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Abstract

An inverse method is introduced to construct benchmark problems for the
numerical solution of initial value problems. Benchmark problems constructed
through this method have a known exact solution, even though analytical solutions
are generally not obtainable. The solution is constructed such that it lies near a
given approximate numerical solution, and therefore the special case solution can be
generated in a versatile and physically meaningful fashion and can serve as a
benchmark problem to validate approximate solution methods. A smooth interpolation
of the approximate solution is forced to exactly satisfy the differential equation by
analytically deriving a small forcing function to absorb all of the errors in the
interpolated approximate solution. A multi-variable orthogonal function expansion
method and computer symbol manipulation are successfully used for this process.
Using this special case exact solution, it is possible to directly investigate the
relationship between global errors of a candidate numerical solution process and the
associated tuning parameters for a given code and a given problem. Under the
assumption that the original differential equation is well-posed with respect to the
small perturbations, we thereby obtain valuable information about the optimal choice
of the tuning parameters and the achievable accuracy of the numerical solution.
Illustrative examples show the utility of this method not only for the ordinary
differential equations (ODEs) but for the partial differential equations (PDEs).
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Introduction

There are abundant numerical methods to obtain solutions of differential equations in
Usually initial value problem is solved by various methods for
simulation purpose [1], and two point boundary value problem in numerical optimization area can
be solved by gradient method, shooting method, and method of particular solution [2]. In this
paper, the initial value problems for nonlinear ODEs and hybrid ODE/PDE systems are
considered. With most applications of approximate differential equation solution algorithms, we
must somehow evaluate the accuracy of a given approximate solution, without knowing the true
solution. What happens if we can construct an exact forced response solution for a special case
motion near (in a sense to be established) a candidate approximate solution? This gives us an
absolute standard and promises the capability of displaying exactly the space/time distribution of
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solution errors for the special case solution and therefore suggesting remedies, if needed, to
improve the discretization-based solution process. For this purpose, we introduce an inverse
dynamics method for constructing exact special case solutions for hybrid ODE/PDE systems. In
the robotics field, a similar idea, the "inverse dynamic formulation” or the "computed torque
method” is described in [3,4]. If the desired motion is known, the inverse dynamic formulation
algebraically solves the equations of motion to compute the forces and torques necessary to

achieve that motion [3].

First, we restrict our concern to the initial value problem for nonlinear ODEs. In general,
we do not know the true solution and any numerical method gives us an approximate solution;
the numerical solutions generally contain two sources of error, round-off and truncation [5]. We
must somehow evaluate the accuracy of a given approximate solution, typically without knowing
the true solution. The most common way of assessing the true error of a numerical solution is
to reduce some tolerance parameter, integrate again, and compare the results. Although more
sophisticated error analyses can be conducted, there is no general way to absolutely guarantee
the final accuracy of the solutions. This does not preclude obtaining practical solutions for most
applications, but it remains very difficult to answer subtle questions.

In view of the historical and recent developments [5-7], we observe that the theory of
differential equation solvers is far from complete, so that the understanding of a given code’s
performance invariably requires a study of experimental results. Hull, et al [8] and Krogh [9]
provided two outstanding collections of test problems for this purpose. These test problems
have been used in the development and testing of many codes and can be regarded as
standard benchmark problems for initial value problem solvers. Whenever we know the true
solutions of a test program, however, we can investigate the relationship between the true, or
global error and the tuning parameters of a given code(e.g., step size, local error tolerance,
order, etc.). The relationship between the behavior of an algorithm on a benchmark problem
and the behavior of the algorithm on a problem of interest is difficult to establish. Since the
problem of interest is almost never exactly solvable, we need a means to establish a
customized benchmark problem which is a close neighbor of any given problem of interest. We
introduce here a broadly applicable inverse method which constructs a neighbor of a given
numerical approximate solution, the neighboring problem does in fact exactly satisfy the
original differential equations(with a known, small forcing function) and serves as an excellent
benchmark problem. More specifically, we present a broadly useful approach to construct a
benchmark problem very near the problem of interest in a particular application. By virtue of
the fact that the benchmark problem is a customized near neighbor of the problem of interest,
we show that numerical convergence studies on the benchmark problem are directly useful in
algorithm selection, tuning, and accuracy validation. Then, we generalize the idea to apply to
hybrid ODE/PDE systems. The main difference is that there are two independent variables for
space and time, thus we develop a two-variable orthogonal function expansion method.

In this paper, we propose a method to construct a benchmark problem which is a close
neighbor of a given approximate solution of the original problem. The benchmark problem is
constructed so that it satisfies exactly the differential equation but with a known, usually small,
time varying forcing function. We can investigate the global error/parameter relationship of the
benchmark problem with the true solution in hand. Under the assumption that the original
problem is well-posed with respect to small perturbations, we have valuable information about the
optimal parameters and the accuracy of the numerical solution. Actually the stability assumption
is not so severe since any numerical method needs it more or less to obtain reliable solutions.
Also, by introducing several neighboring approximate solutions with initial condition and
parameter variations, then repeating the entire process, it is possible to experimentally establish
insight on the size of the region over which the convergence properties are invariant. This
methodology is useful in validating any given numerical solution method for both linear or
nonlinear ODE and hybrid ODE/PDE system.

As an illustration, we demonstrate the idea using a simple nonstiff problem. We use the
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Runge-Kutta fourth-order method with fixed step size. Therefore we have the most common

case that the integration control parameter is simply the step size 4. When we use the IMSL
subroutines [10] DIVPRK and DIVPBS as solvers, we show the utility of this methodology for
a celestial mechanics problem [9] that has been used as a test problem several times in the
literature. Subroutine DIVPRK uses the Runge-Kutta formulas of order five and six developed
by J. H. Vemer. Subroutine DIVPBS uses the Bulirsh-Stoer extrapolation method and will
terminate when impossible accuracies are specified. In the third example, we demonstrate the
idea on an idealized three-body distributed-parameter system which has two independent
variables for space and time. In the last example, we consider a typical stiff problem and
discuss some limitations and restrictions of this methodology.

Construction of Exact Benchmark Problems

We want to construct new differential equations that are slightly perturbed versions of
the original differential equations. For these new differential equations, we can establish the
true analytical solution using an algebraic inverse idea. Then we can investigate the
error/tolerance relationship with an absolute standard. Under local stability assumptions, we
have valuable information about the optimal parameters and the accuracy of the particular
numerical solution for the given original differential equations. The stability assumption is
easily validated by constructing some neighboring benchmark problems.

Here we introduce one way for constructing exact benchmark problems. We take a global
approach for the perturbation term instead of a piecewise polynomial perturbation to avoid the lack
of smoothness at break points. First we consider the following two distinct initial value problems:

x = Alx D, xt)=x) over t,< t< ¢
0
fi: R"R— RY

x = folx, x,0, x(t)=xp, x(t)= xy over ty<t<t,
(A
fo: R"<R"xR — RY

A candidate discrete approximate solution can be obtained from the original first and second
order systems because these are certain drawbacks if one converts a naturally second order
system into a first order system. To establish a continuous, differentiable motion near a given
approximate solution, lease square approximation using the discrete version of the Chebyshev
polynomials can be invoked to obtain the solution from the already discrete solution [11,12]. We

first consider the least square approximation process. There are # data points denoted as

x1=g(t1), x2=g(t2), st ,xn'_—g(tn)
where t; are the values of the equally spaced independent  variable
(hy=(t;4,— ;) = constant).
A linear transformation of independent variables should be made to use discrete
orthogonality with weight function w(f)=1,

- _ t—‘ tl
t(t)_ h,

where %, is the constant increment of ¢,

x=g()—G(? ©)

From # data points, the function G can be established as a linear combination of m basis
functions that form the discrete version of the Chebyshev polynomials as follows:
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6(h) = 2, aT(D

where m<n and T« D is the ith Chebyshev polynomial.
The Chebyshev polynomials are defined as follows: If #,=m (m=0,1,2,---,N) and
w(wu) =1, then

T = 3, (=07 ( 2)(vhm) e

With the recurrence relations:
To(u) =1

_2u
1--N

(n+1D)N=—n)T,i(w) = @Cu+1)N—2u)T,(u)—n(N+n+1) T,_ (%)

Tl( u)

Note that the recurrence relations make it easy to evaluate an expansion in Chebyshev
polynomials, and a similar recurrence makes it easy to evaluate the derivative of the expansion.
Using discrete orthogonality of the Chebyshev polynomials, the typical coefficient a; can

be obtained as follows:
12] xiTj(—ti)
3 T(BHT(D

aj

where 1<j<m.

We can find g(d from G(d because g(#)=G(HD). Using the least square
approximation, we can find the continuous, differentiable, analytical solution x(£ of Eq.(3) that
interpolates the # discrete numerical solutions obtained from Eqs.(1) and (2). Now this
analytical expression x(#) does not satisfy exactly the Egs.(1) and (2). However, substituting

x(9), x(H into Eq.(1) allows us to determine an analytical function for the perturbation term
e;(9 that appears in the following differential equation:

HD=f(x(D,D + e (D=F(x, D )

Alternatively, if the system is second order, then substituting x(#), x(9, x(#) into Eq.(2)
allows us to determine the perturbation term ey(#) that appears in the following differential
equation:

D= Ff(x(1), x(8),8) + ex)(H) =Fylx, x,t) ®)

Note that because x(%), x(#), x(9) are available functions, F,(x,t), Fy(x, x,t) are also
available functions that satisfy Egs.(4) and (5) exactly, and x(#) is a neighbor of the original
numerical solution {#;, %3, ***, ¥,}. By construction, the functions e,(#) = x(#) — f;(x(d, ) and
ex(t) = x(t) — fo(x(f), (D), are known analytically and therefore these small forcing

functions can be computed exactly at all #. These functions are programmed and Egs.(4) and
(5) can be solved by numerical methods and the results can be compared to the exact
x(9, x(f). The above mathematical procedure can be performed in an automated fashion using
computer symbol manipulation [13]. The symbol manipulation can also automate the generation
of C or FORTRAN code to compute function e;(#) and/or ex(d.
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GIVEN A DYNAMICAL SYSTEM
#(t) = f(=(),2(2):?)

z(tﬂ) = Zo, é(ta) =2, to <t<ty

l

NUMERICAL SOLUTION PROCESS
( for some setting on tuning parameters such as h)

|

APPROXIMATE NUMERICAL SOLUTION

{511 Tgy -

-, Zn} where #; =Z(t)

|

SMOOTH ORTHOGONAL APPROXIMATION
NEAR {il, Z3, Ty éﬁ}

I

EXACT SOLUTION OF BENCHMARK PROBLEM
z3(t)

|

INVERSE DYNAMICS
e(t) = 2s(t) — f(zs(2), 2s(2),2)
BENCHMARK PROBLEM
E(t) = f(z(t),a':(t), t) +¢(t)
z(to) = Cb(to), z'(to) = z',,(to), to <t<tiy

Fig. 1. Flow Chart for Construction of a
Benchmark Problem

Now Eq.(4) is a benchmark problem
neighboring Eq.(1) and we have arranged
that x(#), x(#)satisfy Eq.(4) exactly; and
Eq.(5) becomes the benchmark problem
neighboring Eq.(2) and we have arranged
that x(9, x(#), x(§) satisfies Eq.(5) exactly.
We obviously want the perturbation function
e(#) to be as small as possible, that is, the
benchmark problem is not only a near
neighbor of the original discrete solution,
but it also very nearly satisfies the same

differential equations. The previously
discussed least square approximation
method typically gives the poorest

approximation near the ends of the interval.
This may result in a relatively large e(?)
near the initial and final times. To avoid this
problem we can integrate Eqgs.(1) and (2)
over the enlarged -interval #,- < t<{p

(where t,-<#%, ty >t ) and use these

numerical results as generators for analytical
solutions over the original interval

(ty < t<t,). Experience indicates that a 20%
"enlargement” {(tp—t,-) = 1.2(¢,—4)}
is almost always sufficient to support good
interpolation over the original interval
(ty < t<t; ). If the measure of e(?) is
judged too large then we increase the
number of Chebyshev polynomials m to

reduce e(? over the whole interval, or "start over” by attempting to find a better approximate
numerical solution to initiate the process. Figures 1 and 2 provide logical flow charts showing
construction of a benchmark problem and an associated convergence study for second order
systems.
Until now, we consider ODEs case. Analogous approach can be applied to PDEs which
have two independent variables. Least square approximation associated with using the discrete
version of the Chebyshev polynomials can be invoked to obtain the smooth Ax,y) solution
from the discrete solution.
Let's consider #'Xm’ discrete data points such as

zn = Rxpy), 2z = Rx,y2), =, Ziw =

R = f(xz,yl), 2y = f(xz,m). ., R

Zal = f(xn'yyl), Zn

= f(xn‘z,.Vz), T,

ﬂxl.y m)
Rx2.Y m)

Zam = ﬂx n':ym’)

where x;, y; are equally spaced independent variables.

How can we reliably compute a continuous, differentiable, analytical function f from the
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data points in the least-squares
sense? Analogous to the ODE case,
we elect to make use of discrete

GIVEN A BENCHMARK PROBLEM
( with a known exact solution z;(t))

#t) = f(a(t).3(t),1) + e(t) orthogonality. We nondimensionalize
o) = sl élta) =dlte), o Sty (x,y) using
INITIAL SETTING ON TUNING PARAMETERS }(x)=-x;—xl, j,@):%
FOR NUMERICAL SOLUTION PROCESS * -4

where k., h, are the increments of

x and y, respectively:
NUMERICAL SOLUTION PROCESS Y pec y

| 2= f(x,y) = F(x, )
VARY APPROXIMATE NUMERICAL SOLUTION From two-dimensional # Xm data
TUNING OF THE BENCHMARK PROBLEM ) ]
PARAMETERS 2 points, the function F can be
I approximated by pXq two-

dimensional basis functions that
come from the discrete version of
the Chebyshev polynomials [weight
function w(x)=1] as follows:

EVALUATE ERROR MEASURE

Do we have
enough data for convergence
study ?

F(z 3 = 8 L b, (DT

where p<#n’, g<m' and T.(*)
is  the univariate = Chebyshev

STUDY THE CHARACTERISTICS polynomial in the discrete range

GLOBAL ERROR vs TUNING PARAMETERS [12. We wuse the conventional

definitions of Chebyshev

Fig. 2. Flow Chart for Convergence Study polynomials and the corresponding

recurrence relations. Using discrete
orthogonality properties of Chebyshev polynomials, the typical coefficient b, can be obtained as

3 52 nm T
2 T TH TR TR

by

e

1
where 1<7<p, 1<s<gq.

We can find Ax,y) from F(x, v), since Ax,v)=F(x(x), »¥). Using the above
approximation method, we interpolate a smooth differentiable function as a two-variable
orthogonal function expansion that passes near the # X m’  discrete data points.

lllustrative Examples

Now we demonstrate the previous ideas using four initial value problems for nonlinear
differential equations. First we show the utility of the computer codes [14] for a simple nonstiff
problems. Then, a celestial mechanics problem is introduced to illustrate the utility of this
methodology when we use the IMSL subroutines DIVPRK and DIVPBS. And then we consider
an idealized three-body distributed-parameter system which can be described by a hybrid
ODE/PDE system. Finally, we consider a stiff problem in the fourth example.
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Second Order Systems

We consider the following nonlinear, nonautonomous second order differential equation.
x=—x2—0.1(1+%) x + 0.1x* + sin3t (6)

where x(0) =1 and x(0) =0, and we seek the solution over the interval (< ¢<10. We
convert Eq.(6) to a first order system as follows:
X, = %
_ @
% = —x —0.1(1+ x,2x, + 0.1 x,° + sin3¢
where x,(0)=1 and x5(0)=0.

We solve Eq.(7) using the Runge-Kutta fourth order method to evaluate the candidate
discrete approximate solution. Here we construct the interpolated solution using 121 data points
over the 20% enlarged time interval —1<¢<1l. An analytical expression for x,(# is
obtained from the discrete approximate solution. In this problem, a degree 30 Chebyshev
polynomial is established by the least square approximation. Substituting x(#), x,(9), x,(9

into Eq.(6) we calculate the function e(?) that satisfies the following equation exactly.

x=—x—0.11+2 x+0.12* + sin3t+ ¢ 8)

To use the Runge-Kutta method, Eq.(8) can be converted to a first order system as follows:
J.CI = xz
. , . ©)
x3 = —x; —0.1(1+ %)%, + 0.1 x,° + sin3t+ e
Now, Eq.(8) becomes a benchmark problem for Eq.(6), and x(#) is an algebraic function
that satisfies Eq.(8) exactly. When we use the pointwise error in the root mean square sense,
Fig. 3 shows the relationship between global error and step size in log/log scale. The rate of
convergence is 4 in this problem and this coincides with the fact that an #th order method

should have a global error of O(%”) in the absence of arithmetic errors [5]. Figure 4 shows
the perturbation term over the time interval. The critical value for step size is about 0.001.

Now we consider the original problem. The relationship between step size and error at ¢=10
is shown in Fig. 5 when we follow the common way assessing the true solution using the
IMSL subroutines DIVPRK and DIVPBS. Comparing Figs. 3 and 5, we observe that the critical

value % and the accuracy are almost the same.

6 1E-2
—_ =74
L X; error norm
2 _gd 4**** Xz error norm =1
7] Q
@ 2
O -
£ 2

1)
s —10- 3
| 13
£ [3)
= -1 A
1
S -124
-13 T T T T T T -1E-2 T T T T T T T T T
—-4.5 -3.5 -2.5 -1.5 0 2 4 8 8 10
LOG,o(h) Time

Fig. 3. Global Error vs. Step size for the Fig. 4. Perturbation Term of the Second

Benchmark Problem Order System
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X, error
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LOGo(h)

Fig. 5. Error (at t=10) vs. Step size for
the Original Problem
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Fig. 7. Absolute Error vs. Tolerance for
the Benchmark Problem(DIVPRK)
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Fig. 9. Absolute Error vs. Tolerance for
the Two Body Problem(DIVPRK)
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Fig. 6. Global Error vs. Step size for the
Benchmark Problem of 20%

perturbation
0_
1 DIVPBS
= J
g { —— position
& 1 e=+=s velocity
_5_
1) J
-
5 |
S ]
n 4
< -10-
\-§ .
& )
o 4
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I
-
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Fig. 8. Absolute Error vs. Tolerance for
the Benchmark Problem(DIVPBS)

%1 DIVPBS
= ]
S {1 —— position
& 1 s&#=s=a velocity
_5_
o ]
-
=
o
12 4
2 101
\é <
(4
3
=
15—
-15 -10 -5 0
LOG,¢(Tolerance)

Fig. 10. Absolute Error vs. Tolerance for
the Two Body Problem(DIVPBS)

We change the initial conditions slightly and the nonautonomous term in the differential

equation as follows:

x=—x—0.114+ x*) x+ 0.1 2* + 1.2sin3t (10)

where x(0)=1.2 and x(0)=0.2 over the interval 0<¢<10.
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After using the same procedure, we obtain the global error/step size relationship shown
in Fig. 6. We notice that Figs. 3 and 6 are almost the same. In other words, the critical value
for % and the accuracy are almost identical even though there are 20% perturbations in the
differential equation, in this case.

Two Body Problem

We consider the simple two body problem. The exact solution is periodic with period 2
7 and the solution traces out an ellipse with eccentricity 0.6.

x = —x/7, 20)=0.4, x0)=0
y = —y/#, ¥0)=0, »0) =2

2) 1/2

1)

where r= (x* +y
These equations can be solved exactly and we can find the analytical solution in Ref.
[15]. We reformulate Eq.(11) as a first order system as follows:

.7-51 = X3

- 3/2

v = —x/ (E+ad)”

) (12)
X3 = X4

- 3/2
Xy = —x3/ (x¥+x§)

where
0.015

x1(0)=0.4, x(0)=0, x3(0)=0, x,(0)=2.

We solve Eq.(12) using DIVPRK to
evaluate the candidate discrete approximate
solution. Here we use 121 data points over
the 20% enlarged time interval and a degree 50
Chebyshev polynomial approximation is used
for the least square fitting of x(# and x3(9.

0.000 {11 oA A g s

Perturbation

o

T
4

-

After constructing the benchmark problem, we 0 Time
do an absolute error test on (0,27). Figures 7 ) )

and 8 show the relationship between absolute Fig. 11. Perturbation Terms of the Two
error and tolerance in log/log scale when we Body Problem

use DIVPRK and DIVPBS for the benchmark problem. Figures 9 and 10 show the relationship
between absolute error and tolerance in log/log scale when we use DIVPRK and DIVPBS for
the original two body problem. We notice that Figs. 7 and 8 are almost identical to Figs. 9
and 10, respectively. The perturbation terms are shown in Fig. 11. Thus the benchmark
problem (constructed by the method of this study) essentially gives results that are identical to
those obtained by using the exact solution of the original problem.

Three-Body Distributed-Parameter System

With reference to Fig. 12, we consider a rigid hub with a cantilevered flexible appendage that
has a finite tip mass. Table 1 summarizes the configuration parameters of this flexible structure.
The appendage is considered to be a uniform flexible beam, and we make the Euler-Bernoulli
assumptions of negligible shear deformation and negligible distributed rotatory
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Table 1. Configuration Parameters of Three-Body Problem

PARAMETER SYMBOL VALUE
Hub radius r 1/t
Rotary inertia of hub Jh 8 slug- ff
Mass density of beam 0 0.0271875 slug/ 1t
Elastic modulus of beam E 0.1584 x 10" /A
Beam length L 4 ft
Moment of inertia of beam I 0.47095028 <10~ " £
Tip mass my 0.256941 slug
Rotary inertia of tip mass T 0.0028 slug - f*

inertia. The beam is cantilevered rigidly to the
hub. Motion is restricted to the horizontal
plane, and we neglect the velocity component
—y0 that is perpendicular to the v direction.
The control system is assumed to generate a
torque % acting upon the hub, a torque u g

and a force f, acting upon the tip mass, and

a distributed force density ? acting upon the
appendage. We assume small elastic motions
viewed from the hub-fixed rotating reference
frame. Overdots denote derivatives with respect to time and primes denote derivatives with
respect to the spatial position.

Using an explicit version of the classical Lagrange equation for hybrid coordinate
distributed-parameter systems [16], the governing differential equations and the boundary
conditions are obtained efficiently:

Fig. 12. Three-Body Distributed-Parameter
System

1,0+ fOLP(JH- A y+(x+2» 0ldx + m L+ (L+7) 0+ ¥L)] +J[ 8+ y(L)]

13)
= u + fOL?(x) (x+7dx + (L+ 7)fpp + sy
ely+(x+»n 6 + EIy"” =% (14)
EI%}’L — m[(L+7) 0+ (L)1 + f4 = 0 (15)
BT 4 LU0 W]~ = 0 1)
X L

Notice that if we knew an explicit, differentiable solution for the motion variables
{¥(x,9),0(D}, then Eqs.(13-16) can be solved directly and exactly for the four corresponding
time and space varying forces and moments {u(?), Kx, D, u (), frs(D}, thus yielding the
desired inverse solution. We construct an exact solution that is near neighbor of a given
approximate solution. We are interested in physically meaningful problem. Therefore we use
finite element method to obtain linear finite dimensional equations of motion for the model. And
we design a typical control law using the LQR, and modal coordinates are used to design
controller. The optimal feedback control is obtained by solving the Riccati equation [17].



56 Sangchul Lee

SR
A AT
R R RN
SRR
R SRRy W
SRS

ARSI MM

R

SRR
N

N
s 8 oy~ A\ -
= 5 .= =
< g = X 5 45 =
= @ s 3 o
§ S 3 o5 \‘“ 55 9
; R
R

ANt

\“\\\\“\\‘\\V-’

6.5 RS
S
<

-55 08

Fig. 13. Error Norm Distribution of & for Fig. 14. Error Norm Distribution of y for the
the Example 3 Example 3

We can solve the initial value problem using a time discretization process and then we
obtain  ¥(x; t;), 8(t;), and w(t;) at discrete points in space and time for the enlarged time
interval (0<#<(.1). The initial condition for @ is 0.1 rad, and the third natural mode of this
flexible structure is used for the initial deformation 3(x,0). Here we construct a benchmark
problem from the previous candidate approximate solutions for time interval (0<¢<0.08). We
have an analytical set y,(x, 8, 8,(#), and {u(?), Fo, D), u (D), f i #)} that satisfy Egs.(13-16)
exactly. Given initial conditions {¥(x,0)=y,(x,0), 8(0)=8,0)} and force functions {u(?,

Fx, D, w (D, f (D}, the approximate simulation of this structure’s dynamics { y,(x, £), 0,(£)}
can proceed. When we use the Newmark integration method with finite element modeling, the
convergence and accuracy behavior is studied as a function of the number of finite elements and
the integration step size. The error norm distribution of € and y is shown in Figs. 13 and 14,

respectively, as a function of time step size(DT) and mesh size(H).
Here we introduce the following definitions for the supmetric error:

lleoDIl 20 = [foTeg(t)z dt] 1/2

T oL 1/2
llex, DIl o, pry = [fo fo ey(x,t)zdxdt]

where eo()=0,()—0,(D, efx, )=y (x, ) —y,(x,1).

A Stiff Problem

We consider the following problem [18] that represents a typical stiff problem. Although
this problem is expressed by linear ODE instead of nonlinear, it shows the stiff behavior very

well.

,&'1 = —29998761 - 39996XZ
, 17)
xy = 14998.5x; + 19997 x5
where x;(0) =1, x,(0)=1.
The exact solutions of Eq.(17) are as follows:
x,()) = Texp(—10') — 6exp(— 9
(18)

x(f) = —3.5exp(—10") + 4.5exp(— §
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Fig. 15. Solution of the Example 4 for the Fig. 16. Solution of the Example 4 for the
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The eigenvalues of the coefficient matrix are —1 and —10"% Figures 15 and 16 show
the solutions over two different intervals, a region of very rapid change followed by gradual
asymptotic behavior. It is almost impossible to obtain a satisfactory orthogonal function
benchmark problem that covers both regions with a reasonable number of terms. We conclude
that the proposed methodology is not adequate for such stiff problems unless piecewise
approximation methods, for example, the type introduced by Junkins et al. [19] are used. Stiff
problems are relatively expensive to solve and the expense depends strongly on the tolerance
[5,18]. Enright et al. [20] provide a good collection of stiff test problems.

Summary and Conclusion

An inverse method is introduced by first considering the initial value problem for
nonlinear ordinary differential equations. Used as an exact benchmark solution for a numerical
convergence study, this methodology gives valuable information about the optimal tuning
parameters, and the accuracy of the numerical solution process for a class of ODE problems
and for a given solution code. The inverse idea introduced for ODE systems is generalized to
accomodate construction of benchmark problems for hybrid ODE/PDE systems. A
multi-variable orthogonal function expansion method and computer symbol manipulation are
successfully used for this process. This methodology makes it possible for one to rigorously
determine exact solution errors and to study the convergence and accuracy behavior as a
function of tuning parameters for a class of ODE/PDE systems for which the initial value
problem is not exactly solvable. We present numerical examples to explore the practical utility
of this approach for both ODEs and hybrid ODE/PDE systems. In the second example, we
show the utility of this methodology using the IMSL subroutines DIVPRK and DIVPBS as
solvers. We investigate the absolute error/tolerance relationship and compare DIVPRK and
DIVPBS. And in the third example, we demonstrate an inverse dynamics method for
constructing exact special case solutions for hybrid ODE/PDE systems. Numerical examples
indicate that a rigorous error analysis is obtained not merely for one nominal solution, but for
a substantial neighborhood of the nominal solution. By constructing a family of neighboring
benchmark problems, one can obtain valuable information about the convergence and accuracy
properties that are relatively invariant with respect to perturbations within a known bound.

References

1. Suk, J, and Kim, Y., "On the Modeling of Dynamic Systems,” KSAS International



58 Sangchul Lee

Journal, Vol. 2, No. 1, 2001, pp. 78-92.

2. Miele, A., and Iyer, R. R, "General Technique for Solving Nonlinear, Two-Point
Boundary-Value Problems via the Method of Particular Solutions,” Journal of Optimization
Theory and Applications, Vol. 5, No. 5, 1970, pp. 382-403.

3. Silver, W. M., "On the Equivalence of Lagrangian and Newton-Euler Dynamics for
Manipulators,” The International Journal of Robotics Research, Vol. 1, No. 2, 1982, pp. 60-70.

4. Luh, J. Y. S, Walker, M. W., and Paul, R. P. C., "On-Line Computational Scheme for
Mechanical Manipulators,” ASME Journal of Dynamic Systems, Measurement, and Control,
Vol. 102, 1980, pp. 69-76.

5. Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, NJ, 1971.

6. Shampine, L. F., "Limiting Precision in Differential Equation Solvers, II: Sources of
Trouble and Starting a Code,” Math. Comp., Vol. 32, No. 144, 1978, pp. 1115-1122.

7. Enright, W. H., "Analysis of Error Control Strategies for Continuous Runge-Kutta
Methods,” SIAM J. Numer. Anal., Vol. 26, No. 3, 1989, pp. 588-599.

8. Hull, T. E., Enright, W. H, Fellen, B. M., and Sedgwick, A. E., "Comparing Numerical
Methods for Ordinary Differential Equations,” SIAM J. Numer. Anal, Vol. 9, No. 4, 1972, pp.
603-637.

9. Krogh, F. T., "On Testing a Subroutine for the Numerical Integration of Ordinary
Differential Equations,” Journal of the Association for Computing Machinery, Vol. 20, No. 4,
1973, pp. 545-562.

10. IMSL MATH/LIBRARY User’s’ Manual Version 1.1, IMSL Inc., 1989.

11. Junkins, J. L., An Introduction to Optimal Estimation of Dynamical Systems, Sijhoff
& Noordhoff, Alphen aan den Rijn, The Netherlands, 1978.

12. Abramowitz, M., and Stegun, 1. A. Handbook of Mathematical Functions uwith
Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied
Mathematics Series 55, U.S. Department of Commerce, 1972.

13. MACSYMA Reference Manual Version 13, Symbolics Inc., 1988.

14. Junkins, J. L., and Lee, S., "Benchmark Problems for the Solution of Ordinary
Differential Equations,” Shock and Vibration Computer Programs, Vol SVM-13, 1995, pp.
497-523.

15. Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics,
AIAA Education Series, New York, New York, 1987.

16. Lee, S. and Junkins, J. L., "Explicit Generalization of Lagrange's Equations for
Hybrid Coordinate Dynamical Systems,” AIAA Journal of Guidance, Control, and Dynamics,
Vol. 15, No. 6, 1992, pp. 1443-1452.

17. Junkins, J. L., and Kim, Y., An Introduction to Dynamics and Control of Flexible
Structures, AIAA, Washington, DC, 1993.

18. Shampine, L. F., and Gordon, M. K., Computer solution of Ordinary Differential
Equations, W. H. Freeman, San Francisco, 1975.

19. Junkins, J. L., Miller, G. W., and Jancaitis, J. R., "A Weighting Function Approach to
Modeling of Irregular Surfaces,” Journal of Geophysical Research, Vol. 78, No. 11, 1973, pp.
1794-1803.

20. Enright, W. H., Hull, T. E., and Lindberg, B., "Comparing Numerical Methods for
Stiff Systems of ODEs,” BIT, Vol. 15, 1975, pp. 10-48.



	A Validation Method for Solution of Nonlinear Differential Equations
	Abstract
	Introduction
	Construction of Exact Benchmark Problems
	lllustrative Examples
	Summary and Conclusion
	References


