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Abstract

Attitude control law synthesis for the three-axis attitude maneuver of a
flexible spacecraft model is presented in this study. The basic idea is motivated by
previous works for the extension into a more general case. The new case includes
gravitational gradient torque which has significant effect on a wide range of low
earth orbit missions. As the first step, the fully nonlinear dynamic equations of
motion are derived including gravitational gradient. The control law design based
upon the Lyapunov approach is attempted. The Lyapunov function consists of a
weighted combination of system kinetic and potential energy. Then, a set of
stabilizing control law is derived from the -basic Lyapunov stability theory. The
new control law is therefore in a general form partially validating the previous
work in some sense.

Key Word : Attitude control, flexible spacecraft, Lyapunov function, output feedback,
three-axis attitude dynamics

Introduction

Flexible spacecraft attitude maneuver and vibration control has received significant
attention during last decades[1],[2]. The key issues can be classified into modelling error,
robustness, control structure interaction, and etc[3]. Flexible attitude maneuver control is
represented by smoothly shaped maneuvers with minimal vibration excited[4]. Various control
strategies have emerged for such a specific objective. Extensive analysis work followed by
ground-based experimental verifications have been conducted(5],[6].

Mathematical modelling is the issue of primary interest for general model-based control
laws design. The original flexible dynamics are infinite dimensional systems, and finite
dimensional mathematical models are developed by approximation techniques. The mathematical
models are transformed into a form for the control laws design[4]. Variety of robust control
strategies have been investigated over frequency and time domain analysis[3],[4]. Attitude
maneuver problems are also studied by output feedback which seems to be more practical than
other model dependent approaches from the perspective of practical merits. The output from
sensor measurement is directly employed for control command synthesis. The sensors and
actuators are usually collocated for robustness and stability guarantee. Global stability of the
closed-loop system is usually secured by the Lyapunov stability theory[5],[6]. The Lyapunov
function is in general constructed as a weighted combination of mechanical energies, ie.
kinetic and potential energies[7],[8].
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Extensive study on single-axis slew maneuver of flexible spacecraft model based upon the
Lyapunov stability theory has been pursued(6],[7]. The globally stabilizing output feedback control
law has been verified by both analytical and experimental works[6]. The center body angle and angular
rate with a collocated actuator were taken as control parameters. As a special case, the boundary
reaction torque at the root where the flexible structures are attached to the rigid body is used as
additional control variable[5],[6]. The Lyapunov control law turns out to be a highly efficient solution
for large angle attitude maneuvers of flexible spacecraft. Torque shaping technique to generate a
torque profile with minimal vibration excited has been investigated[7].

In this paper we make extension of the previous study for the sake of generalization.
The new case includes three-axis attitude dynamics and gravitational gradient torque.
Three-axis attitude dynamic models are established first and the Lyapunov stability theory is
applied to derive a set of stabilizing control law. Hence, this study conveys more general
results[5]-[8] to take into account realistic requirement such as three-axis dynamics and
environmental torque consistently acting on the spacecraft.

Attitude Dynamics and Kinematics

The configuration of a flexible ":1}
spacecraft model considered in this »,
study is presented in Fig. 1. The .28
model consists of a center rigid body r, dm
to which two flexible structures are LSt
attached at the root. The whole
spacecraft is subject to three-axis
rotation and simultaneous dynamic
response of the flexible structures. V=-,,J'1_dm
The position vector of each flexible R R, R
appendage with respect to the inertial
frame is expressed as

>

Ri= R+ r; i=1,2 (1)

where R, is the vector for center of

mass, and 7; is the vector for a finite

mass element in the i-th flexible Earth

appendages with respect to the center )
of mass. By using the body frame Fig. 1. Flexible spacecraft model configuration

unit vectors( &y, by, by), it can be under gravitational potential
written as

ri=x; bty (x,0 b (2)

where y=v{x,0, i=1,2 represents deflection of the i-th appendage. The time derivative
of r; vector becomes
;',': ;’,‘+ wx 7 (3)

where w=w, b+ w, b,+ ws by is the body angular velocity vector. Consequently

dd:i N Yiv b+ ( yitxiwy) byt (—x;03+ yiw)) by (4)

and
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a 7 - -~ ~ N ~
—| = ri+ oX ri+2wx ri+ ox(wx ;)
dﬁ N . . .
=[— yiw3—y; w3t w(—xw;+ yjw) — w3 y;txwsy)] b
+[ yitxwy— 0 (—x0+ y,0) — yi03)] by (5)

+l=x wot yiwi+y; o1+ o,( yi+xws)+yww;] by

For the sake of notational simplicity, the following definition is introduced for the body axis
components of the acceleration.
o
dr*

The total angular momentum of the system can be expressed as

=a}- b]‘i’d? b2+ a? b3 (6)
N

H = H.+ H+ H, 7
frx( wx rydm+ ZJ; 7: % ( },-+ wx r)dm+ 21’"' 7i % ( 1.',-+ wx )y

Il

where H., H;,, H, correspond to angular momentum vectors for center body, flexible

appendage, and tip masses, respectively. The time derivative of the total angular momentum
vector can be shown to be

H= I:I,+ wx H.+ gj; riX a;dm+ Z\m, riX @l my= Tyt u (8)

where T,=[TL, T% T3]17 is the gravity gradient torque vector. By using the notation [1,, 1, I;]
as the principal moment of inertia of the center rigid body, the center body angular momentum
vector is expressed as
H(=11w1 b,+12w2 b2+13a)3 b3 (9)

Thus the governing equations of motion from Eq. (8) in conjunction with Eq. (9) is established
as

I o+ (L= L)wws + g[ f/ valdm+my 1, Dal(l, )= T+ u,

I w3+ (I — I)wsw, + g‘[ff(—xa?)dm—mtla?(l. D= T+ u, (10)

L w3+ (L—1)ww,+ gl[j;(xa?—y;a})dm%» mla—y;ai(1, D)1= T+ us

17 are

for which, T,=[T, T2, T31" represents the gravitational torque vector and [u;,us, u3
the components of other external torque inputs. The governing equations in Eq. (10) are
associated with equilibrium between the applied torque and time rate of change of the angular
momentum of the whole system. In order to express the gravitational torque vector in explicit
expressions, first it should be noted that[9]

T,=—wu Zz‘fﬁd%&dm (11D

where the subscript ¢+ f denotes center body and flexible structures. Since

Ri=R:+2( R.+ 7)++ (12)
then we obtain
_ Ri' v l 7 2
R=RJ1+5" 4 ( R[)] (13)

From Eq. (13), the following approximation holds
1 _ 1 [1_ 3(7i- Rr)] (14)

R R R}
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Thus, the well-known gravitational torque expression is derived as follows[9]

—_ 3 Y
T, B Jers R.x ri( r,- R)dm (15)
Moreover, the body and inertial frames of reference satisfy[9]
™ Cn Cp Cy b
ny}=|Cyn Cpn Cyul|l b (16)
n3 Cy Cxp Cynl| b,

where C; are elements of a typical direction cosine matrix(DCM) between the inertial and

body reference frames, respectively. The position vector of the center of mass can be written
as

R.=R. n;=R.(C3 b+Cy by+Cuy by3) (17
The position vector of each appendage can be written again as
ri=x bty by (18)
As a consequence
R.- r=R(xCy,+y,Cy) (19)
and
R.x r=RJI9,Cx bj+1Cx by+(y,C3—x2C3) bs] (20)

can be derived. The final form for the gravitational gradient torques are expressed as
T, =— 73?3'& fc+fp(xC3l+y|C32)[—y1C33 by +xCy b3+ (3C3—xC3) bsldx

— 3 [ pxCy+3Call9:Cay by+aCy byt (3 +2Ca0) byl

=T, b+ Ts by+ Ty by - @
Equation (21) provides body axis components([ T}, T2, T3)) of the gravitational gradient torque.

They are added to Eqg. (10) to complete the governing equations of motion.
Meanwhile, the gravitational potential of the flexible appendage is also introduced as

— 1
Vi=— iy dm (22)

where g is the gravitational constant per unit mass. Then the first variation of the potential
energy can be expressed as

sVi=u f R2 L am (23)
Furthermore, from the relationship in Egs. (13), one can see that

V= #2fc+fp Rz( dy; )6yl = 3y

where dm= odx was used for a finite mass element. Equations (13) and (23) can be combined
together producing

(24)

a.Vl . _u l aVl _
wm R R chP(M"'RcC]z)dx. I =0 (25)
and
3V2 8V2 i 1 f
3 % oy, TR R. P32~ RC n)dx (26)

Taking the principle of extended Hamilton’s principle, internal force equilibrium equation with
the variation of the potential energy can be developed. The extended Hamilton's principle is
stated as
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| ttl(8L+ SWdt=0 @n
where L= T— V represents the system L“agrangian as a difference between the system Kkinetic
and potential energies, and J6W is the virtual work done by non-conservative external forces.
Therefore, additional governing equations in the beam deflection direction( &,) are written as

d'y 3V,
2 1 1 _
oa, + E] ax4 < axayl = 0 (28)
3y FR%
2 2 2 _
oas + EI ax4 o axayz = 0

for each flexible appendage. The boundary conditions are given by

y,-(x, L‘)ZO, _3}‘1:0, at x= 10 (29)
3 ) 2
EI%=m,a§, EI—sz—:O, at x=1

In addition to the dynamic equations of motion, the kinematics between the body angular
velocity and attitude parameter need to be established. Quaternion parameter is employed as
the attitude parameter in this study. Quaternion is very popular as attitude representation in
majority of current spacecraft attitude determination and control. It is also well known that the
following Kkinematic relationship holds between the quaternion and body axis angular
velocity[9],[10]

=1 A D=1 D (30

where the quaternion is originally defined as

q1

g= @z =[ 413] (31)
a3 q4
a3

and ¢ 3= 1/sin ¢/2,q4= cos ¢/2 are quaternion elements for which / is the Euler’s principal

axis vector and ¢ is the principal angle. The parameter matrices in Eq. (30) are given by

Q(Aw)=[‘[3’l o] q)=[‘“13'3+[ 7“31] (32)
-0’ 0/ _ T
q.3
Furthermore,
N 0 — w3 Wy
[o]l=]| w3 0 —w (33)
— W W 0
and similar definition is applied to [ g,3]. The error quaternion is expressed as
_[dai]_ —1
Sq [ 25]= @ a (34)

where & denotes the quaternion multiplier, and g ; represents the desired quaternion. In
addition,
dai=5"C a))a, 0gy= lIT qq (35)

The time derivative of the error quaternion satisfies[9]1[10]
8 an=15 e)H Do,  Sau=% 051 d) as (36)

The dynamic equations of motion and attitude kinematics are used to derive an output
feedback control law in the next section.
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Control Law Design by Lyapunov Approach

Based upon the attitude dynamics and kinematics derived in the previous section, the
control law design is attempted in this section. The principal idea for the control law design is
the output feedback approach based upon the Lyapunov stability theory. Lyapunov stability
theory and associated control law design for large angle attitude maneuvers of flexible
spacecraft models have received significant attention in a series of previous works. For a wide
class of mechanical systems, the Lyapunov function consists of a weighted combination of
sub-structure energy functions to lead to a globally stabilizing control law.

The Lyapunov function candidate in this study comprises the Kkinetic energy of three axis
attitude maneuver, potential energies for the flexible beams, potential energy due to the gravity,
and attitude error. It is given by

2U= 11w1+1>w2+1qw,+c,ﬁ[f( r,+ wx 7)) ( r,+ wX r)dm

+fl(ay')dx+m,( rit ox r)-( ri+ ox )l - ,uf (37)
+ ol 013 aut(a;—1)%

for which ¢,>0, ¢;>0 are positive weighting parameters. Note that the target quaternion attitude
set is chosen as [q,qs g394)=[0,0,0,1]1 for convenience, and error energy is defined with
respect to the target attitude set. The attitude error energy can be rewritten as

qlaT 0|3‘|‘(04—1)2=2(1—¢14) (38)

The time derivative of the Lyapunov function in conjunction with the governing equations of
motion(Egs. (10) and (28)) and boundary conditions(Eq.(29)) at the root and tip of the
appendages becomes(See Appendix for details)

U= I| C.l)l Cl)|+lg f.l)z(l)2+13 (.1)3(03 )
+cl[_wl(l()SD_MO)l_wZ(IOSO_MO)Z—w3(1050_M0)3_w1T;_w2T2_w:%TZ'] (39
+e(—=2 q)

where the boundary bending moment and shear force about the b, direction are defined
as[5],[6]
oy}

o (40)

a,
, (MU)Z—EIZ 2

Iﬂ [Iv

(SO>2= EI

In fact, from the governing equations of motion one can see that there exists equilibrium
between the reaction torque and inertial torque components including the gravitational effect.
Thus, it can be shown that

(Ss= M= B [ vabdm+ m (1, 0a} (1,01 T
(Sy— Mo)o= 23 f/( — xd)dm—mia*(l, 0] — T (41)
(hSo—Mo)s= 2l [ (xa}~yia)dm+m(la} - y,al(l, )]~ T,

By making use of the governing equations in Eq.(10) in conjunction with Eq. (40), we arrive
at

U= (O] [u, +(ll)sl)_ M0)1] &5 (Uz[ u2+(lUSD— M())‘)] + wg[ u3+ (Zos()_ Mo);)]
+ C][ _Cl)l('l()SU_Mo)l"“ CUQ(ZOSO_MU)Q_ (Ug(loSo_MU)g_ CU]TL_CUQT‘;,_CU;;Y\Z]
+c(—2 qq) (42)

In addition, from the quaternion kinematics, further expansion on U can be derived in such a
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way that

U= [uy+ &Sy~ M)+ & Tyt gsai]oy+ [ ust (1 Sy — My)o+ 81 T+ g3a2]ws (43)
+ [us+&(LhSo— My)s+ 2 T2,+g3q3]w3

where the feedback gains g;=1c¢j, g&a=1—c¢;, and g3=c, are selected by a trial-and-error
procedure. But more systemic approaches such as a parameter optimization technique could be
applied to find a better gain set. According to the Lyapunov stability theory, it should be
satisfled <0 for stability guarantee. Thus a set of control laws by the stability requirement
is produced as

U =—4& T%_EQ(ZOSU_Mo)l—g:;(h—g.awl
22 =_g|T;_gz(loso_Mo)z_gsflz—gswz (44)
uy =— g Ty— g:(1ySy— My)3— 8303~ 253

so that the time derivative of the Lyapunov function becomes negative semidefinite as follows
U= g,0) — g5 0} — g0} <0 (45)

The new control law in Eq. (44) includes body angular velocity components, quaternion error,
boundary reaction torque, and gravitational gradient torque. Hence, the new control law could
be regarded as a generalized version of the single-axis case. The quaternion feedback for
generic rigid spacecraft three-axis large angle maneuvers has been investigated extensively. It
is shown again that the quaternion feedback and feedback on the boundary reaction torque for
flexible structures are naturally merged into an unified framework of control law for three-axis
attitude problem.

Simulation Study

Simulation study has been made to examine the control law designed. For simulation
purpose, a finite dimensional mathematical model is constructed by using the typical
approximation procedure. A nonlinear dynamic model for the three-axis maneuver is established
first. The finite element method is used to approximate the flexible deflection. Consequently, a
nonlinear finite dimensional system model including the center body rigid motion as well as
flexible body dynamics can be written as

x=A x, %) (46)

where the state vector x includes variables such as x=[w;, s w541, g2.a5 01,01, Vo, V5 ..., Ux, UA] -
For a single finite element, the flexible deflection is written as[11]

$0x, = Gt DBH +-Bol (D) Sl lD LByl vod D 47)

where v,(v;) is the left-end nodal deflection(rotation), and v»(v,) correspond to those of the
right-end nodal points for the finite element[11]. Quaternion kinematics equation in Eq. (30) is
also augmented to the dynamic equations for attitude update.

For simulation study, it is assumed that two flexible structures possess identical
geometrical and material properties. Since only torque input is considered throughout simulation,
the flexible structures should deflect in an anti-symmetric fashion. In other words, y;,=—1

holds and the flexible body dynamics and effect on the attitude dynamics of the center body
are identical for the two flexible structures. As a result, the mathematical modelling can be
simplified by simply doubling the flexible dynamic parts. The material properties for a model
spacecraft are presented in Table 1.
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Table 1. Material properties for the model spacecraft

Properties Value
Linear mass density, o 8.750 kg/m
Elastic rigidity, EI 662 N— m®
Appendage length, / 6m
Center body moment of inertia 9
(1, I, L] [200,210,180] kg — m
Center body radius, im
Tip mass, m; 1.80kg
0.4 1.2+
0.24
. g 1.0 fomememmeeen o e e e s
= oo—(&&r 3 -
8 .02 08+
;21 0.4 . é 06 _:;
Toed | g £ -
2 s @ g 044 -q,
5 o i
g -1.04 02t
£ 2]
1.4 0.0/
-1.6 T T T T 1 02 T T T T 1
0 20 40 60 80 100 0 20 40 60 80 100
Time(sec) Time(sec)
Fig. 2. Body angular velocity responses Fig. 3. Attitude quaternion responses

The total simulation time is selected as 100 seconds and the final target quaternion set is
[0,0,0,11 which corresponds to zero Euler angles. Arbitrary initial conditions on attitude
quaternion ([0.1,0.5,0.6,0.62]) and angular velocities are provided. The stabilizing control gains
are chosen after a few trials. There is no limitation on the maximum control torque available,
therefore the peak control input is purely theoretical one as it is dictated by the control law.
However, in practical scenarios, the maximum control torque is limited and it will result in
increased maneuver without much degradation in the overall stability of the closed-loop
system. For evaluation of the gravity gradient torque, the spacecraft is modelled as a pure
rigid body. It simplifies the calculation of the gravity gradient with reasonable accuracy due to
the relatively small deflection of the flexible structures.

Body angular rate responses are plotted in Fig. 2 while the attitude quaternion responses
are presented in Fig. 3. The angular velocity( w3) about the in-plane motion of the flexible

structures shows significant coupling with the structural dynamics. This makes sense at the
governing equations describe such a dynamic phenomenon. The oscillatory motion can be
minimized by choosing a different feedback gain set.

Also, the time responses of the boundary reaction torques are plotted in Fig. 5 while the
control torques for each body axis are displayed in Fig. 6. The control torque shows very high
peak at the early maneuver stage. As mentioned previously, the control torque is assumed to
be unlimited. If there is a limiter implemented over the control command, the resultant response
would be somewhat slower than the one without the limiter. The overall stability is not
significantly degraded at it is well known from conventional control theories with limiters.

Furthermore, the control command response about &3 axis is very similar to that of the

angular rate and quaternion responses. This makes sense since the control command is
generated by the feedback strategy which explicitly includes the body angular velocity
components.
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reaction torques
The gravity gradient torque responses Y
are plotted in Fig. 7. Large values of the £ 600—’; —
gradient torque at the early maneuver stage 5”, g@odt 0 e L
« e, . H 3
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. (=} -1
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already mentioned that only the rigid body 3 ]
moment of inertia was incorporated for the ©
. . . . -600 +
practical evaluation of the gravity gradient - : - — :
0 20 40 60 80 100

torque.
Time(sec)

Conclusions Fig. 6. Gravity gradient torque responses

Attitude control law design for the three-axis attitude maneuver of a flexible spacecraft
model under gravity potential environment has been investigated. The control law turns out to
be a linear control law which is a combination of body angular rate, attitude quaternion,
boundary reaction torque, and gravity gradient torque. In particular, the new control law
includes explicit feedback on the gravity gradient torque. Simulation study was conducted to
illustrate the performance of the control law designed to eliminate initial attitude error toward a
target attitude set. Stabilized response was obtained by the Lyapunov function-based output
feedback control law for the three-axis attitude maneuvers of a flexible spacecraft model
subject to gravity gradient torque disturbance.

Appendix

The Lyapunov function is given as a weighted combination of energy functions as
follows

2U= Ilw%+lzw§+[gw§+cl g‘[ﬁ( ;’,’f‘ ,(;)X r,)-( ;’i"‘ /(;)X r,—)dm

3%y \? - A o
+ffEI(6’—9Tcz) dxt+m( ri+t wx r):-( ri+ wx r) ,,:,—f-ff
+eol a3 gpt(a—17

where we ignored the energy contribution due to the orbital motion itself which is negligible
relative to other terms. The time derivative of the Lyapunov function can be written as

av;
% dx] (A.1)
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2 U= 211 (.Ul (Dl+212 C'Uzwz+213 ('t)3w3+ C1 g[IZ( ;’,'l' E)X r,-) * _Z’_t( ;','+ ?UX r,-)dm

+sz:( azy,)_( a;' Jact2m 7t 7)ot )l (A2)
[ d"]”Z( 2 a)
Note that
o S S e = S ) 2 (32 : LE(SEE (e s
S A R EA T

where y = 0y(x,t)/ox, My=EId%,/9x*|,, M,=EI 3%,/ ax2|, are used for the sake of notational

simplicity. By using the boundary conditions at the root of the appendages, the above
expression is reduced to

3y 9%y, : av; |’ 3%y, a,
EEEIE - IRTICEE T

where S,= EI 95/ 8t3|, . In addition, it should be noted that

L( ;’,'+ /(;)X f,') . %( ;’,+ Z)X r,-)dm+ m,( ;’,+ Z.)X 7’,‘) . %( ;’,'+ /C;)X 7,')! e=1
= f//&) X % ( ;',+ wx r)dm+m o rX %( ;-,,+ X ) =y (A5)
. d . ~ . d - ~
+J; r,--E( rit wx r)dm+m, ri'ﬁ( rit X )l =y
From the governing equations of motion in Eq. (2), the above equation can be rewritten as

f/w- TiX%( ;’,+ /(Z)X r,)a'm-l—m,/(;)- Tingt‘( ;’,"f" ?ux 1’,‘)|x=/ (A.6)
=—w,({,Sy— M) — wy (g So— M)z — w3( 1y Sy~ My)3— w0, Ty— w, Ty — w3 Ty

Based upon the following relationship

7i= 3 by, %( rit ox r)=a b+at by+ad by (AT)
it follows as
L ;’," %t( ;',+ /(;)X r,—)dm-l-m, ;’," %( r,-+ /CZ)X ri)‘x=l (A8)
= [ vidddm+m, 3,01, DaX1, 1)

Therefore, the expression in Eq. (A.5) turns into the form

[C ritox m) - Lt ox rddm+m 'r,-+ ox r,~) S AR
=— (L So— M) — w2(lh Sy — My) 2 — w3 (1 So— My)3 — onz a)sz (A9)
+ f/ yiatdm+m, v;(1, Da*(1,§)
Equation (A.9) is plugged into Eq. (A.2) to yield a new expression for U. Once Egs. (A.4) and
(A.9) are combined into Eq.(A.2), we arrive at
2 U:: 21] C.UI CU]+212 6.026024‘213 (.1)30)3
+c g[_wl(IOSO_MO)]_wZ(IOSO_MO)"_w3(lOSO_M0)3—wIT.lg_CUZT%—(UST‘; (A.10)

4
o ) Di et [ sialdmt m, 5,4 Da(, D
ox

o 3y, !
M| S| + f,El(

an,» (931,»

oxdy; ot

det+c)(—2 q4)



Three-axis Attitude Control for Flexible Spacecraft by Lyapunov Approach under Gravity Potential 109

From the force equilibrium in Eq. (28) it follows as

! 3'yi \ dyi r Vi dyi .
sz( = )de+ffy,~a,-dm+f Gay 3t &0 (A.11)

and from the boundary conditions at x=/ such as M,=0, and S,=m, v;(1,Ha%(l 1), Eq. (A.10)
is reduced to
2U=2I, 0, w,+2L, wyw,+2I; w3wy
20, B~ 01 oS0 My)1— wnhSy— M)z~ wx(lSo— M)~ Th= @, To— @, T8 (A12)
+c(—2 qy)

The above expression for U is ready for the design of the stabilizing control law.
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