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Abstract

In this work, a closed-form analysis is performed for the structural response of
coupled composite blades with multi-cell sections. The analytical model includes the
effects of shell wall thickness, transverse shear, torsion warping and constrained
warping. The mixed beam approach based on Reissner’s semi-complementary energy
functional is used to derive the beam force-displacement relations. The theory is
validated against experimental test data and other analytical results for coupled
composite beams and blades with single-cell box-sections and two-cell airfoils.
Correlation of the present method with experimental results and detailed finite element
results is found to be very good.
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Introduction

There have been a few selected research activities to model and analyze composite
beams and blades with multi—cell sections. Mansfield[1] developed a flexibility formulation for
thin-walled composite beams with two-cell cylindrical tube section. The equilibrium equations
of shell wall were used to derive the (4x4) flexibility matrix that captures the classical four
beam variables (extension, bendings in two planes, and torsion). Volovoi and Hodges[2] used
the variational asymptotic approach to derive the asymptotically correct (4x4) stiffness matrix
for thin-walled anisotropic beams with single- and double-celled box sections. Numerical
results were presented to show the importance of incorporating shell bending strain measures
even for closed thin-walled cross sections in the beam formulation. They presented results
indicating that published analytical theories (e.g., Badir[3]) did not take into account the
influence of shell bending strain measures correctly. Chandra and Chopral4] investigated both
analytically and experimentally the structural response of two-cell composite blades with
extension—torsion couplings. The stiffness matrix derived was of the order of (9X9) since they
include derivatives of shear strains as independent variables in order to include transverse
shear couplings in their formulation.

Recently, Jung, et all5]. developed a mixed beam theory that takes into account the effects
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of elastic couplings, transverse shear deformation, warping, warping restraint, and bending and
shear of the shell wall. The resulting (7X7) stiffness matrix characterizes elastic properties of the
beam in terms of the axial, flap and lag bending, flap and lag shear, torsion, and torsion-warping
deformations. The theory was applied to open and closed (single-cell) cross-section beams and a
good correlation was achieved in comparison with experimental test data.

In the present work, the mixed formulation developed in Ref. 5 has been applied to analyze
coupled composite beams and blades with single-cell box sections and two-cell airfoil. The
formulation is validated by comparison of the values of cross-sectional properties and steady
response of multi-celled section blades with experimental results and also those from existing
analysis methods found in the literature.

Compared with Volovoi and Hodges[2], the present analysis has additional features in that:
(1) the influence of the thickness of shell wall with shear deformation (Reissner-Mindlin) effects
are incorporated; (2) analytical expressions of Timoshenko shear correction factors are derived;
(3) no asymptotic arguments to delete any terms are employed in the current framework of the
analysis.

Formulation

Figure la shows the geometry and generalized forces for a composite blade with an
arbitrary cross-section. Two systems of coordinate axes are used: an orthogonal Cartesian
coordinate system (x, y, z) for the blade, where x is the reference axis of the blade and y and =
are the transverse coordinates of the cross section; a curvilinear coordinate system (x, s, n) for
the shell wall of the section, where s is a contour coordinate measured along the middle surface
of the shell wall and n is normal to this contour coordinate. Figure 1b shows the stress resultants,
moment resultants and transverse shear forces acting on a general shell segment of the blade.

The global deformations of the beam are (U, V, W) along the x, y and z axes, and ¢ is the
twist about the x—axis. The local shell deformations are ( ,v,,v,) along the x, s and n directions,
respectively.

Following Ref. 5, the strain-displacement relation of the shell wall can be written as:

Exx = U.x+z/3y,x+yﬂz,x—;)¢.xx
To =To¥. st 12~ wst Vy t W trp,
X xx Z:Bz.xz,s_ﬂy.xy.s-’_ q¢,xx (1)

X xs =2¢.x+%(ﬂzy,s+ﬂyz.s_7¢..r)
Yoo =Unt V2~ Wy, —ab,

where a is the local shell radius of curvature and w is the sectorial area which is defined as:
o= rds )

Assuming the hoop stress flow N, is negligibly small, the constitutive relations for the
shell wall of the section are obtained as [5]

Nx.\' All AIG Bll BlZ BlG Exx
Ny A Ag B By B || 7

M, {=| By By Dy Dp Dy || xx (3)
M, By Bg Dig Dy Des || xx

where the primes over the stiffness constants indicate that these are reconstructed using the zero
hoop flow assumption ( Ny=0) from the original A, B; and D; coefficients of the Classical

Lamination Theory. In the present approach, we treat the strain measures &, x, and x, as the
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Fig. 1a. Geometry and coordinate systems. Fig. 1b. Shell forces and moments.

known and derive expressions for the shear flow N,, and the hoop moment Mg in terms of these

quantities using the equilibrium equations of the shell wall. It is convenient to write Eq. (3) in a
semi-inverted form as:

N“ c ne C nx C ng C ny C nr Ex
Mxx nx mx mé my mr Xxx
Mtv = C ne C me C b C dr C $r X xs (4)
Vs “ Ly T Clm T Loy Ied || Ny
X _Cnr _Cmr —Coir Crr Crr 1\7M
or in symbolic notation
{s}=[Cl{e} (4a)

In order to assess the semi-inverted constitutive relations (4) into the beam formulation, a
modified form of Reissner’'s semi-complimentary energy functional @ is introduced:

mRzé[Nxxexx_'—Mxxxxx—’—Mx xs_Nst;rs_Mssx&s] ()

The stiffness matrix relating beam forces to beam displacements is obtained by. using the
variational statement of the Reissner’s functional which is given by

8}(;11; { [@p+ 7N+ x M) +[%Nxs(7n— u — v,_x)]} dsdx= 0 (6)

where [ is the length of the blade. In Eq. (6), the first bracketed terms are the strain energy
density of the blade and the second one is the constraint condition with N, acting as the

Lagrange multiplier. Performing the integrals, Eq. (6) results in the equilibrium equations of an
element of the shell wall as well as the constraint conditions, which are found as:

NVX.X+NXS.$: 0
Ny =0
MXX,X+ MxS.$= 0
(7)
M+ Mg ;=0

0 —
Yxs— u.s_vf.x_o

xs_¢'s.s=0
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Fig. 2. Schematic of a two—cell airfoil section.

The first two equations in Eq. (7) indicate that N, consists of a constant part and a part
that depends on the s-integral of N, .. In addition, it is found from the third and fourth equations
in Eq. (7) that M, has a constant part, a part that varies linearly with s and a part that depends
on the s-integral of M, .. Hence, one can write

Nxs ZNE'S_ j(;s(A'llsu..\'Jr Biﬁxxs,x)ds
s , (8)
My = Mt yMt 2Mi— [ (Bigeasct Digks)ds

where N, M%, M2, M% represent the circuit shear flows for each cell of a closed multi—cell
section[6]. For a two—cell blade, these lead to eight unknowns which are expressed as:
{(ny= Lny ny m my m} my mé mj) " 9)

The continuity condition that must be satisfied for each wall of the section yields the following
set of equations

Gruds=2418.  §rods=2400

9§1xsds=0, fﬁ”xsds=0 1
ﬁyxsds=0, ﬁlyxgds=0
ﬁzxsds=0, ﬁlzxsa's=0

where the subscripts I and II indicate integration over the contour of cells I and II, respectively
(see Fig. 2). Inserting Eq. (4) into Eq. (10), the unknowns shear flows can be obtained as

=[8]{ as} +[BI{ as..}
where

{ @)= U, ByrBor bx ) T (12)

In Eq. (11), [Q] is a symmetric (8X8) matrix and [P] is a (8X5) matrix. Note that these
matrices are integrals over the contour. Using Eq. (11), the shear flow and the hoop moment, Eq
(8), can be expressed as

[mz{g}={g«}+{s’}=m{ @) +IFI{ as.1) (13)

It is noted that N, and My should be determined separately for each cell. The shear flow
components N, and M, are composed of an active and a reactive part according to the

terminology introduced in Gjelsvik[6]. The superscripts @ and 7 appeared in Eq. (13) reflect this
aspect.
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Equation (6) can be rewritten by use of Eq. (4a),
I 4
% f(%[{el}r[ Clie) +2{Y TAUEY +{EYTAREY + N 7us— 4, . — ;) |dsdx =0 (14)

where
{el} = 1 Exx Xpx Xixs N§s MlsIsJ T

[A] C: g:]

The first term in Eq. (14) can be written in terms of beam displacements by using Eqgs. (1) and
(13),

(15)

o [1{ @) T ICNTI{ adsde =3[ %( 0)T Rl ar)e 16)

where
1 2 y 0 —w
0 —352,0 ¢
[T]I={0 0 0 2 O a7
fr fy fz fo& fm
gx gy gz g¢ gcu

The cross-section stiffness matrix [ K] in Eq. (16) relates the ctross-section force and moment
resultants with beam displacements in an Euler-Bernoulli level- of approximation and is given by:

{(Fo)=LNM, M, TM,) "= Ru){ as} (18)

where N is the axial force, M, and M, are bending moments about y and =z directions,
respectively, T is the twisting moment and M, is the Vlasov bi-moment. In order to obtain the

equivalent of a Timoshenko theory for the blade, we consider a cantilevered blade loaded at the
tip with shear forces V, and V.. Differentiating Eq. (18) with respect to x, we obtain

{Fo.}=10 V. V,00! "=[ Ru){ av.} (19)
considering Egs. (13) and (19), one can obtain the reactive part of the shear flows (€&} as

(&} =[FI Xbb]_l{ ?bx}

[ =17 ) o) (20)
Combining this result with Eq. (16), Eq. (14) yields the following equation:
T
531 a4 . 7%: gbu {Giy}dx-l—@—f_(ﬁNm(rn 4y s— vy )dsde=0 1)

where
L Ryl =[AT[A]L f)
l R, =174 7]

V, and V, are determined such that Eq. (21) is satisfied. Inserting Eqs. (1) and (4) into the

(22)

second part of Eq. (21), the shear forces { 7)5} can be related with beam displacement vector {g}
as:
{ v}=I[rl{a} (23)
where
(o= | Thw Byr BosBis $is Ty Y| T (24)

The elements of the (2X7) matrix [p] in Eq. (23) are the same as those obtained using the first
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order shear deformation theory with shear correction factors of unity. By comparing Eq. (21) and

Eq. (23) we get:
[L.5] [05 2]]
[ 7;,.} B {a) (25)
where [I5.5] is a (5X5) identity matrix and [035,5] is a null matrix of size (5X2), while [#,]
has a size of (2X5) and [p:] has a dimension of [2X2]. Using Eq. (25), the first part of Eq. (21)
yields the following equation:

! _ _ R Rv !
fotaqbausJ[ oy [ Olae= [0 18 (0 26)

where the (7X7) stiffness matrix [K] is given by

K K v
(K =[ % k']
_[ { Ruwt2 Ruti+ 87 But) { Rubo+ 0! Rty 20
{ szbz"’mT RWPZ} {l’zr Rvupil}

The stiffness matrix [K] in Eq. (27) represents the idealization of the blade at a Timoshenko
level for bending and shear, while the torsion is idealized as the Vlasov torsion. Note that the
(5%5) stiffness matrix [K,] is modified by the shear related terms.

Results and Discussions

Numerical investigation has been performed to correlate the current analysis with available
literature. The examples include single-cell box-section beams with extension-torsion or
bending-torsion couplings and two-cell composite blades with bending-torsion couplings.

Single-cell Composite Box-Beam

The first example presented is
single-celled, thin-walled composite
box-beams with bending-torsion or
extension-torsion couplings. Four
different cases are considered. Fig. 3
shows the configuration details of the
box sections. Each wall of the box
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section is composed of [83/ —63] or (a) Case 1

[ — 65/6,] such that extension-torsion

(cases 1 and 2) or bending-torsion 0

(cases 3 and 4) couplings are obtained.

Note that Case 2 is of -0
circumferentially uniform stiffness P2] -0 "y 0
construction while the others present -0
circumferentially — asymmetric  but

alternating  stiffness values. The

geometry and material properties are

summarized in Table 1. (b) Case 2 (d) Case 4
As can be inferred from the

layups shown in Fig. 3, there exists

an important coupling By between Fig. 3. Lay-up cases of box-beams.
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Table 1. Geometry and material properties of graphite—epoxy box-beams

Properties Values
E 11 141.9GPa
E 9.78GPa
G 12 6.13GPa
Vi 0.42
0 1449kg/m’®
Ply thickness, o 0.127mm
Outer width, 2b 24.21mm
Outer height, 2h 13.64mm
Length, / 762mm
110° — i - ; 610" T T T T T
—8&— Present
—6—Case 1
~&— Case 2 1 -=+--- NASTRAN 2D
L -B— Case 3 R }~
810' | -=X--Case 4 .
o £
£ 3
g 610 - }1
£ 5
T -
o x
; 410t | g
[
EPPTCEE =
0 1 1 1 1 | 0 1 1 1 1 1
[] 15 30 45 60 75 90 [] 15 30 45 60 75 90

Ply Orientation Angle (deg)

Fig. 4. Variation of bending rigidities of
single—cell box beams with ply angle
changes.

Ply Orientation Angle (deg)

Fig. 5. Variation of torsional rigidities for
single—cellbox—-beams with ply angle
changes.

the hoop moment M and the shear strain 7,,. Fig. 4 shows the variation of the effective bending
rigidity ( EI,) as a function of fiber angles of the blade. It is seen that the bending rigidities
obtained for all the cases considered lead to essentially the same result. This is due to the fact
that each wall has a balanced layup and there is no coupling between the membrane strains &,
and 7,. But, the existence of the coupling By is seen to influence significantly on the magnitude
of torsional rigidity for the box beams. Fig. 5 shows the comparison of torsional rigidities
calculated respectively for the four box-beam cases. Results obtained using the MSC/NASTRAN
are also included for comparison. For the MSC/NASTRAN results, 360 CQUAD4 finite elements
are used. The present results show good correlations with the MSC/NASTRAN results. Volovoi
and Hodges[2] also obtained similar results for cases 2 and 3 by using their asymptotic beam
model. It is seen that the elastic couplings introduced by the non-zero ply angles of box-beam
walls are captured accurately in the framework of the present method.

Two-cell Rotor Blades

Numerical simulations are carried out for coupled composite blades with two-cell airfoil
section. Figure 2 shows the schematic of the two-cell blade section fabricated and tested by
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Fig. 6. Comparison of response for Fig. 7. Comparison of response for
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Table 2. Geometry and material properties of composite blades.
Properties Values
E 11 131GPa
E 29 9.3GPa
G 5.86GPa
V1 0.40
Ply thickness 0.127mm
Airfoil NACA 0012
Length 641.4mm
Chord 76.2mm
Airfoil thickness 9.144mm
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Fig. 11. Comparison of response for
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bending-torsion coupled blades
(Blade 3) under unit tip torque load.

Table 3. Lay-up cases of bending-torsion coupled composite blades.

Spar
Case Web Skin
Top Flange Bottom Flange
Blade 1 [0/15]4 [0/-15]) [0/ £ 15/0L [15/-15]
Blade 2 [0/30]4 [0/-3014 [0/ £30/0L [30/-30]
Blade 3 [0/45]4 [0/-45]s [0/ +45/0)> (45/-45]

Chandra and Chopral4]. The blades are clamped at one end and warping restrained at either end.
The geometry and the material properties of the blades are given in Table 2. Blades with three
different ply layups representing bending—torsion couplings are studied. Table 3 shows the details
of the layup used in the blades.

Figure 6 shows the comparison results for the tip bending slope and induced tip twist of the
bending-torsion coupled blade (Blade 1) under unit tip bending load. As is given in Table 3, Blade
1 consists of 15° spar and *£15° skin. The present results are compared with the experimental
test data as well as the theoretical results obtained by Chandra and Chopral[7]. As can be seen in
Fig. 6, the predictions of the present method are in good agreement with experimental results. The
responses obtained by the present method are within 4.5% of the test results. The difference
between the current predictions and Ref. 7 is due mainly to the fact that Chandra and Chopral7]
used the zero-in-plane strain assumption ( y,=x,=0) for the constitutive relations, while in the
present approach, the zero hoop stress flow assumption ( No=0) is used. Figure 7 presents the tip
twist and induced bending slope for Blade 1 under unit tip torsional load. There is a good
correlation between the present theory and experimental results.

Figures 8 and 9 show the structural responses of the 30° blade (Blade 2) under unit tip
bending and torsional loads, respectively. The present predictions are seen to be in a good
agreement with experimental results. The error is within 7% of the test results. The results
obtained by the present mixed method show better correlations with the experimental results than
those obtained by the stiffness method of Chandra and Chopral4]. Figures 10 and 11 show results
of Blade 3 which has ply angles of 45 degrees. For this blade also, the predicted responses are
within 5% of the experimental results. Note the increase in bending slope (over 30%) and decrease
in induced twist (over 50%) for this blade compared with the previous blades (Blade 1 and 2).
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The decrease in bending stiffness with respect to the increase in ply angles causes this aspect.
The existence of bending-torsion couplings reduces the direct bending stiffness in some degree.

Concluding Remarks

In the present work, a closed-form formulation for coupled composite blades with multiple
cell sections has been developed. The beam force-displacement relations of the blade were
obtained by using the Reissner’s semi-complementary energy functional. The resulting (7X7)
stiffness matrix idealizes the blade at a Timoshenko level of approximation for bending and shear
and Vlasov for torsion. It is shown that the elements of the stiffness matrix are modified by the
shear related terms and shear correction terms. The theory has been correlated with experimental
test data and detailed finite element results for coupled composite beams and blades with
single—cell box-sections and two-cell airfoils. Good correlation of responses with experimental
results was obtained for all the test cases considered. The error is less than 7% for
bending-torsion coupled blades.
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