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Abstract

Piezoelectric materials are widely used to construct smart or adaptive
structures. Although extensive efforts have been devoted to the analysis of
piezoelectric materials in recent years, most researches have been conducted by
assuming that the material properties are fixed and have no uncertainties. Intrinsically,
material properties have a certain amount of scatter and such uncertainties can affect
the performance of component. In this paper, the convex modeling is used to consider
such uncertainties in calculating the crack extension force of piezoelectric material and
the results are compared with the one obtained via the Monte Carlo simulation.
Numerical results show that crack extension forces increase when uncertainties
considered, which indicates that such uncertainties should not be ignored for reliable
lifetime prediction. Also, the results obtained by the convex modeling and the Monte
Carlo simulation show good agreement, which demonstrates the effectiveness of the
convex modeling.

Key Word : Piezoelectric Material, Crack Extension Force, Convex Modeling,
Monte Carlo Simulation

Introduction

Piezoelectric materials produce an electric field when deformed and undergo deformation
when subjected to an electric field. Due to this intrinsic coupling phenomenon, piezoelectric
materials are widely used for electro mechanical actuators, sensor, and transducers. They are also
used to construct smart or adaptive structures. For example, the control of structural vibration
would be possible through the smart materials[1,2]. When subjected to mechanical and electrical
stresses in service, these piezoelectric materials can fail prematurely due to the propagation of
flaws or defects produced during manufacturing process. Therefore, it is important that the
fracture processes in piezoelectric materials be understood and analyzed so that reliable service
lifetime predictions of the components can be made.

Although extensive research efforts have been devoted to the fracture mechanics of piezoelectric
materials[3-5], to the best of authors’s knowledge, they have been conducted by assuming that the
material properties have no uncertainties. But material properties are always subject to a certain
amount of scatter. These uncertainties are due to several factors, such as manufacturing process,
environmental effect, and measuring error and they have influence on the performance of component.
Thus such uncertainties should be considered in the analysis for evaluating the structural reliability
and safety during the service lifetime.

The most frequently used approach for considering uncertainties employs probabilistic methods.
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The probabilistic methods need a detailed description of the uncertainties and a wide pool of information
on the uncertain parameters, i.e., the function of probability distributions. But, for most cases, such
distribution data are not available and probabilistic methods are not appropriate for use. Unlike stochastic
methods, the only information needed is the bounds of uncertain properties in convex modeling[6-9],
so it can be a alternative to stochastic methods when detail distribution data are not available. Elishakoff
and Starns [7] considered the buckling analysis of composite plate with uncertain material properties.
Lombardi [8] studied the optimization of ten-bar truss where the external loads were considered
varying in a closed and bounded region. Kim and Sin [9] performed two-level optimization of composite
plate with uncertain material properties where convex modeling was used for calculating the constraint
functions. In this paper, convex modeling is used to consider uncertain material properties in calculating
crack extension force of piezoelectric material. The effect of uncertainties on the crack extension
force and the comparison of solutions via convex modeling with the ones using the Monte Carlo
simulation are given by numerical examples.

Basic Theory

Anti-plane crack problem

Fig. 1 depicts a mode III fracture problem TV
for which a finite crack of length 2a is o
embedded in an infinite piezoelectric medium ® O ® ! ® ©

subjected to far—field mechanical and electrical
loads. Pak[3] solved this problem by
semi-inverse approach using complex function.
The governing equations and analysis process
are outlined as follows. If a piezoelectric
material is transversely isotropic and only the
out-of-plane displacement and the in-plane
electric fields are considered, governing
equations can be simplified as

2 2
cuVu,tesvedg=0

(1)
elsvzuz—euvztﬁ:() @

where Vv % is the Laplacian operator, %, and ¢
are displacement and electric  potential, D . E

respectively. Also, cy is the elastic modulus,
Fig. 1. Far-field mechanical and electrical

e s is the piezoelectric constant, and € i
15 piezoelectric constant, and &; is the loads.

dielectric constant.

Four cases of boundary conditions for electrical and mechanical loads at infinity are given
by Eaq. (2). For these far-field loading conditions, it is assumed that the upper and the lower surfaces
of the crack is free of the surface traction and the surface charge.

Ow=T7w , D, = Dy (casel)
Yo=7w , E,= E(case2)

(2)
0y=Tw , E,= E(case3)

Y= 7w , Dy = Dy (cased)
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65=0,D,=0, |x|<2a, |yl =0 (3)

Governing equations of Eq.(1) are satisfied if # , and ¢ are harmonic functions and this can

be achieved by letting # , and ¢ be the imaginary part of analytic functions.

u,= ImU(2)
(4)
= Im O(z)
Pak assumed {(z) and @(z) as
Wz)=A(z% —aH'"?
(5)

@(Z) — _B(ZZ _aZ) 1/2

Governing equations (1) and boundary conditions (3) are automatically satisfied and coefficients
A, B are determined from the far-field loading conditions. Then the stresses and the electric
displacements can be obtained by constitutive equations. Crack extension force can be calculated
as the energy released in propagating the crack an infinitesimal distance and the results for each
far—field conditions are expressed as follows. As can be seen form Eq. (6), the uncertainty in material
properties directly influences the value of crack extension force.

G.—-Aa e“2'?,o+2e15Dmrc,o—cMDg,0 (6a)
2 encutels
”7(044700 2815E°07’00_511E'io) (6b)
G,=-T2 rh—(eycuteh)EL 6e)
2 C 44
G,=%a (encutel)rih—D% 5
2 €n

Convex modeling of bounded uncertainty

The convex modeling is applied to the calculation of crack extension force of Eq. (6) in order
to consider uncertain material properties. It is assumed that the material properties have a certain
amount of scatter and only the bounds of uncertainty are known. The probabilistic method is not
suitable for this case because the probability distribution functions are not available. But in the case
of convex modeling, no information is needed except the bounds of uncertain data.

As a first step in the convex modeling approach, Eq. (6) is linearized with respect to the uncertain
material properties. It is assumed that ¢4, e5 and €; vary arbitrarily around their nominal values

with the condition that these variations are small and bounded. Eq. (6) can be written as a function
of these properties.
G:G(El,Ez,E3) (7)

where £ 1=cy, E;=e¢5 and E;=¢,. E;can be expressed as

E.=E%5. (8)
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where £ ? is the nominal values of the uncertain property and ¢ ; is the small corresponding variations.

The crack extension force can be expressed, by using the first order Taylor series expansion about
the nominal values, as

GE]+8)=G(ED+ g‘.‘i?g—i%ai )
And the following‘ matrices are introduced.

I Tz( aGa(Eli?)’ ag(EL;?)’ ag(g?) ) )

{8} =161, 85, 83] (11)
Eaq. (9) can be rewritten, using Egs. (10) and (11), as

GEY+8)=GEN+{ATs (12)

The maximum of Eq. (12) can be easily found for a variation of &; in the convex set. Because
the crack extension force is a linear function of ¢ ; the maximum takes place on the boundary of

the set. Next, the convex set of ¢ ; is made following the method proposed by Elishakoff and Starnes[7].
Provided that the uncertain material properties vary in the range

El<E<EVY (13)

where E ,L and E Y are lower and upper bounds of E ; respectively, and the nominal values and
maximum deviations are defined as

E=-L(EF+EY), 4,=4(E!-ED (14)

Then E; can be written as
E,=E}+6;, 18:1<4; (15)

The region shown by the latter of Eq. (14) is a box. To make the convex set, an ellipsoid
which encloses the box is assumed such that

2
_(Z_é <1 (16)

&
where e; are the semi-axes of this ellipsoid. The ellipsoid has a volume given by

V=_~_Ce 1€9€3 (17)

where C is a constant. This volume should have a minimum value. It is because the accuracy of
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analysis increases as the size of the volume decreases. For this, the corners of the box (§;= t4))

have to be on the surface of the ellipsoid. From the above conditions, the following Lagrangian L
is made and the semi-axes of Eq. (16) can be obtained by a minimization process.

4% 4% 43
L=C FAl— +—+—— 18
€1€2€3 e% e% eg 1 (18)
e, can be determined using the following conditions.
oL _ oL _
ae[ - 0 , a 0 (19)
and the final forms of e; are given by
e;=V34,; (20)

The problem of finding the maximum crack extension force, when the uncertain material properties
have deviations ¢; can be stated as follows.

Gmax = Max (G(EY + (A7{8}) 21)
(s}eC(e)
2
C(e)==8: g\% =1} (22)

Eq. (21) can be solved by introducing the Lagrange multiplier A. To construct the Lagrangian,
the constraint of Eq. (22) is transformed to a matrix form. The set C(e) can be written as

8} T{e}{o)—1=0 (23)

where ¢ is a diagonal matrix whose diagonal elements are €;=1/ e? . Thus, the maximum of
Eq. (21) can be obtained from the Lagrangian of Eq. (24)

L&) = {8} + A({8} T(e}{8} - 1) (24)

By using the extremum conditions for the Lagrangian (24), G .« iS obtained as

0 2
Gm=G(E?-)+\/ g(eia_c;%i) (25)

Numerical Results

The effect of uncertainty on crack extension force

For numerical analysis, material properties are assumed to have maximum 10% deviation from
nominal values and their ranges are as follows. In this paper, lead zirconate titante (PZT-5H)
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piezoceramic is considered[3].

3177><1010 - <c,<3.883x10 L

m
15.3;%@15318.77%
135.9x10 " <) <166.1x10 0 =&~

—5 g
Jo=5.0-"

where N is the force in Newtons, C is the charge in coulombs, V' is the electric potential in volts,
m is the length in meters, and J,, is the critical crack extension force.

First, the effect of considering the uncertainties in material properties in the calculation of crack
extension force is examined. The crack extension forces via convex modeling are compared with
those based on calculations using the nominal values of material properties. Comparisons of the two
solutions for each loading cases are shown in Fig. 2. The crack extension forces are plotted as a
function of electrical loads, which shows the values are quite different when uncertainties are considered.

For case 1, the range for J/J»=>11is 0.0x10 °< D »<4.0%10 ~*C/m? with nominal values of

material properties, —0.32 %10 “°< D <5.4x10 ~*C/m* when uncertainty considered by convex

modeling. This means that crack growth can occur at the load which yield no crack growth with

deterministic analysis.
In Fig. 3, the relative increases of the crack extension force with various electrical loads are
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Fig. 2. Comparison of crack extension force
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shown for cases 1-4. The relative increase, A4J is given by

where J max 1s the maximum crack extension force via convex modeling and [ is the crack extension

force with nominal values. As can be seen from Fig. 3, 4J varies depending on the magnitude
of electrical loads, which indicates the consideration of uncertainty can be more important at certain
situation.

The results show the importance of considering uncertainties for reliable analysis and safe
design. Also, it can be known that the convex analysis easily treats the uncertainty with limited
informations.
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Fig. 3. 4] for various external loads

Comparison with Monte Carlo simulation

The crack extension forces by convex modeling are compared with the results of Monte Carlo
simulation with 8000 sampling points for uncertain material properties. Beta distribution, A(2,2),
and uniform distribution are used to generate random variates of material properties. In Fig. 4, the
maximum crack extension forces from Monte Carlo simulation, deterministic analysis, and convex
modeling approach are plotted for cases 1 and 2. It can be seen that the results from Monte Carlo
simulation are in fairly good agreement with the results from convex modeling. Considering
computational efficiency, it demonstrates the effectiveness of the convex modeling. Fig. 4 also show,
for all cases, the convex modeling approach gives the most conservative results.
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Fig. 4. Comparison with Monte Carlo simulation
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Conclusions

Crack extension forces of piezoelectric material with uncertain material properties were calculated
by convex modeling. Numerical results show that crack growth can occur at the loads which yield
no crack growth with deterministic analysis. This means uncertainties should not be ignored in the
analysis for the reliable service lifetime prediction. Also, the crack extension forces by convex modeling
were compared with the results of Monte Carlo simulation and they showed good agreement, which
demonstrates the effectiveness of the convex modeling. Unlike the probabilistic approach, no information
is needed except the bounds of uncertain parameters in the convex modeling. For most cases, the
statistical distributions or probabilistic functions of material properties may be unavailable. Thus,
convex modeling can be more suitable than stochastic approach for considering uncertainties. The
methodology presented in this paper can be applied to various failure analysis of piezoelectric material
and this is currently under study.
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