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Abstract

The present work performs three-dimensional flow calculations based on Reynolds Averaged Navier-Stokes (RANS) and 

Delayed Detached Eddy Simulation (DDES) to investigate the flow field of a transonic rotor (NASA Rotor 37) at near-stall 

condition. It is found that the DES approach is likely to predict well the complex flow characteristics such as secondary 

vortex or turbulent flow phenomenon than RANS approach, which is useful to describe the flow mechanism of a transonic 

compressor. Especially, the DES results show improvement of predicting the flow field in the wake region and the model 

captures reasonably well separated regions compared to the RANS model. Besides, it is discovered that the three-dimensional 

vortical flows after the vortex breakdown from the rotor tip region are widely distributed and its vortex structures are clearly 

present. Near the rotor leading edge, a part of the tip leakage flows in DES solution spill over into next passage of the blade 

owing to the separation vortex flow and the backflow is clearly seen around the trailing edge of rotor tip. Furthermore, the DES 

solution shows strong turbulent eddies especially in the rotor hub, rotor tip section and the downstream of rotor trailing edge 

compared to the RANS solution. 
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1. Introduction

It is well known that flow characteristics of a transonic 

axial compressor is very complex due to tip leakage vortex, 

passage shock, and a lot of secondary flow structures within 

blade passages. Especially, they become more complicated as 

a compressor operating condition approaches low mass flow 

condition. In that condition, the secondary vortex structures 

and its interaction with passage shock can cause stall 

inception in a transonic compressor. In recent years, much 

attention has been paid to the flow phenomena of a transonic 

compressor at near-stall condition.

Suder [1] investigated a detailed experimental research 

to understand and quantify the development of blockage in 

the flow field of a transonic axial flow compressor rotor. It is 

observed that the overall blockage increases as the loading is 

increased from the high to low mass flow condition. Chima [2] 

performed three-dimensional calculations of the tip clearance 

flow in a transonic compressor. The results showed that a 

highly-rotational flow followed the shock-vortex interaction, 

with a large separated region at the operating point near 

stall. Hah et al. [3] studied the occurrence of short length 

scale rotating stall inception in a transonic compressor rotor 

using steady and unsteady flow simulations. They reported 

that the unsteadiness of the flow field is due to oscillation 

of tip clearance vortices and their interactions with passage 

shocks, suggesting it is an inherently unsteady phenomenon 

in a transonic compressor. Yamada et al. [4] identified vortex 

structures of a transonic axial compressor by unsteady 

simulations. It is indicated that the large blockage effect and 
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the unsteadiness due to the tip leakage vortex breakdown 

may be related to the spillage of the tip clearance flow at 

the stall inception. Wu et al. [5] conducted experimental 

and numerical investigations of the pre-stall behavior of an 

axial flow compressor rotor. They discovered that the cyclical 

motion of tip secondary vortex was the main source of the 

nearly periodic variation of efficiency. Cameron et al. [6] 

studied the role of tip leakage flow in axial compressor stall 

by the experiments and computations. The results confirmed 

that the compressor stalled when an interface between the 

approach flow and the tip-leakage flow reached the rotor 

leading edge plane as flow coefficient was reduced. Hu et 

al. [7] performed the steady and unsteady simulations of a 

transonic compressor rotor to examine the unsteadiness of 

the flow fields in the rotor. It is observed that the intensity 

of the tip clearance vortex, shock and interaction between 

them strengthens, which makes the interface between the 

incoming flow and tip clearance flow shift forward as the 

mass flow decreases. Shi et al. [8] numerically simulated the 

highly unsteady flow in an axial flow compressor at near-stall 

operating condition. The results explained the origin and the 

formation of the high entropy region in the compressor rotor 

near the blade leading edge, which can be closely related to 

the spike-type stall inception.

However, the flow mechanism of a compressor has not yet 

been fully investigated at near-stall condition and few studies 

have been conducted on comparisons of the flow structures 

using different numerical approaches. Considering the 

numerical results can be somewhat different depending 

on the capability of capturing secondary vortices, it is 

important to figure out the flow structures obtained from 

different numerical methods at near-stall condition. In 

the present work, the three-dimensional flow calculations 

based on Reynolds Averaged Navier-Stokes (RANS) and 

Delayed Detached Eddy Simulation (DDES) were performed 

to investigate the flow fields that lead to stall inception of a 

transonic axial compressor rotor at near-stall condition. To 

validate numerical methods, the both calculation results are 

compared with the experimental one.

2. Compressor Model

In the present work, the baseline configuration is a 

transonic axial compressor rotor, NASA Rotor 37 [9]. The 

isolated rotor was originally designed and tested as part of 

axial flow compressor stages at the NASA Lewis Research 

Center in the late 1970’s by Reid and Moore [9]. The NASA 

Rotor 37 case was chosen as a "blind" test case for the 

ASME code assessment by the turbomachinery committee 

of ASME/IGTI in 1993 [10]. Fig. 1 shows the measurement 

locations of the rotor. Station 1 was located 4.19 cm upstream 

and station 4 was located 10.67 cm downstream of the blade 

hub leading edge. The design total pressure ratio is 2.106 at a 

measured mass flow of 20.19 kg/s. The rotor has 36 multiple 

circular-arc (MCA) blades with an aspect ratio of 1.19. The 

details of the compressor rotor are summarized in Table 1.

3. Numerical Method

3.1 Numerical Scheme

In the present study, the governing equations are the 

compressible Navier-Stokes equations. The governing 

equations were discretized numerically by a finite volume 

approach in space. Temporal integration used implicit 

second order accurate backward scheme to discretize a 

transient term in unsteady predictions and spatial integration 

used a second order accurate upwind differencing scheme. 

The meshes for RANS and DES were both identical in order 

to compare the flow characteristics at equivalent conditions. 

The result of transient calculations used a sampling data 

after 2 revolutions of a rotor for the unsteady time statistics. 

For RANS approach, the Spalart-Allmaras (S-A) 

Table 1. Specifications of the compressor
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Table 1. Specifications of the compressor 

Parameter Value 
Blade number 36 

Hub radius at station 1 175.2mm 
Tip radius at station 1 256.7 mm 

Aspect ratio 1.19 
Tip solidity 1.29 

Relative inlet Mach 
number  

Hub 1.13 
Tip 1.48 

Tip clearance 0.356 mm 
(0.45% span) 

Hub to tip ratio 0.7 
Design tip speed 454 m/s 

Rotating speed (100%) 17188.7 rpm 
(1800 rad/s) 

Design total pressure ratio 2.106 
Design mass flow rate 20.19 kg/s 

Choking mass flow rate 20.93 kg/s 

Fig. 1. ��Measurement stations [10]
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turbulence model was adopted. This one-equation model 

was designed to give reasonably good predictions of wake 

flows, flat-plate boundary layers and shows improvement in 

the prediction of flows with adverse pressure gradients [11]. 

To compare the predictive capability of unsteadiness against 

the RANS approach, the Detached Eddy Simulation (DES) 

method based on S-A model was used as a hybrid RANS/

LES turbulence model. Compared to classical LES methods, 

DES saves orders of magnitude of computing power for high 

Reynolds number flows, due to the moderate costs of the 

RANS model in the boundary layer region, but still offers 

some of the advantages of an LES method in separated 

regions [12]. The S-A based DES model was called “DES97” 

developed by Spalart et al. in 1997 [13]. In the present work, 

the Delayed DES (DDES) formulation based on the S-A 

model was employed [14]. This is a simple modification to 

DES97. The standard S-A model uses the distance to the 

closest wall as the definition for the length scale d, which 

plays a major role in determining the level of production 

and destruction of turbulent viscosity. In DES97 model, the 

length scale d is replaced with a new length scale defined as 

[13]:
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where t is the kinematic eddy viscosity, the 

molecular viscosity, j,iU the velocity gradients, 
and   the Karman constant, and d the distance to 
the wall. The function df  is designed to be 1 in the 
LES region, where 1dr  or 0dr . The 
function dr  equals 1 in a logarithmic layer, and 

(1)
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where vt is the kinematic eddy viscosity, v the molecular 
viscosity, Ui, j the velocity gradients, and  the Karman constant, 
and the distance to the wall. The function fd is designed to 
be 1 in the LES region, where rd<< 1 or rd=0. The function 

rd equals 1 in a logarithmic layer, and falls to 0 gradually 

towards the edge of the boundary layer. Therefore, setting 

fd to 0 yields RANS (

 

falls to 0 gradually towards the edge of the 
boundary layer. Therefore, setting df  to 0 yields 
RANS ( dd

~
 ), while setting it to 1 gives DES97 

( d
~

min( ,d DESC )) [14]. The value of DESC  
was determined to 0.2 as used in the literature [16]. 
The present work carries out the computations 
using commercial flow analysis program, ANSYS-
Fluent. 

3.2 Computational Grid and Boundary 
Conditions

The overall grid system used in the present work 
is shown in Fig. 2. An O-type grid near the blade 
surfaces, and a structured H/J/C/L-type grid in the 
other regions were generated. The grids around the 
inlet and outlet blocks consist of 20×72×154 and 
50×80×154 grid points, respectively, while the O-
type grids surrounding the blade walls are 
constructed with 280×8×154 grid points. The total 
number of grids used in the calculation was 
determined to be approximately 3.1 million cells. 
Minimum grid spacing at the solid wall was less 
than 9×10-5 m. On the wall surface where the law 
of the wall was used to estimate the wall shear 
stresses, the normalized first grid distance normal 
to the wall, y+ was around 30. By using wall 
function model, the computational resource can be 
significantly reduced. For the computational 
domain, the total pressure, total temperature, and 
flow angle were specified at the inlet and average 
static pressure was imposed at the outlet. Besides, 
no-slip and adiabatic conditions were adopted for 
the solid walls and rotational periodicity was 
applied to lateral boundaries. 

 

 
Fig. 2. Computational domain 

 

4. Results and Discussion

4.1 Validation 

To validate numerical methods used in this study, 
the computational results using the S-A RANS 
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with measurement than RANS solution. In Fig. 4 (b), the 
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the experimental data as well. Therefore, it is considered 

that the numerical method to investigate the flow field of the 

compressor is acceptable in the present study.
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Figure 6 shows the axial velocity distribution from 10% 

axial chord downstream of rotor trailing edge at near-stall 

condition. The RANS and time-averaged DES result is shown 

in the figure, respectively. As can be seen in Fig. 6, the axial 

velocity of RANS solution is less than the DES solution from 

hub to 70% span. The decrease in axial velocity components 

of RANS solution results in the increase of exit angle 

distribution.

Figure 7 shows the velocity streamlines near rotor hub 

suction surface at near-stall condition. In the RANS solution, 

the hub corner separation region is overestimated than the 

DES solution. This causes large total pressure drop while the 

 

use of wall function to calculate velocity profiles in 
the boundary layers. 

Figure 6 shows the axial velocity distribution 
from 10% axial chord downstream of rotor trailing 
edge at near-stall condition. The RANS and time-
averaged DES result is shown in the figure, 
respectively. As can be seen in Fig. 6, the axial 
velocity of RANS solution is less than the DES 
solution from hub to 70% span. The decrease in 
axial velocity components of RANS solution 
results in the increase of exit angle distribution. 

Figure 7 shows the velocity streamlines near 
rotor hub suction surface at near-stall condition. In 
the RANS solution, the hub corner separation 
region is overestimated than the DES solution. This 
causes large total pressure drop while the DES 
model captures reasonably well the separated 
region. 

Figure 8 shows the rotor tip leakage flows 
predicted by RANS and DES approach, 
respectively. The instantaneous DES result is 
presented. As seen in Fig. 8, it is observed that the 
tip leakage vortex passes from the upstream of 
rotor tip to the downstream of adjacent blade. 
Besides, the flow expansion in the tip leakage 
vortex downstream of the shock wave due to the 
strong adverse pressure gradient, which is called by 
vortex breakdown, occurs in the blade passage. In 
DES solution, it is discovered that the three-
dimensional vortical flows from the rotor tip region 
are widely distributed and its vortex structures are 
well captured than the RANS solution. 
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Figure 9 shows the relative velocity vectors near 
the rotor blade surfaces at 98% span. As shown in 
Fig. 9 (a), the RANS and DES results indicate that 
the rotor tip clearance flow moves downstream of 
adjacent blade row, but a part of the tip leakage 
flows in DES solution spill over into next passage 
of the blade owing to the separation vortex as 
previously presented in Fig. 8 (b). Furthermore, 
there are different flow patterns between the RANS 
and DES solutions in Fig. 9 (b). Near the rotor 
trailing edge, the flow separation on blade suction 
surface is observed and the backflow is clearly seen 
in DES solution. This is because the low energy 
fluids downstream of the separation vortex are 
driven upstream by the adverse pressure gradient 
[17]. 

Figure 10 shows the entropy distributions near 
the rotor tip surfaces at 95% span. The RANS and 
time-averaged DES result is shown in the figure, 
respectively. The entropy rise is defined as 
following: 
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is observed in the blade passage due to the vortex 
breakdown and it is shown that the RANS solution 
has the higher maximum entropy region compared 
to the DES solution, but the distribution of high 
entropy region for the DES solution is wider than 
the RANS solution. For this reason, the rotor exit 
entropy of DES solution is higher than the RANS 
solution. This phenomenon corresponds with the 
characteristics of total temperature distribution as 
mentioned in Fig. 4. Additionally, it seems that 
finer turbulent resolution using near wall treatment 
is needed to capture the smaller turbulent eddies in 
the tip region. 
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DES model captures reasonably well the separated region.

Figure 8 shows the rotor tip leakage flows predicted by 

RANS and DES approach, respectively. The instantaneous 

DES result is presented. As seen in Fig. 8, it is observed that 

the tip leakage vortex passes from the upstream of rotor 

tip to the downstream of adjacent blade. Besides, the flow 

expansion in the tip leakage vortex downstream of the shock 

wave due to the strong adverse pressure gradient, which is 

called by vortex breakdown, occurs in the blade passage. 

In DES solution, it is discovered that the three-dimensional 

vortical flows from the rotor tip region are widely distributed 

and its vortex structures are well captured than the RANS 

solution.

Figure 9 shows the relative velocity vectors near the rotor 

blade surfaces at 98% span. As shown in Fig. 9 (a), the RANS 

and DES results indicate that the rotor tip clearance flow 

moves downstream of adjacent blade row, but a part of the 

tip leakage flows in DES solution spill over into next passage 

of the blade owing to the separation vortex as previously 

presented in Fig. 8 (b). Furthermore, there are different 

flow patterns between the RANS and DES solutions in Fig. 

9 (b). Near the rotor trailing edge, the flow separation on 

blade suction surface is observed and the backflow is clearly 

seen in DES solution. This is because the low energy fluids 

downstream of the separation vortex are driven upstream by 

the adverse pressure gradient [17].

Figure 10 shows the entropy distributions near the rotor 

tip surfaces at 95% span. The RANS and time-averaged DES 

result is shown in the figure, respectively. The entropy rise is 
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Q-criterion around rotor suction surfaces and the 
rotor limiting streamlines. The Q-criterion is used 
to identify the vortex cores and to visualize the 
turbulent eddy structures [18]. It means the 
averaged second invariant of the velocity gradient 
written as follows: 
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where Ω is vorticity magnitude, S is mean strain 

rate. It is found that the two vortex structures 
predicted by RANS and DES are clearly different 
from each other as seen in Figs. 11 and 12. The 
DES solution shows strong turbulent eddies with 
various sizes especially in the rotor hub and tip 
section and the downstream of rotor trailing edge 
compared to the RANS solution. As for the rotor 
limiting streamlines, it is observed that the vortex 
flow region of RANS solution dominates in hub 
region. However, the vortical flow motions occur 
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entropy of DES solution is higher than the RANS solution. 

This phenomenon corresponds with the characteristics 

of total temperature distribution as mentioned in Fig. 

4. Additionally, it seems that finer turbulent resolution 

using near wall treatment is needed to capture the smaller 

turbulent eddies in the tip region.

Figure 11 and Fig. 12 show the iso-surfaces of Q-criterion 

around rotor suction surfaces and the rotor limiting 

streamlines. The Q-criterion is used to identify the vortex 

cores and to visualize the turbulent eddy structures [18]. It 

means the averaged second invariant of the velocity gradient 

written as follows:

 

 

 
(a) Flow vectors around rotor leading edge 

 
 

 

 
(b) Flow vectors around rotor trailing edge 

 
Fig. 9. Relative velocity vectors near blade 

surfaces (98% span) 
 

S.S

P.S

 
(a) RANS 

S.S

P.S

 
(b) DES (Time-averaged) 

 
Fig. 10. Entropy distributions at rotor tip surface 

(95% span) 
Figure 11 and Fig. 12 show the iso-surfaces of 

Q-criterion around rotor suction surfaces and the 
rotor limiting streamlines. The Q-criterion is used 
to identify the vortex cores and to visualize the 
turbulent eddy structures [18]. It means the 
averaged second invariant of the velocity gradient 
written as follows: 

 

 22

2
1 SQ  (6)

 
where Ω is vorticity magnitude, S is mean strain 

rate. It is found that the two vortex structures 
predicted by RANS and DES are clearly different 
from each other as seen in Figs. 11 and 12. The 
DES solution shows strong turbulent eddies with 
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where Ω is vorticity magnitude, S is mean strain rate. It is 

found that the two vortex structures predicted by RANS and 

DES are clearly different from each other as seen in Figs. 11 

and 12. The DES solution shows strong turbulent eddies with 

various sizes especially in the rotor hub and tip section and 

the downstream of rotor trailing edge compared to the RANS 

solution. As for the rotor limiting streamlines, it is observed 

that the vortex flow region of RANS solution dominates 

in hub region. However, the vortical flow motions occur 

randomly in a wide range from hub to tip region for the DES 

solution.

5. Conclusions

The present work performs the three-dimensional flow 

calculations based on Reynolds Averaged Navier-Stokes 

(RANS) and Delayed Detached Eddy Simulation (DDES) 

to investigate the flow field of a transonic axial compressor 

rotor (NASA Rotor 37) at near-stall condition. It is found 

that the DES approach is likely to predict well the complex 

flow characteristics such as secondary vortex or turbulent 

flow phenomenon than RANS approach, which is useful to 

describe the flow mechanism of a transonic compressor at 

near-stall condition. The results are summarized as follows:

(1) The result of the DES model using wall function shows 

improvement of predicting the flow field in the wake region of 

the rotor and the model captures reasonably well separated 

regions compared to the RANS model. In the tip flow region, 

it seems that finer turbulent resolution using near wall 

treatment is needed to capture the smaller turbulent eddies.

(2) In DES solution, it is discovered that the three-

dimensional vortical flows after the vortex breakdown from 

the rotor tip region are widely distributed and its vortex 

structures are clearly present.

(3) There are several different flow patterns near the rotor 

blade surfaces between the RANS and DES solutions. Near 

the rotor leading edge, a part of the leakage flows in DES 

solution spill over into next passage of the blade owing to 

the separation vortex flow as shown in the tip leakage flow 

patterns. Furthermore, the flow separation on blade suction 

surface is observed and the backflow is clearly seen in DES 

solution near the trailing edge of rotor tip.

(4) It is found that the turbulent eddy structures predicted 

by RANS and DES are clearly different from each other. The 

DES result shows strong turbulent flow eddies especially in 

the rotor hub, rotor tip and the downstream of rotor trailing 

edge compared to the RANS solution.
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