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Abstract

A three-dimensional aerodynamic shape optimization technique in inviscid
compressible flows is developed by using a parallel continuous adjoint formulation on
unstructured meshes. A new surface mesh modification method is proposed to
overcome difficulties related to patch-level remeshing for unstructured meshes, and
the effect of design sections on aerodynamic shape optimization is examined.
Applications are made to three-dimensional wave drag minimization problems
including an ONERA M6 wing and the EGLIN wing-pylon-store configuration. The
results show that the present method is robust and highly efficient for the shape
optimization of aerodynamic configurations, independent of the number of design
variables used.
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Introduction

Currently, Computational Fluid Dynamics techniques are widely used not only to simulate
and understand the complicated flow physics, but also to design optimum aerodynamic shape of
air vehicles which provides maximum performance at the desired operating condition. Recently,
various aerodynamic shape optimization techniques have been investigated along with the rapid
development of efficient numerical algorithms. One of the most popular methods currently
available is the gradient-based optimization technique in which a specified objective function is
to be minimized. The gradient of the objective function with respect to the design variables,
which is called sensitivity, is used to update the design variables in the direction where value
of the objective function can be reduced in a systematic way.

Several researches have been previously made for the evaluation of the sensitivity for
aerodynamic applications. Recently, a particular interest is given to adjoint method, in which
sensitivities are found without calculating the variation of the flow variables. Thus, this method
has an advantage of requiring less memory and computational time compared to the discrete
adjoint method or any other sensitivity analysis methods.

Continuous adjoint method was initially developed by Jameson for both potential and
Euler equations[1]. Further extension was made for two- and three-dimensional applications on
multi-block structured grids with viscous effect[2]. Continuous adjoint method on unstructured
meshes was first introduced by Anderson and Vankatakrishnan for two-dimensional
aerodynamic shape optimization[3]. Recently, sensitivity formulation of the general cost function
was developed by Baysall[4l. Boundary condition and affordable objective function for
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unstructured meshes were also developed by Arian[5]. However, continuous adjoint method on
unstructured meshes are mostly limited to applications to simple two-dimensional flow
problems.

In the present study, a technique for the aerodynamic sensitivity analysis and the shape
optimization for three-dimensional configurations are developed in inviscid compressible flow by
using a continuous adjoint method on unstructured meshes. In order to achieve realistic
shape optimization, sensitivity analysis based on a fully linearized adjoint flux is adopted. For
robust geometry handling, a new surface mesh modification technique is also developed for the
interpolation of the design variables. The efficiency of the optimization is enhanced by using a
tightly-coupled design algorithm in conjunction with parallelization. Applications are made for
drag minimization of a transonic ONERA M6 wing and the EGLIN wing-store-pylon
configuration.

Numerical Method

Governing Equations

The governing Euler equations can be written in an integral form over a control volume V:
2 [ @av+ § F (Q mas=0 (1)

The inviscid flux, F( @, n), across each cell face is discretized based on the Roe's
flux-difference splitting formula. The second-order spatial accuracy is obtained by using the
Laplacian averaging reconstruction method[6]. An implicit time integration algorithm based on the
linearized Euler backward-differencing is used to derive the solution to steady state. Local time
stepping is applied to accelerate the convergence of the solution. The resulting linear system of
equations is solved at each iteration by using a point Gauss-Seidel method.

Adjoint Equations

The objective function for aerodynamic shape optimization is expressed as an integral form
about the pressure over the surface :

L= [ o QD)) - KD)ds )

where g(Q(D)) and k(D) are the functions of flow variables and geometry, respectively. To
transform the constraint optimization problem into an unconstraint optimization problem, the
Lagrangian multiplier, which is known as the adjoint variable, is introduced. Then the new cost
function is defined as:

KQ.D,¥) = I(Q.D)+ [ (¥,R)d0 “
= 1.(Q.D)+Ix(R, ¥)

where ¥ is the vector of the adjoint variables (Lagrangian multipliers), D is the vector of the
design variables, and R represents the steady-state flow equations.
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The adjoint equations of the three-dimensional Euler equations are obtained by taking the

variation of equation (3) and regrouping terms:
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where A, B, and C are the flux jacobian matrices. The boundary condition can also be obtained
as:
R+ T+ b, U+ D g (6)

where p is the pressure and k,, k,, k. are the face normal vectors. Then the adjoint sensitivity
can be expressed as

8= [ (W +uly+ v¥y+ w¥,+ H¥)ds+ [ KD)e(@ds %)
where
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The linear adjoint equations can be discretized by using an any stable and consistent
method. However, in order to obtain accurate sensitivity, the adjoint discretization method must
be consistent with that of the flow equations(7]. In the present study, the discrete adjoint
residual is initially derived from the discrete adjoint formulation, and then the continuous
adjoint flux is obtained from the guidance of discrete adjoint residuall7]. The resulting adjoint
flux can be written as :

_ (4T 0D Ty _
Gi= (AT W+ T +(58) (W= ) )

where 0=|4|(Qr— Q.). Typically, two forms of the adjoint flux are available depending on

the linearization of @. One is the fully linearized adjoint flux including the derivation of the
Roe-averaged matrix, and the other is the approximately linearized adjoint flux obtained by
assuming that the Roe-averaged matrix is constant. In the present study, both methods are
used to examine the accuracy of the solution. Derivation of the Roe-averaged matrix is made
numerically to reduce computational time[8].

Since the mathematical characteristics of the adjoint equations is hyperbolic, same as that
of the Euler equations, many of the subroutines developed for the flow solver, can be used for
the analysis of the adjoint equations with little modification. Since, the derivation of the flux
jacobian matrix which is essential for the discrete adjont method, is not required, continuous
adjoint method is more efficient in time and memory.

Shape Function and Mesh Movement

Half Span ( AR)

During the aerodynamic shape optimization - , ﬁ
process, deformation of the surface geometry )@ '
must be reflected in the field cells. In the present '
study, Hicks-Henne functions are used as the \iA*__
shgpe functior%, and thg mesh movement is 1 K—,E’—]\ N
adjusted by using the spring analogy. Ll ‘*'\"/_/;

It is well known that selection of design 4%7\:) ‘c
variables significantly affects the designed result. Nk -
Too many design variables may create | ———oH !
undesirable numerical noise and result in poor v xi 1-s | s
computational  efficiency, while insufficient v(ﬂ,) E vlia1), x(i+1)
number of design variables causes poor result[1]. i th design i+1 th design
Thus, selection of proper design variables is a weclion seclion
very important issue. Fig. 1. Schematic view of interpolation of

In three-dimensional shape optimizations, design variables.
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design variables are usually defined at selected design sections. During the design process, airfoil
shapes at the sections are modified by using the shape function, and the remaining surface
geometry is modified through proper interpolation. However, the mesh points are usually not
aligned along the specified design sections for unstructured meshes. To overcome this difficulty,
a new interpolation method is introduced such that the value of design variables at the specified
design sections can be obtained from the surrounding surface node points though linear
interpolation as in figure 1[9]. Design variables at an arbitrarily located point p between (2)— th
and (i+1)— th design sections are computed by using the following formula:

dv=_(1—35) xdv(2) +sxdv(i+1) (10)

where s represents the distance from p to (i+1)— th design section.
Optimization Algorithm

In second-order optimization algorithms such as BFGS or FR, Hessian matrix is
approximated by one-dimensional search. Thus, selection of the one-dimensional search can
significantly affect the designed results[10]. However, accurate one-dimensional search requires
fully converged flow solutions. Thus, this costly search procedure becomes one of the main
obstacles of the optimization process, particularly in three-dimensions, making the sequential
design algorithm not suitable. In the present study, a tightly coupled design algorithm is
used[11], in which the time consuming one-dimensional search is replaced by a simple function:

G'v ,GS

ST(VdG)TvDGS (11)

e=—

where, G represents the gradient, S is the search direction, and v ,G is the Hessian matrix.
The Hessian matrix is evaluated by taking the finite—difference of the gradient. This tightly
coupled design algorithm does not require fully converged adjoint or flow solutions in the
sensitivity analysis, and is very efficient compared to the sequential design algorithm.

Parallel Implementation

In order to handle large scale problems more efficiently, the present design code is
parallelized. Domain decomposition is made by partitioning the global computational domain into
local sub-domains using the MeTiS library[12]. Message Passing Interface (MPI) is used for
the communication of flow variables through communication boundaries.

This parallelization involves separate treatment of each design procedure such as flow
solver, adjoint solver, mesh perturbation, and gradient integration. No attempt is made to
parallelize the optimization algorithm because this
portion is computationally negligible compared to the N
other elements of the design process. All o0
calculations were made on a PC-based linux cluster

having 1.7GHz CPUs. oots |-
E 0.01
Results and Discussion fgms
Sensitivity Analysis ,

As previously mentioned, careful discretization ogos|
is required to obtain gradients, which are consistent
with those obtained by the finite-difference approach.
Figure 2 shows the comparison of the gradients Fig. 2. Comparison of adjoint and
obtained by using the adjoint and finite-difference finite—difference gradients.

10 20
Design Variables
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methods for the drag minimization of a three-dimensional infinite NACAQ001Z wing.
Comparison is also made between sensitivities with full and approximately linearized flux
Jacobians. The flight condition is at the freestream Mach number of 075 and the
angle-of-attcack of 1.747 degrees. Good agreement is obtained between the present adjoint
method and the one from the finite-difference method. The difference between the full and
approximate linearization of the Roe-averaged matrix is not very significant, even though the
full linearization is usually known to provide consistently more accurate sensitivity. The
computational overhead for the linearization of the Roe-averaged matrix is less than 10% of

the total CPU time.

Design Examples

As an initial validation, an ONERA M6 wing is chosen for drag minimization at the flight
condition of M.=0.83 and «=3.06°. Figure 3 shows the surface mesh of ONERA M6 wing.
Computational domain is divided into 8 sub-domains by using the MeTiS library, and the bold
lines in the figure represent the communication boundaries.

Fig. 3. Surface meshes of the ONERA M6 wing.

Along the design process, the wave drag is to be minimized by removing strong shock
waves existing on the upper surface of the wing, while maintaining the desired lift. The objective

Table 1. Location of design sections.

case % gfeggsnign Location of design section (semi span) obj/obj0
1 2 0, 100 % 0.6955
2 5 0, 25, 50, 75, 100 % 0.5975
3 5 0, 55, 70, 85, 100% 0.5895
4 10 0, 11, 22, -+, 88, 100 % 0.6144
5 21 0, 5, 10, 15, ---, 95, 100% 0.5828
6 31 0, 3.3, 6.7, 10, -+, 93.3, 96.7, 100% 0.5816

function for this problem can be written as:

=Lc-ct+ Lo (12)

where C,, is the initial or desired lift coefficient.
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ONERA M6 wing. Designed wing.
Fig. 4. Comparison of surface pressure distributions.
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Fig. 5. Convergence history of the ONERA Fig. 6. Surface shape of the ONERA
M6 wing. M6 and designed wings.

Six cases were tested to examine the effect of design sections selected arbitrarily as shown
in table 1. It was found that different choice of the design sections can significantly affect to the
designed results. Since the design variables can be considered as the ‘gradient observer’ at each
design section, insufficient design variables can cause incorrect observation of the gradient and
may produce poorly designed results as for case 1. As the number of design variables increases,
detail observation of the gradient becomes possible, and better design result is obtained. However,
this is not always true as shown for cases 4~6, and there exists possibility of numerical noise in
the sensitivity and the existence of local minimum for over-defined design variables[1]. Case 2
and 3 demonstrate the importance of selecting the location of design sections. It is shown that
case 3 exhibits better design than that of case 2 for same number of design sections.

Surface pressure contours on the original ONERA M6 and the designed wings are compared
in figure 4. It is shown that the strong lambda-shaped shock wave on the upper surface of the
original wing mostly disappeared after shape optimization. The drag is reduced to 74% of that of
the original wing. However, the change in lift is maintained less than 2% of the initial value as
shown in figure 5. Figure 6 shows comparison of surface contours of the ONERA M6 and
designed wings. The root section of the designed wing is thinner than that of the ONERA M6
wing, while the tip section becomes thicker than that of the original wing. This is due to the lack
of geometric constraints, which are very difficult to implement and require more intensive
research.

The second application was made for the EGLIN wing-pylon-store configuration at a free
stream Mach number of 0.95 and the angle-of-attach of one degree. The computational mesh
consists of 478,370 tetrahedral cells and 90,145 nodes. Figure 7 shows the surface mesh on the
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Fig. 7. Surface meshes of EGLIN configuration.
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Fig. 8. Comparison of the surface pressure Fig. 9. Convergence history of the EGLIN
distributions. configuration.

EGLIN configuration. The computational domain was divided into eight sub-domains as
represented by the bold lines in the figure. Five design variables were used for each of the
five design sections (10, 30, 50, 70, 90% of the semi span) on the lower surface to remove the
strong shock wave evident at the rear portion of the pylon. Once the shape optimization was
completed, it is observed that the strong shock wave is mostly removed as shown in figure 8.
The calculation was made with design variables defined only on the wing surface. Thus,
complete elimination of the shock wave is not currently possible without concurrent shape
optimization of the pylon configuration. However the pressure drag was reduced by 20% with
a slight increase of the lift after 134 iterations as shown in figure 9.

Conclusions

In the present study, a parallel aerodynamic shape optimization method has been
developed by using a continuous adjoint formulation on unstructured meshes. Calculation of
accurate gradients is achieved by obtaining the continuous adjoint flux from the guidance of
the discrete adjoint residual. A mesh independent surface deformation technique is developed to
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interpolate the design variables at arbitrarily selected design sections under the unstructured
mesh environment. A tightly coupled design algorithm is used for the enhancement of design
efficiency.

The present method has been tested to ONERA M6 wing shape optimization using
various design sections. Importance of selecting design sections was demonstrated for
computational efficiency and designed results. The method has also been applied to the EGLIN
wing-pylon-store configuration. It was shown that the present method is an efficient tool for
the shape optimization of complex three-dimensional realistic configurations.
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