 15 ) % 30
Time (sec) Time (sec)
Fig. 3. Responses of the systems in Eq. Fig. 4. Responses of the systems in Eq.

(1) and Eq. (8) with the controller
u. in Eq. (32): (a) Angular
velocities response; (b) Modified
Rodrigues parameters response;
(c) Control inputs response.

(1) and Eq. (8) with the controller
u; in Eq. (33): (a) Angular
velocities response; (b) Modified
Rodrigues parameters response;
(c) Control inputs response.
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Clearly the stability of each closed-loop system

(a)

using u,, u,, u.,and u, is evident from the o
simulation results shown in Figs. 1-4. § °[(,.~~-7 — -
g e — Fory,
Now the performance of the proposed 7°5p_~ ;::'. I
controller %, in Eq. (23) is compared with B S B S S R o
(b)
18 T
those of the other two controllers developed by o _E:uu';~
existing design methods. The one is the optimal = <°°[ ~ " e il
. . ) 0 —_— e
controller developed in [11] and is given by ) L
0'50 2 4 6 8 10 12 14 16 18 20
= - D[t 3 b+ b ) "
U, = max [ 2 4 ™ 2k, S o o B B
(Bllel?+ llo+ k] T (o + ko), 2ol el
(61) . Frxu:
where % and k, are positive scalars, |- || R T
denotes the Euclidean norm, and Ama (J) Fig. 5. Controller comparison: (a) Comparison
implies the maximum eigenvalue of J. And the of the angular velocity response;

(b) Comparison of the Cayley-
Rodrigues parameters response;
(c) Comparison of the control input

u;= — diag (204.4703, 264.9305, 514.2326) response.
(0 + k10), (62)

where &, is a positive scalar. For comparison, the feedback gains for . and u, are set to be
k= k;=0.2 . Then each of the controllers u,, ., and %, is applied to the system given by
Eq. (1) and Eq. (6) with J in Eq. (60) for the same initial conditions.

The simulation results are then shown in Fig. 5, where the solid, dash-and-dot, and dashed
lines represent the trajectory with u,, ., and wu,, respectively. Because the behaviors of the

other is the optimal controller presented in [12]
and is given by

other two components are similar, only the first components of the corresponding vectors are
depicted in Fig. 5. As shown in Fig. 5, the performance comparisons with the controllers of ,
and #; show that the proposed controller yields a better convergence rate to the equilibrium state
and a smaller control effort. These results mainly follow from the fact that the proposed approach
provides the optimal attitude controller that has a relaxed feedback gain structure than the design
methods presented in [11] and [12] in choice of the feedback gains to achieve a satisfactory
performance.

Conclusions

In this paper, the problem of the robust and optimal three-axis attitude stabilization of
rigid spacecraft with inertia uncertainties has been addressed. A class of robust control laws
with relaxed feedback gain structures is presented for attitude stabilization of rigid spacecraft
with inertia uncertainties. The derivation of the proposed robust control laws makes use of the
structural properties of the rigid body dynamics, and global asymptotic stability of the control
laws is shown by using the LaSalle Invariance Principle. Then the optimality properties of the
proposed robust control laws are investigated by using the Hamilton-Jacobi theory. Compared
with existing design methods using minimal kinematic parameters, the proposed approach
provides the robustness property as well as the optimality property for the attitude stabilizing
controller for rigid spacecraft. A numerical example is then considered to illustrate the
theoretical results. Because the proposed approach provides the robust and optimal controller
with a relaxed feedback structure, one can easily control the performance of rigid spacecraft in
the aspects of the convergence rate to the equilibrium state and the control effort.
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