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Abstract

A methodology for determining the design allowables of composite laminates by using lamina level test data and finite 

element analysis (FEA) is proposed and verified in this paper. An existing method that yields the laminate design allowables by 

using the complete test results for laminates was improved to reduce the expensive and time-consuming tests. Input property 

samples for FEA were generated after considering the statistical distribution characteristics of lamina level test data. , and 

design allowables were derived from several FEA analyses of laminates. To apply and verify the proposed method, Hexcel 8552 

IM7 test data were used. For both un-notched and open-hole laminate configurations, it was found that the design allowables 

obtained from the analysis correctly predicted the laminate test data within the confidence interval. The potential of the 

present simulation to substitute the laminate tests was demonstrated well. 
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1. Introduction

Although composite material has outstanding specific 

strength and stiffness compared to metallic material, its 

strength and other properties are not consistent. Thus it 

requires a significantly larger amount of tests for deducing the 

design allowables than an isotropic material does. 

The A-basis design allowable (A-basis value) is the one 

which 99% of the population of material values is expected to 

equal or exceed, with a 95% confidence interval. The B-basis 

value is the one which 90% of the population is expected to 

equal or exceed. 

The building block approach (BBA), which is one of the 

famous methodologies used in aerospace industries for 

deducing the properties of composite material, as referred to 

the composite material handbook CMH-17 [1], specifies the 

test procedures for the coupon, element, sub-component, and 

component in the design of a composite material structure. 

Coupon test, which consists of lamina level and laminate 

level tests, requires 20~30 repeated tests to derive statistics for 

the design allowables. According to the recommendation by 

the FAA, 1,500~3,000 repeated tests for the lamina level and 

laminate level tests for the coupon specimen of a composite 

material  will be required. [2]

The laminate level test confirms the influence of the 

laminate stacking sequence variation and the existence 

of holes. Since the number of combinations may increase 

to infinity, only partial subsets will undergo test. On the 

other hand, since the lamina level test is conducted on 

unidirectional laminates, most of the required properties can 

be obtained with a limited number of tests. As such, this paper 

will seek the possibility of replacing some of the laminate level 

test with FEA using the lamina level test data. 

Many investigations have been reported which apply 

statistical theory for the uncertainty analysis on a composite 

material. Astill [3] and Oh [4] applied a Monte Carlo simulation 
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(MCS) to evaluate structural strength, considering the 

influence of statistical characteristics of composite material 

properties. Fukuda [5], Goda [6], Yuan [7], and Zhou [8] 

considered more properties, such as the strength of a fiber 

or the diameter of a fiber as a random variable that displays 

either a normal or a Weibull distribution. Vinckenroy [9] used 

the goodness-of-fit test to estimate the statistical distribution 

of the material properties such as strength, modulus, 

Poisson’s ratio from the tests, and using that properties with 

input parameters, performed MCS for the laminate strength.

In the field of reliability, the reliability index is estimated by 

a variety of methods, such as the first order second moment 

method (FOSM) and second order second moment method 

(SOSM) to compute the failure probability. The response 

surface method (RSM) has been suggested to improve 

efficiency of the reliability analysis. Lee [10] introduced the 

MCS , advanced SOFM (ASOFM), and RSM, and compared 

their efficiencies for analyzing the failure probability and 

reliability of the composite laminates. With the statistical 

finite element method (SFEM), statistics was used to 

introduce variances of input properties into the formulation 

of the finite element method [11]. 

Nonetheless, most theories assumed that all the input 

variables should obey predetermined distributions, mostly 

either normal or Weibull distribution. However, realistic test 

data may exhibit a distribution that is not previously known. 

In extreme situations, the data may not obey or exhibit any 

existing distributions. From the CMH-17 handbook it can 

be determineds which type among the existing distributions 

any specific test data obeys, in order to determine the design 

allowables for that specific distribution. 

In this paper, estimation of the specific distribution will 

be attempted by accounting for all the single properties 

provided by test data. This will permit complete examination 

of the distribution characteristics of each property.

Moreover, the composite material has non-linear 

characteristics and final failure is reached through 

degradation after the initial failure. To reflect this, progressive 

failure analysis (PFA) will be used. For the PFA simulation, 

an improved version of IPSAP (Internet Parallel Structural 

Analysis Program) – in-house FEA code which is developed 

in Seoul National University will be used. This specific 

program is equipped with a multi-frontal solver and parallel 

computing algorithm, recently improved and extended [12-

15]. Park [16] improved it for analyzing composite material 

characteristics when considering material nonlinearity, 

continuum damage mechanics, and degradation analysis. 

He showed that IPSAP predicted un-notched laminate 

strength within a±10% margin of error, especially when 

compared with tests of Hexcel 8552 IM7 [17].

This paper attempts to present a method to create samples 

that properly reflect the statistical characteristics of the 

composite material’s test data. It also tries to derive the design 

allowables from the analytical result, which uses the samples 

as the input properties. This research is performed under the 

assumption that the lamina level test results represent the 

material’s properties well. To do this, theories including the 

pooling method [1], the Anderson-Darling test [18], the Latin 

hypercube sampling method [19], and rank order correlation 

[20] will be adopted. A method of estimating A/B-basis values 

from the FEA results will be proposed.

2. Theoretical Background

2.1  Determination of the Design Allowables from 
Laminate Level Test Data

To obtain the design allowables used for composite 

material, both the 99% lower bound A-basis value and the 

90% lower bound B-basis value at 95% confidence level 

are usually estimated by tests, using the building block 

approach). The A/B-basis values of laminates are obtained 

from the laminate test data as described in Ref. 1-2. . Fig. 1 

shows the procedure in a block diagram.

The goodness-of-fit test is then conducted on the pooled 

data to decide which distribution function best fits the test 

data. The physical phenomenon such as the property can 

be modeled with the given data analysis or by the expert’s 

experiences [21]. The property of a material is known to obey 

either the normal or the Weibull distribution. The normal 

distribution is selected if there exists no information known 

in advance [22]. However, this paper does not assume a 

distribution but conducts the goodness-of-fit test including 

both normal and Weibull distributions in order to reflect the 

exact trend of the test data. The goodness-of-fit test includes 

30 

 

Fig. 1. Procedure of the present method using laminate level test data [1]

 

 

 

 

Fig. 1.  Procedure of the present method using laminate level test data [1]
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the chi-square test, Kolmogorov-Smirnoff (K-S) test [23], 

Anderson-Darling (A-D) test, etc. 

The A-D test was used in this paper since it is one of the 

most advanced forms. The A-D test examines for three 

distributions: Weibull, normal and lognormal distribution. 

If the test data shows that the p-value of a distribution 

exceeds 0.05, the test data will be assumed to conform to 

the distribution. If the Weibull distribution satisfies the 

condition, the normal and the lognormal distribution are 

not considered. The lognormal distribution is not considered 

when p-value of the normal distribution exceeds 0.05. If 

none of the distributions is satisfied, the basis value will be 

obtained by the non-parametric method. 

A/B-basis values are computed by the equations for the 

selected statistical distribution. The equations for the A/B 

values are functions of n and coefficients determined by n 

with the tables in Ref. 1. Confidence in the test data will be 

determined by the number of the original test data n before 

pooling. In other words, A/B values are getting larger as the 

number of test data n increases.

2.2 Determination of the Design Allowables by Sim-
ulation

The procedure in Section 2.1 is used to estimate the 

A/B-basis values from the laminate test data. To obtain the 

basis values without laminate test data, the new method is 

proposed together with the sampling technique and FEA. 

Only the lamina level test data are used for the proposed 

method. 

The procedure is described in Fig. 2.

Part I:  Sample generation from the lamina level test data 

for FEA

ⅰ. � �Eliminate outliers from the lamina level test data for 

each environment (nm test data × m properties × t 

environments).

ⅱ. � �Normalize the lamina level test data for each 

environment.

ⅲ. � �Examine for the equality of variance among 

environmental groups.

ⅳ. � �Pool the normalized data groups with similar variance 

characteristics.

ⅴ. � �Perform goodness-of-fit tests for the pooled data.

ⅵ. � �Sample generation: sampling from the proper 

distribution function or direct sampling from the 

test data in accordance with the goodness-of-fit test 

results.

Steps i~v above for determining the distribution 

characteristics of laminate level test data in the original 

procedure are performed to determine the distribution 

characteristics of lamina level test data. Since the goodness-

of-fit test assumes that the sample population conforms to a 

specific distribution, it will be rational to extract the sample 

from the determined distribution function. 

Because the A/B-basis values are directly extracted from 

the data if the test sample is deemed not to conform to any 

specific distribution in the original procedure in Section 2.1, 

we also extract the samples directly from the test data without 

making any assumption on distribution. If N samples are 

selected from each property, a sample set given in X can be 

obtained.

6 
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Part II: Calculating A/B-basis values from the FEA results 
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viii. Build subset which consists of random nmin samples from N strength calculation results. 
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Analysis results numbering N can be obtained if N samples are used as input to FEA. The simplest 

method is to determine the distribution characteristics of such N number of results, and then obtain kA

and kB according to N and estimate the A/B-basis values. Note, however, that the coefficients for the 

basis are set to reflect the reliability of the input data as the number of test data increases, and it will 

not be rational to increase reliability by simply increasing the repetitions of FEA. It is more rational to 

determine reliability considering the number of lamina level tests used as input. 

Estimation of the A/B-basis values from N number of analytical results is a point estimation, with a 
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data and FEA(shaded blocks are newly added or modified pro-
cedures)
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Part II: Calculating A/B-basis values from the FEA results

ⅶ. � �Calculate laminate strength with FEA for the samples 

(N×m array).

ⅷ. � �Build subset which consists of random nmin samples 

from N strength calculation results.

ⅸ. � �Perform goodness-of-fit test for the subset.

ⅹ. � �Calculate A/B-basis values for the proper distribution 

or with non-parametric methods.

ⅹⅰ. � �Repeat viii~x 100 times.

ⅹⅱ. � �Estimate A/B-basis values with confidence intervals.

Analysis results numbering N can be obtained if N  

samples are used as input to FEA. The simplest method 

is to determine the distribution characteristics of such N 

number of results, and then obtain kA and kB according to N 

and estimate the A/B-basis values. Note, however, that the 

coefficients for the basis are set to reflect the reliability of the 

input data as the number of test data increases, and it will 

not be rational to increase reliability by simply increasing the 

repetitions of FEA. It is more rational to determine reliability 

considering the number of lamina level tests used as input. 

Estimation of the A/B-basis values from N number of 

analytical results is a point estimation, with a less useful 

result. It is more useful to present the A/B-basis values with a 

confidence interval, which is a range estimation. 

Considering these two factors, Steps viii~xii are presented. 

Assuming the number of the m-th property data of the 

lamina level test to be nm, the smallest number is denoted 

by nmin. Conservatively, it is rational to assume the reliability 

of the input information used for analysis as the level of 

nmin. Subsets having nmin number of data from N number 

of result values can be extracted, and the A/B-basis values 

are estimated from these subsets. In example, if this process 

is repeated 100 times randomly, 100 A/B values will be 

obtained. Thus, 95% or 99% confidence intervals can be 

acquired.

2.3  Monte Carlo Simulation and Latin Hypercube 
Sampling

In the analysis of a structure using a composite material 

with significant uncertainty in its properties, it is difficult 

to predict behavior accurately with deterministic analysis, 

which considers only the average values of the properties. 

Therefore, it is rational to use the statistical approach, 

which can predict the statistical properties, such as average, 

distribution, and distribution form. 

The main modeling variables such as shape and external 

force in addition to the properties are given values containing 

the uncertainties; the techniques reflecting them include 

the random sampling technique, expansion method, 

optimization method, statistics-based response function 

method, and statistics-based approximate integration [11]. 

Although all those methods (except the random sampling 

technique) improve efficiency by simplifying the model for 

approximation, they require additional formulation steps 

and contain inaccuracies arising from the simplification of 

the model. 

The random sampling method based on the Monte Carlo 

simulation (MCS) can be applied directly, without modifying 

the basic model or formula, but requires an increased 

amount of computations. To supplement the efficiency 

problem of MCS, sampling techniques such as Latin 

hypercube sampling, orthogonal array-based sampling, 

and importance sampling, which all reduces the number 

of computations required yet obtains the same result, have 

been developed. They, allow excellent results with a relatively 

small number of samples [19].

MCS uses the statistical sampling technique to reflect the 

uncertainty of the model, and executes repeated analyses 

of the input variable sets extracted from the probability 

density of input variables of the model, using a random or 

pseudo-random number. Each input variable set is extracted 

in accordance with the definition by the probability density 

function based on the test data or known results. If a sufficient 

number of samples are used, the input variable distribution 

can be properly reproduced, and a solution with improved 

accuracy can be obtained. 

Note, however, that such a task will not be suitable for 

complex models because of the excessive processing time 

required. To solve this problem, methods such as importance 

sampling, which assigns different importances to sections, 

and Latin Hypercube sampling (LHS), which ensures that 

the samples are uniformly distributed to all sections, have 

been suggested. 

LHS has been applied and improved extensively, since it 

is simple to apply and highly efficient. Proposed by McKay, 

et al. [19], it creates samples that are evenly distributed 

throughout the range, without bias. The space where the 

input variables are distributed is uniformly divided into 

the size of sample N so that the samples are extracted in 

the sample probability in each section. N is generally larger 

than k+1 (k is the number of changing input variables) and 

is usually much larger, to ensure accuracy [24]. Random 

sampling is performed in each divided distribution domain. 

Only one sampling is allowed in each domain, with sampling 

performed in all domains. McKay proved that LHS requires 

fewer samples than basic random sampling method to 

obtain the same accuracy level.

If there are two or more variables such as X1, X2, ... , Xd, 
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each of the independently sampled X1, X2, etc., is randomly 

matched to create sample X composed of d number of 

samples. In the process, cases of correlation that do not 

exist originally between the variables being assigned or 

d-dimensional space not being filled may be generated. 

Such a situation can be improved as the number of samples 

increases, or removed by checking the correlation between 

the sampled variables and change ranks of each data with 

rank order correlation [20].

3. Numerical Example

3.1 Pooling Lamina Level Test Data

The test data to be used in this paper are of Hexcel 8552 

IM7, presented in Ref. 17. The lamina level test consists of five 

types of tests to obtain the basic properties such as strength 

and modulus, Poisson’s ratio of tension, compression 

and shear of unidirectional laminates. They are as follows: 

longitudinal tension (LT) tests, longitudinal compression 

(LC) tests, transverse tension (TT) tests, transverse 

compression (LC) tests and  in-plane shear (IPS) tests.

Since the property of a composite varies greatly according 

to temperature and humidity, each test is conducted under 

the following four temperature and humidity conditions: 

room temperature dry condition (RTD), cold temperature 

dry condition (CTD), elevated temperature dry condition 

(ETD) and elevated temperature wet condition (ETW). As 

shown in Table 1, the number of data in each environment is 

18~20 on average, which is too small to estimate the statistical 

distribution, particularly for the material. Since the testing of 

composite material is conducted on a number of cases, it is 

difficult to obtain a sufficient number of data for each case. 

The pooling method discussed in CMH-17 [1] is presented to 

Table 1. Number of test data for Hexcel IM7 lamina level properties [17]

18 

 

Table 1. Number of test data for Hexcel IM7 lamina level properties [17] 

Property Symbol 
# of Data 

Test Stacking
sequenceRTD CTD ETD ETW

LT strength F1
tu 18 22 - 18 

Longitudinal 
Tension 

[0]6 
LT modulus E1

t 18 22 - 29 

LT Poisson's 
ratio 

ν12
t 18 22 - 25 

TT strength F2
tu 20 21 - 19 Transverse

Tension 
[90]11 TT modulus E2

t 20 21 - 19 

LC modulus E1
c 15 20 17 35 

Longitudinal 
Compression 

[0]14 LC Poisson's 
ratio 

ν12
c 15 20 17 35 

TC strength F2
cu 20 20 - 25 

Transverse
Compression 

[90]14 
TC modulus E2

c 20 20 - 9 

TC Poisson's 
ratio 

ν21
c 20 20 - 9 

IPS 0.2% 
yield strength 

F12
s0.2%ε 12 - - 19 

In-Plane
Shear 

[+45/ 
-45]3s IPS strength F12

s5%ε 16 21 - 20 

IPS modulus G12
s 16 21 - 20 

 

Table 2. E1t data from lamina level tests [17]
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Table 2. E1
t data from lamina level tests [17] 

Item 
E1

t (Msi) 
RTD CTD ETW

Test Data 

22.553 22.425 23.285
23.43 22.078 23.975

22.588 22.573 23.793
23.785 22.937 23.382
23.433 21.852 25.578
23.528 22.667 23.761
22.795 22.342 24.389
23.305 22.541 23.281
23.076 22.54 23.977
21.835 22.436 23.622
23.716 22.801 24.702
23.731 23.099 23.496
20.707 22.103 23.719
23.225 22.034 23.828
23.053 23.03 23.558
22.09 22.039 23.738

22.973 22.651 24.063
23.941 23.119 24.356

 

23.219 23.222
22.468 24.329
22.832 24.378
22.706 23.449

 

24.831
23.769
23.93

24.023
24.79

24.023
24.778

Average 22.987 22.567 24.001 

Std. Dev. 0.812 0.387 0.557 

#of Data(n) 18 22 29 
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overcome such difficulties.

This section describes the pooling procedure with the E1
t 

property, which is the longitudinal tensile modulus of the 

material. The raw data for each environment of E1
t are given 

in Table 2. Firstly, outlier removal and normalizing for each 

environment’s data are performed in accordance with the 

procedure explained in Section 2. The normalized data are 

shown in Table 3. The variance analysis of the sets of all the 

environmental groups yielded a p-value of 0.34, indicating 

similar variance characteristics. Therefore, the data of 

all three environments of E1
t can be grouped together to 

estimate the distribution characteristics of the lamina level 

E1
t property. As a result, the data size became 68; this was 

sufficient to infer the distribution.

3.2 Estimation of Distribution and Sampling

The consistency of the results with the normal, Weibull, 

and lognormal distributions was evaluated by using the 

Anderson-Darling goodness-of-fit test [18]. Table 4 shows 

the result. The normal fit of initial data and pooled data are 

shown in Figs. 3 and 4.

As a result of the procedure described in this Section 

2.1, the population of E1
t can be considered to have the 

normal distribution, and sampling can be performed using 

the normal probability distribution function. By the same 

procedure, the other properties of IM7 were pooled, and the 

resulting of estimation of distribution characteristics is given 

in Table 5.

Sampling is performed in accordance with the result of 

the estimation of distribution. Properties that follow the 

distributions are sampled using probability distribution 

functions and a random number generator. Since general 

random number generators give random numbers in 

[0,1] for uniform distribution, to obtain random numbers 

that are not uniformly distributed, an inverse transform 

Table 3. Normalized data of E1t 

20 

Table 3. Normalized data of E1
t

Item 
E1

t (Msi) 
RTD CTD ETW

Normalized 
Data 

0.9754 0.9937 0.9702
1.0134 0.9783 0.9989
0.9769 1.0002 0.9913
1.0287 1.0164 0.9742
1.0135 0.9683 1.0657
1.0176 1.0044 0.9900
0.9859 0.9900 1.0162
1.0080 0.9988 0.9700
0.9981 0.9988 0.9990
0.9444 0.9942 0.9842
1.0257 1.0103 1.0292
1.0264 1.0235 0.9790
1.0045 0.9794 0.9883
0.9971 0.9763 0.9928
0.9554 1.0205 0.9815
0.9936 0.9766 0.9890
1.0355 1.0037 1.0026

 

1.0244 1.0148
1.0289 0.9675
0.9956 1.0137
1.0117 1.0157
1.0061 0.9770

 

1.0346
0.9903
0.9970
1.0009
1.0329
1.0009
1.0324

Average 1.0000 1.0000 1.0000
Std. Dev. 0.0258 0.0172 0.0232

#of Data(n) 17 22 29 

Table 4. Anderson-Darling goodness-of–fit tests for E1t 

21 

Table 4. Anderson-Darling goodness-of–fit tests for E1
t

Distribution p-value of A-D test Result 
Weibull 0.005 rejected (p<0.05) 
Normal 0.786 accepted (p>0.05) 

Lognormal 0.815 not considered 

33 

Fig. 4. Normal fit of pooled data 

  

Fig. 4.  Normal fit of pooled data
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Fig. 3. Normal fit of test data for each environment Fig. 3.  Normal fit of test data for each environment



DOI: http://dx.doi.org/10.5139/IJASS.2015.16.3.360 366

Int’l J. of Aeronautical & Space Sci. 16(3), 360–369 (2015)

method is generally used [25]. Because the Weibull 

distribution function can be transformed to an inverse 

function, random numbers for this distribution can be 

obtained by inverse transform method. But there is no 

inverse function for normal and lognormal distributions; 

we used an approximate inverse transform method [26]. 

Properties not obeying those three distributions are 

sampled directly in the pooled test data. The structure 

of the present sample set is shown in Table 6, when the 

sample set size is 1,000.

3.3 Computation of the Design Allowable from Sim-
ulation Results

Since lamina level test data for the sampling have 12~25 

data for each case, only the B-basis value can be obtained 

[1]. Un-notched and open-hole laminate configurations for 

Table 5.  Distribution estimation of pooled data of lamina level prop-
erties

23 

  Table 6. Sample set of 1,000 samples for analysis 

Property 
Sample Sets Sampling 

Method X1 X2 X3 ... X1,000

F1
tu 359.19 393.75 388.35 ... 379.48 Normal Dist. 

E1
t 23.392 23.226 23.181 ... 23.786 Normal Dist. 

ν12
t 0.3150 0.3080 0.3060 ... 0.3190 Direct Sampling

F2
tu 8.3573 9.4621 8.6380 ... 9.8765 Weibull Dist. 

E2
t 1.4010 1.3330 1.2973 ... 1.3070 Direct Sampling

E1
c 18.341 19.827 23.517 ... 18.137 Normal Dist. 

ν12
c 0.3261 0.3458 0.3446 ... 0.3394 Lognormal Dist.

F2
cu 46.486 42.616 39.043 ... 42.841 Weibull Dist. 

E2
c 1.4019 1.4288 1.2817 ... 1.3139 Normal Dist. 

ν21
c 0.0245 0.0247 0.0228 ... 0.0208 Weibull Dist. 

F12
s0.2%ε 13.616 12.948 13.072 ... 12.713 Weibull Dist. 

F12
s5%ε 8.1170 7.8693 8.2790 ... 8.2790 Direct Sampling

G12
s 0.6887 0.7101 0.6700 ... 0.6637 Normal Dist. 

Table 6. Sample set of 1,000 samples for analysis
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Table 7. Laminate configurations for simulation 

Laminate Stacking Sequence 

Un-Notched laminate 
Tension 

UNT1 [45,0,-45,90]2s 

UNT2 [45,-45,0,45,-45,90,45,-45,45,-45]s 

UNT3 [0,45,0,90,0,-45,0,45,0,-45]s 

Open-Hole laminate 
Tension 

OHT1 [45,0,-45,90]2s 

OHT2 [45,-45,0,45,-45,90,45,-45,45,-45]s 

OHT3 [0,45,0,90,0,-45,0,45,0,-45]s 

Table 8. Laminate tensile strength analysis results in simulation
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Table 8. Laminate tensile strength analysis results in simulation 

Input Sample Set 
Tensile Strength Analysis Results (ksi) 

UNT1 UNT2 UNT3 OHT1 OHT2 OHT3 

X1 100.29 66.954 161.03 59.206 46.187 87.125

X2 109.84 71.971 176.50 62.362 47.377 92.066

X3 109.94 72.016 174.91 63.446 47.936 92.969

X4 99.490 66.297 160.92 57.993 44.244 85.558

X5 102.17 67.825 163.07 60.768 47.467 89.599
... ... ... ... ... ... ...

X1000 104.85 69.253 167.16 61.570 47.392 90.992 

Sample Mean 101.79 67.566 163.45 59.835 46.096 88.542

Sample Std. Dev. 4.759 2.675 6.950 2.018 1.349 2.779
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this analysis are presented in Table 7. Longitudinal tensile 

strength analysis results on the un-notched and open-hole 

laminates under tensile loading using the sampling method 

(Section 2.2) and PFA FEA are given in Table 8. 

For OHT1, the methodology for determining the 

B-basis value is presented as follows. First, the Anderson-

Darling goodness-of-fit test was performed to estimate the 

distribution characteristic of 1,000 strength values for OHT1. 

As shown in Table 9, OHT1 tensile strength obeys the normal 

distribution.

Among the lamina level test data used for the sample 

generation, the smallest number of tests nmin is 12, for the 

property F12
s5%ε of in-plane shear tests. Now, a subset of 12 

values is collected randomly as shown in Table 10. For the 

normal distribution, kB = 2.211 can be found in Table 8.5.14  

in Ref. 1 for n = 12. With following equation, the B-basis value 

for the subset is obtained.
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Table 9.  Anderson-Darling goodness-of-fit tests for the simulation 
results
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Table 9. Anderson-Darling goodness-of-fit tests for the simulation results 

Distribution p-value of A-D test Result 
Weibull 0 rejected (p<0.05) 
Normal 0.093 accepted (p>0.05) 

Lognormal 0.526 not considered 

Table 10.  Subset for B-basis value computation
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Table 10. Subset for B-basis value computation

# in the Original 1,000 Sets 

(random) 
Tensile Strength of OHT1 (ksi) 

72 63.360 

678 57.538 

641 61.611 

883 57.533 

313 61.641 

591 61.686 

870 61.157 

290 59.084 

433 62.935 

993 60.548 

142 62.742 

350 57.981 

Subset Mean 60.651 

Subset Std. Dev. 2.114 

B-Basis Value 56.089 

Table 11.  B-basis values for OHT1 laminate
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Table 11. B-basis values for OHT1 laminate

Subset # 
OHT1 Strength 

B-Basis Value (ksi) 

1 55.377 

2 55.356 

3 54.218 

4 53.486 

5 57.277 

... ... 

100 54.883 

0.5% Value 52.010

99.5% Value 57.385

Table 12.  B-basis value computation results
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Table 12. B-basis value computation results

Laminate Model 
B-Basis Value (ksi) 

Analysis Test 

UNT1 90.927 ± 6.667 92.427

UNT2 59.454 ± 5.652 58.718

UNT3 145.350 ± 12.704 156.435 

OHT1 54.697 ± 2.687 54.459

OHT2 42.358 ± 2.524 41.292

OHT3 81.071 ± 4.746 77.869
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4. Concluding Remarks

In this paper, a methodology is proposed to predict the 

design allowables for laminates, without the costly and time-

consuming laminate level tests, through a simulation using 

lamina level test data. 

To accurately estimate distribution characteristics of the 

properties from lamina level test data, a pooling method and 

Anderson-Darling goodness-of-fit test were conducted. The 

Latin hypercube sampling method was used to create well-

distributed random samples. 

By using the samples which have the test results’ 

distribution characteristics for each property and 

progressive failure analysis by an improved version of IPSAP 

was performed to obtain the tensile strengths for the three 

un-notched laminates and the three open-hole laminate 

configurations.  By collecting subsets in the strength analysis 

results, the B-basis values were obtained with certain 

discrepancy range. The B-basis values from laminate level 

tests were predicted well with the analysis, and the potential 

of substituting simulation for laminate tests was well 

demonstrated.

This methodology was performed under the assumption 

that the lamina level test data reflects statistically enough 

the lamina population’s uncertainty characteristics from 

batches, environments, voids and defects. If the number of 

the test data is too small or only partly reflects the population 

characteristics, the analysis results cannot be generalized to 

obtain design allowables. To complement this, the pooling 

method was used. Confidence of the analysis result can be 

improved by using large number of data that influences the 

uncertainty property better.

When determining the parameters for the basis 

computation, the reliability level was assumed in 

accordance with the smallest number of data among the 

properties of the lamina level test. But, for the properties 

contributing to the result which have different sensitivities, 

more study is needed for determining the reliability level, 

considering the number of data of the property of higher 

sensitivity.
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