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Abstract

Concerning the issue of high-dimensions, hybrid uncertainties of randomness and intervals including implicit and highly 

nonlinear limit state function, reliability analysis based on the hybrid uncertainty reliability mode combining with back 

propagation neural network (HU-BP neural network) is proposed in this paper. Random variables and interval variables are 

as input layer of the neural network, after the training and approximation of the neural network, the response variables are 

obtained through the output layer. Reliability index is calculated by solving the optimization model of the most probable point 

(MPP) searching in the limit state band. Two numerical cases are used to demonstrate the method proposed in this paper, and 

finally the method is employed to solving an engineering problem of the aerospace friction plate. For this high nonlinear, small 

failure probability problem with interval variables, this method could achieve a good analysis result. 
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1. Introduction

Traditional reliability analysis requires the availability of 

probability distributions. In many engineering applications, 

the distributions of some variables may not be precisely 

known due to limited information. These variables are 

known with certain intervals, in other words, the hybrid 

uncertain model with probabilistic and interval widely exists 

in the practical engineering problems. Some researches make 

some assumptions for random distributions when using 

probability approach to perform the reliability analysis[1-3], 

and these methods bring a problem of confidence. Other 

techniques[4-8] also are proposed to deal with this problem. 

Literature[8] analyze the hybrid reliability of linear problems 

through a two-stage limit state function. A robust design 

method combining the probability and non-probability is also 

developed for uncertain structures[9-11]. More studies on the 

precise hybrid probability and interval can refer to[12-17].

All approaches for the hybrid uncertain model above are 

based on the explicit performance function. However, in 

engineering application, most problems are implicit. It means 

that we could not analyze reliability on the performance 

function directly. Response surface method (RSM) is 

widely used in both probability and non-probabilistic 

reliability problems[18,19]. A polynomial function is used to 

approximate the unknown implicit performance function. 

This technique develops well in probabilistic reliability 

analysis, and fairly accurate estimate of the failure probability 

could be obtained if the selected polynomial function fits 

the actual limit state well. Some researches also discuss the 

application of RSM in non-probabilistic reliability analysis[20]. 

However, for the mechanical systems, the performance 

function is highly nonlinear, the polynomial based RSM is 

not accurate enough for the real limit state function. Some 

researchers [21-23] also focus on the stochastic expansion 

method for the mixed uncertainties, but these methods are 

still based on the probabilistic assumption to some extent. 

Artificial neural network(ANN) algorithm has been rapidly 

developed for universal function approximations[24-26]. 

ANN has the stronger learning ability for fitting complex 
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problems. The ANN technique was compared with the RSM 

and other methods for structural reliability analysis[27]. 

Literature performed reliability analysis of a mine pillar 

and geotechnical engineering structure by combining finite 

element model (FEM)s, ANN, first order reliability method 

(FORM), second order reliability method(SORM) and 

Monte-Carlo simulation[28-30].

In this paper, a hybrid uncertainty reliability analysis 

method based on the ANN is proposed. The hybrid uncertainty 

reliability model combines with the back propagation (HU-

BP) neural network for highly nonlinear performance 

function reliability problems. The paper is organized as 

follows: the probability-interval hybrid reliability theory 

and ANN theory are introduced in section2 and section 3 

respectively; HU-BP neural network is constructed in section 

4; section 5 proposes the reliability analysis based HU-BP 

neural network; two numerical cases and an engineering 

case are carried out in section 6 to demonstrate the method, 

and finally is conclusion in section 7.

2. Probability-interval hybrid reliability theory

Assuming that X=(X1, X2, ..., Xn) is an n-dimensional 

random vector, and Y=(Y1, Y2, ..., Ym) is an m-dimensional 

interval vector. The limit state function Z is defined as follows:
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( ), 0X YZ g= = (1)
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( ){ }f Pr , 0X YP g= ≤ (2)

Where represents the probability. 
The interval parameters iY , i=1,2,…,m can be described 
as the following equations:
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iY represent the lower bound, the 
upper bound, the middle point, the radius of the interval 
variables iY . iγ represents the degree of uncertainty of 
the iY .

In the limit state function Z , the random variables as 
well as interval variables are included. The random 
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Where L
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fP represent the lower and upper 
bounds of the failure probability, respectively

Fig. 1 The limit state band of the hybrid model

The limit state band of the failure is as shown as in 
figure 1. When using classical FORM or SORM to solve 
the hybrid uncertainty model with both random variables 
and interval variables, the reliability index will belong to 
an interval and two optimization problems:
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Where Uβ and Lβ represent the upper and lower 
bounds of the reliability index, respectively. U is the 
normalization of X , and the normalization process is 
as :

( ) ( ) , 1, 2, ,
ii X iU F X i nΦ = =  (8)

( )1 , 1, 2, ,
ii X iU F X i n−  = Φ =   (9)

3.Artificial Neural network 
techniq-ue

The multi-layer perceptron, trained by the back 
propagation(BP), is currently the most widely used ANN. 
In this context, ANN is referred to as multi-layer 
perceptron or multi-layer feed forward ANN. An ANN 
consists of a set of neurons that are logically arranged 
into the input layer, the output layer and the hidden layer. 
The neurons is a processing elements whose output is 
calculated by multiplying its inputs by a weight vector, 
summing the results, and applying an activation function 
to the sum.
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Where kw is the weight coefficient, kb is threshold.
The active function can be linear or non-linear. A linear 
activation function’s output is simply equal to its input:

( )f x x= (10)

The most common non-linear activation function is the 
logistic sigmoidal function
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Where δ is called the sigmoid slope, usually 1=δ

4.Hybrid uncertainty based BP 
neural network
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Where Uβ and Lβ represent the upper and lower 
bounds of the reliability index, respectively. U is the 
normalization of X , and the normalization process is 
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techniq-ue
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Where kw is the weight coefficient, kb is threshold.
The active function can be linear or non-linear. A linear 
activation function’s output is simply equal to its input:

( )f x x= (10)

The most common non-linear activation function is the 
logistic sigmoidal function
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Where δ is called the sigmoid slope, usually 1=δ

4.Hybrid uncertainty based BP 
neural network

In this section, a hybrid uncertainty based BP(HU-BP) 
neural network is defined. In order to illustrate the 
HU-BP neural network, this paper will use the typical 
three-layer neural network. Its structure is as shown in 
figure 2. There are input layer, hidden layer and output 
layer in the neural network. As mentioned in the section 2, 
in reliability analysis, the hybrid uncertainties of 
probability and interval are widely exist in the 
engineering applications, and the performance function 
as equation (1), there are random variables 

( )1 2, , ,X nX X X=  and ( )1 2, , ,Y mY Y Y=  in the 
performance function g.
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Then the performance function of the HU-BP neural 
network could be defined as follows:

( ) ( )( )T T
2 2 1 1, ,X Y W W X Yg f f =     (12)

Where 1W and 2W represent the weight coefficients 
of the transformation.

In above equations, the “training rules” of the neural 
network is defined, and the next issue is the training 
process. In the training process, training samples for 
neural network is important. 
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This paper uses the improved axial experimental 
design method[31] to obtain samples points of X and
Y , the initial sample point is selected as 
( )c,Xμ Y ,where Xμ is the mean vector of the random 
variables X and cY is the midpoint vector of the 
interval variables Y , the samples of input variables 
( , )X Y will be updated in subsequent iterations, the 
remaining 2 2n m+ samples points will be obtained 
through 

i
i x XX ± ⋅κ σ , 1,2, ,i n=  and r

j y jY Y± ⋅κ ,
1,2, ,j m=  ,where 

iXσ is the standard deviation of iX
and r

jY is the radius of jY , xκ and yκ are two sampling 
coefficients and generally between [1,3] can provide 

good computational results.
Once the input samples are identified , the output 

samples will obtained by FEA of the mechanical systems. 
And finally the train samples ( ) ( )( ) ( )( ), ,X Y Zt t t are 
obtained.

The whole training steps of the HU-BP neural network 
are:

Step 1: built the structure of the BP neural network.
Step 2: select the hybrid uncertainty training sample 

sets ( ) ( )( ) ( )( ), ,X Y Tt t t , ( )1,2, ,t S=  according to 
section 4, and identify the initial weight coefficient ( )0Wk

Step 3: calculate ( )Z t with the trained set ( ) ( )( ),X Yt t

Step 4: reverse calculate the partial derivative 
( )

( )W

t

t
k

e∂
∂

,( 1,2, ,k L=  ),where e is the final error ,and 

( ) ( )T1 1
2 2

Z T Z T Z TL L Le = − = − − , T is the ideal 

output of the neural network.

Step 5: the modified ( )1W t
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+ is obtained by 

( ) ( ) ( )1W W Wt t t
k k k

+ = + δ , ( )
( )

( )W
W

t
t

k t t
k

e∂
= −

∂
δ η , 1,2, ,k L=  ,

tη is the training efficient in kth step.

Step 6: repeat the step 3 to 5 until all the samples is 
trained.

5.Reliability analysis based HU-BP 
neural network

The implicit limit state function containing hybrid 
uncertainty of probability and interval can be 
simultaneously approximated through HU-BP neural 
network, then the method of HU-BP neural network 
based on “Most Probable Point” (MPP) is used to 
calculated the failure probability.
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This paper uses the improved axial experimental 
design method[31] to obtain samples points of X and
Y , the initial sample point is selected as 
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The implicit limit state function containing hybrid 
uncertainty of probability and interval can be 
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calculated the failure probability.
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This paper uses the improved axial experimental 
design method[31] to obtain samples points of X and
Y , the initial sample point is selected as 
( )c,Xμ Y ,where Xμ is the mean vector of the random 
variables X and cY is the midpoint vector of the 
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This paper uses the improved axial experimental 
design method[31] to obtain samples points of X and
Y , the initial sample point is selected as 
( )c,Xμ Y ,where Xμ is the mean vector of the random 
variables X and cY is the midpoint vector of the 
interval variables Y , the samples of input variables 
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1,2, ,j m=  ,where 

iXσ is the standard deviation of iX
and r

jY is the radius of jY , xκ and yκ are two sampling 
coefficients and generally between [1,3] can provide 

good computational results.
Once the input samples are identified , the output 

samples will obtained by FEA of the mechanical systems. 
And finally the train samples ( ) ( )( ) ( )( ), ,X Y Zt t t are 
obtained.

The whole training steps of the HU-BP neural network 
are:

Step 1: built the structure of the BP neural network.
Step 2: select the hybrid uncertainty training sample 
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The implicit limit state function containing hybrid 
uncertainty of probability and interval can be 
simultaneously approximated through HU-BP neural 
network, then the method of HU-BP neural network 
based on “Most Probable Point” (MPP) is used to 
calculated the failure probability.
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This paper uses the improved axial experimental 
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This paper uses the improved axial experimental 
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approximated through HU-BP neural network, then the 

method of HU-BP neural network based on “Most Probable 

Point” (MPP) is used to calculated the failure probability.

The limit state band of the failure is as shown as in Fig. 

4. When using classical FORM or SORM to solve the hybrid 

uncertainty model with both random variables and interval 

variables, the reliability index will belong to an interval and 

two optimization problems:
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For the MPP search in the equation (13), HL-RF 
algorithm is widely used, and reference[32] has proposed
an iHL-RF algorithm for limit state function containing
random variables and interval variables. For example, we 
focus on the MPP for Uβ , in iteration k+1, the MPP is 
given by

1U U dk k k+ = +α (14)
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( ) ( )
( )

( )
T

2

, ,
,

,

U Y U U Y
d U Y U

U Y
Y k k k k k

k Y k k k

Y k k

g g
g

g

∇ −
= ∇ −

∇
(15)

Where 

( )
1 2 ,

, , , ,U y
k k

Y k k
n U Y

g g gg
U U U

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 


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In above equations, intervals are assumed fixed, once 
the 1Uk + is found, the interval analysis is conducted to 

find 1Yk + that maximize the performance function. The 
optimization model is given by 

( )1max ,U Y YkY
g C+ ∈ (18)

where C represents the constrained interval real field.
Then, the reliability analysis steps for HU-BP neural 
network are as follows:

Step 1: suppose that ( )1 2, , ,X nX X X=  is the basic 
n-dimensional random variables in original coordinate 
system, then vector ( )1 2, , ,U nU U U=  represents the 
random variables which are equivalent standard normal 
space. ( )1 2, , ,Y mY Y Y=  is m-dimensional interval 
variables.

Step 2: construct an approximate BP neural network 
for the structure reliability, and select train sample sets

Step 3: establish the MPP optimization model of the 

performance function ( ),U YG and calculate the partial 

derivatives of design point using HU-BN neural network
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is obtained;
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equation (18);

Step 5: check convergence, if ( )1 1 1,U Yk kg + + ≤ ε and 

1 2U Uk k+ − ≤ ε ( 1ε and 2ε are small positive numbers 
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Where the above explicit limit state function is 
assumed to be an implicit model for simulation. And the 
uncertainty information of variables of 1x , 2x , 1y , 2y are :

1x and 2x are random variables , they obey normal 
distribution, their mean value standard deviation are:

1
1.2x =µ ,

1
0.12x =σ ;

2
0.8x =µ ,

2
0.02x =σ . 1y and 

(14)

For the MPP search in the equation (14), HL-RF algorithm 

is widely used, and reference[32] has proposed an iHL-

RF algorithm for limit state function containing random 

variables and interval variables. For example, we focus on 

the MPP for βU, in iteration k+1, the MPP is given by

The limit state band of the failure is as shown as in 
figure 4. When using classical FORM or SORM to solve 
the hybrid uncertainty model with both random variables 
and interval variables, the reliability index will belong to 
an interval and two optimization problems:

( )

( )

U

L

min

s.t. max , 0

min

s.t. min , 0

G

G

β

β

 =


=
 =


=

U

Y

U

Y

U

U Y

U

U Y

(13)

For the MPP search in the equation (13), HL-RF 
algorithm is widely used, and reference[32] has proposed
an iHL-RF algorithm for limit state function containing
random variables and interval variables. For example, we 
focus on the MPP for Uβ , in iteration k+1, the MPP is 
given by

1U U dk k k+ = +α (14)

Where the search direction dk is defined by

( ) ( )
( )

( )
T

2

, ,
,

,

U Y U U Y
d U Y U

U Y
Y k k k k k

k Y k k k

Y k k

g g
g

g

∇ −
= ∇ −

∇
(15)

Where 

( )
1 2 ,

, , , ,U y
k k

Y k k
n U Y

g g gg
U U U

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 



The step size α is determined by minimizing the 
merit function defined by 

( ) ( )1, ,
2

U Y U U Ym c g= +  (16)

In which the constant c should satisfy 

( ),
U
U Y

c
g

>
∇

(17)

In above equations, intervals are assumed fixed, once 
the 1Uk + is found, the interval analysis is conducted to 

find 1Yk + that maximize the performance function. The 
optimization model is given by 

( )1max ,U Y YkY
g C+ ∈ (18)

where C represents the constrained interval real field.
Then, the reliability analysis steps for HU-BP neural 
network are as follows:

Step 1: suppose that ( )1 2, , ,X nX X X=  is the basic 
n-dimensional random variables in original coordinate 
system, then vector ( )1 2, , ,U nU U U=  represents the 
random variables which are equivalent standard normal 
space. ( )1 2, , ,Y mY Y Y=  is m-dimensional interval 
variables.

Step 2: construct an approximate BP neural network 
for the structure reliability, and select train sample sets

Step 3: establish the MPP optimization model of the 

performance function ( ),U YG and calculate the partial 

derivatives of design point using HU-BN neural network

jx

g
X ∗

∂
∂

, and then the optimization model of equation (18) 

is obtained;

Step 4: find 1Yk + by solving the optimization model of 
equation (18);

Step 5: check convergence, if ( )1 1 1,U Yk kg + + ≤ ε and 

1 2U Uk k+ − ≤ ε ( 1ε and 2ε are small positive numbers 
=1.0), then min

1Uk +=β and go to step 6, otherwise, 
k=k+1, go to step 3

Step 6: ( )min min
fP = Φ −β

6. Case study

6.1 numerical case 1

Denote the reliability function as g, and g is given by

( )( )
( ) ( )

2
1 2 1

1 2 1 2

2 1 1

exp 0.1 1 1 exp 0.18 2.5 14
1

x x yg x x y y
y y x

⋅ ⋅
= + + − + − − + +      

− −
(19)

Where the above explicit limit state function is 
assumed to be an implicit model for simulation. And the 
uncertainty information of variables of 1x , 2x , 1y , 2y are :

1x and 2x are random variables , they obey normal 
distribution, their mean value standard deviation are:

1
1.2x =µ ,

1
0.12x =σ ;

2
0.8x =µ ,

2
0.02x =σ . 1y and 

(15)

Where the search direction dk is defined by

The limit state band of the failure is as shown as in 
figure 4. When using classical FORM or SORM to solve 
the hybrid uncertainty model with both random variables 
and interval variables, the reliability index will belong to 
an interval and two optimization problems:

( )

( )

U

L

min

s.t. max , 0

min

s.t. min , 0

G

G

β

β

 =


=
 =


=

U

Y

U

Y

U

U Y

U

U Y

(13)

For the MPP search in the equation (13), HL-RF 
algorithm is widely used, and reference[32] has proposed
an iHL-RF algorithm for limit state function containing
random variables and interval variables. For example, we 
focus on the MPP for Uβ , in iteration k+1, the MPP is 
given by

1U U dk k k+ = +α (14)

Where the search direction dk is defined by

( ) ( )
( )

( )
T

2

, ,
,

,

U Y U U Y
d U Y U

U Y
Y k k k k k

k Y k k k

Y k k

g g
g

g

∇ −
= ∇ −

∇
(15)

Where 

( )
1 2 ,

, , , ,U y
k k

Y k k
n U Y

g g gg
U U U

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 



The step size α is determined by minimizing the 
merit function defined by 

( ) ( )1, ,
2

U Y U U Ym c g= +  (16)

In which the constant c should satisfy 

( ),
U
U Y

c
g

>
∇

(17)

In above equations, intervals are assumed fixed, once 
the 1Uk + is found, the interval analysis is conducted to 

find 1Yk + that maximize the performance function. The 
optimization model is given by 

( )1max ,U Y YkY
g C+ ∈ (18)

where C represents the constrained interval real field.
Then, the reliability analysis steps for HU-BP neural 
network are as follows:

Step 1: suppose that ( )1 2, , ,X nX X X=  is the basic 
n-dimensional random variables in original coordinate 
system, then vector ( )1 2, , ,U nU U U=  represents the 
random variables which are equivalent standard normal 
space. ( )1 2, , ,Y mY Y Y=  is m-dimensional interval 
variables.

Step 2: construct an approximate BP neural network 
for the structure reliability, and select train sample sets

Step 3: establish the MPP optimization model of the 

performance function ( ),U YG and calculate the partial 

derivatives of design point using HU-BN neural network

jx

g
X ∗

∂
∂

, and then the optimization model of equation (18) 

is obtained;

Step 4: find 1Yk + by solving the optimization model of 
equation (18);

Step 5: check convergence, if ( )1 1 1,U Yk kg + + ≤ ε and 

1 2U Uk k+ − ≤ ε ( 1ε and 2ε are small positive numbers 
=1.0), then min

1Uk +=β and go to step 6, otherwise, 
k=k+1, go to step 3

Step 6: ( )min min
fP = Φ −β

6. Case study

6.1 numerical case 1

Denote the reliability function as g, and g is given by

( )( )
( ) ( )

2
1 2 1

1 2 1 2

2 1 1

exp 0.1 1 1 exp 0.18 2.5 14
1

x x yg x x y y
y y x

⋅ ⋅
= + + − + − − + +      

− −
(19)

Where the above explicit limit state function is 
assumed to be an implicit model for simulation. And the 
uncertainty information of variables of 1x , 2x , 1y , 2y are :

1x and 2x are random variables , they obey normal 
distribution, their mean value standard deviation are:

1
1.2x =µ ,

1
0.12x =σ ;

2
0.8x =µ ,

2
0.02x =σ . 1y and 

(16)

Where   

The limit state band of the failure is as shown as in 
figure 4. When using classical FORM or SORM to solve 
the hybrid uncertainty model with both random variables 
and interval variables, the reliability index will belong to 
an interval and two optimization problems:

( )

( )

U

L

min

s.t. max , 0

min

s.t. min , 0

G

G

β

β

 =


=
 =


=

U

Y

U

Y

U

U Y

U

U Y

(13)

For the MPP search in the equation (13), HL-RF 
algorithm is widely used, and reference[32] has proposed
an iHL-RF algorithm for limit state function containing
random variables and interval variables. For example, we 
focus on the MPP for Uβ , in iteration k+1, the MPP is 
given by

1U U dk k k+ = +α (14)
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( ) ( )
( )

( )
T

2

, ,
,

,

U Y U U Y
d U Y U

U Y
Y k k k k k

k Y k k k

Y k k

g g
g

g

∇ −
= ∇ −

∇
(15)

Where 

( )
1 2 ,

, , , ,U y
k k

Y k k
n U Y

g g gg
U U U

 ∂ ∂ ∂
∇ =  ∂ ∂ ∂ 


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merit function defined by 
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In above equations, intervals are assumed fixed, once 
the 1Uk + is found, the interval analysis is conducted to 

find 1Yk + that maximize the performance function. The 
optimization model is given by 

( )1max ,U Y YkY
g C+ ∈ (18)

where C represents the constrained interval real field.
Then, the reliability analysis steps for HU-BP neural 
network are as follows:

Step 1: suppose that ( )1 2, , ,X nX X X=  is the basic 
n-dimensional random variables in original coordinate 
system, then vector ( )1 2, , ,U nU U U=  represents the 
random variables which are equivalent standard normal 
space. ( )1 2, , ,Y mY Y Y=  is m-dimensional interval 
variables.

Step 2: construct an approximate BP neural network 
for the structure reliability, and select train sample sets

Step 3: establish the MPP optimization model of the 

performance function ( ),U YG and calculate the partial 

derivatives of design point using HU-BN neural network

jx

g
X ∗

∂
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, and then the optimization model of equation (18) 

is obtained;

Step 4: find 1Yk + by solving the optimization model of 
equation (18);

Step 5: check convergence, if ( )1 1 1,U Yk kg + + ≤ ε and 

1 2U Uk k+ − ≤ ε ( 1ε and 2ε are small positive numbers 
=1.0), then min

1Uk +=β and go to step 6, otherwise, 
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6. Case study
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Where the above explicit limit state function is 
assumed to be an implicit model for simulation. And the 
uncertainty information of variables of 1x , 2x , 1y , 2y are :

1x and 2x are random variables , they obey normal 
distribution, their mean value standard deviation are:

1
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1
0.12x =σ ;
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2
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The limit state band of the failure is as shown as in 
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where C represents the constrained interval real field. Then, 

the reliability analysis steps for HU-BP neural network are as 

follows:
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system, then vector U=(U1, U2, ..., Un) represents the random 
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Where the above explicit limit state function is 
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optimization model is given by 
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where C represents the constrained interval real field.
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n-dimensional random variables in original coordinate 
system, then vector ( )1 2, , ,U nU U U=  represents the 
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Where the above explicit limit state function is 
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For the MPP search in the equation (13), HL-RF 
algorithm is widely used, and reference[32] has proposed
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Where the above explicit limit state function is 
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Where the above explicit limit state function is assumed 

to be an implicit model for simulation. And the uncertainty 

information of variables of x1, x2, y1, y2 are : x1 and x2 are 

random variables, they obey normal distribution, their 

mean value standard deviation are: μx1
=1.2, σx1

=0.12; μx1
=0.8, 

σx1
=0.02. y1 and y2 are interval variables, and 2y are interval variables, and [ ]1 4,4.5y ∈ ,

[ ]2 1.6,1.64y ∈ .
The HU-BP neural network is employed to fitting the 

performance, and 120 samples ( ),i ix y are used, and 
equation (19) is used to compute the response value 

( ),i i iz g x y= , the train sample sets ( ){ }, ,i i ix y z are 
obtained. A three-layer HU-BP neural network is 
employed and the transfer function in hidden layer is 
chosen as 

( )tan tanhsigf x x= (20)

The output layer function is :

( )purlinf x x=   (21)

Then the fitting results of HU-BP neural network is as 
shown in figure 5 and figure 6.

Fig. 5 Fitting result of HU-BP neural network

Fig. 6 Fitting results of performance function

The reliability index of the performance with HU-BP 
neural network is Lβ =3.30744; Uβ =3.59621. In order 
to illustrate the method proposed by this paper 
furthermore, the second order RSM is also employed in 
the same problem. In the RSM, 1y and 2y are sampled 
as the unified in the intervals and the two MPP is also 
calculated. After 8 iterations, the reliability index are Lβ
=3.85176; Uβ =4.158613. Comparing the results, it can 
be seen that the reliability indexes obtained by the 

HU-neural network are small than the results obtained by 
the RSM. It demonstrates that the performance function 
obtained by the neural network is more accurate than the 
RSM. In order to verify the results, the failure probability 
of this problem is calculated by the direct MC with 
1000000 samples, and the max probability and min 
probability are as list in table 1. It can be seen that the 
failure probability of U

fP and L
fP obtained through 

the HU-BP neural network and the MC is almost the same,
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Fig. 2 A three-layer HU-BP neural network

Then the performance function of the HU-BP neural 
network could be defined as follows:

( ) ( )( )T T
2 2 1 1, ,X Y W W X Yg f f =     (12)

Where 1W and 2W represent the weight coefficients 
of the transformation.

In above equations, the “training rules” of the neural 
network is defined, and the next issue is the training 
process. In the training process, training samples for 
neural network is important. 
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Fig. 3 Modified axial experimental design method for HU

This paper uses the improved axial experimental 
design method[31] to obtain samples points of X and
Y , the initial sample point is selected as 
( )c,Xμ Y ,where Xμ is the mean vector of the random 
variables X and cY is the midpoint vector of the 
interval variables Y , the samples of input variables 
( , )X Y will be updated in subsequent iterations, the 
remaining 2 2n m+ samples points will be obtained 
through 

i
i x XX ± ⋅κ σ , 1,2, ,i n=  and r

j y jY Y± ⋅κ ,
1,2, ,j m=  ,where 

iXσ is the standard deviation of iX
and r

jY is the radius of jY , xκ and yκ are two sampling 
coefficients and generally between [1,3] can provide 

good computational results.
Once the input samples are identified , the output 

samples will obtained by FEA of the mechanical systems. 
And finally the train samples ( ) ( )( ) ( )( ), ,X Y Zt t t are 
obtained.

The whole training steps of the HU-BP neural network 
are:

Step 1: built the structure of the BP neural network.
Step 2: select the hybrid uncertainty training sample 

sets ( ) ( )( ) ( )( ), ,X Y Tt t t , ( )1,2, ,t S=  according to 
section 4, and identify the initial weight coefficient ( )0Wk

Step 3: calculate ( )Z t with the trained set ( ) ( )( ),X Yt t

Step 4: reverse calculate the partial derivative 
( )

( )W

t

t
k

e∂
∂

,( 1,2, ,k L=  ),where e is the final error ,and 

( ) ( )T1 1
2 2

Z T Z T Z TL L Le = − = − − , T is the ideal 

output of the neural network.

Step 5: the modified ( )1W t
k

+ is obtained by 

( ) ( ) ( )1W W Wt t t
k k k

+ = + δ , ( )
( )

( )W
W

t
t

k t t
k

e∂
= −

∂
δ η , 1,2, ,k L=  ,

tη is the training efficient in kth step.

Step 6: repeat the step 3 to 5 until all the samples is 
trained.

5.Reliability analysis based HU-BP 
neural network

The implicit limit state function containing hybrid 
uncertainty of probability and interval can be 
simultaneously approximated through HU-BP neural 
network, then the method of HU-BP neural network 
based on “Most Probable Point” (MPP) is used to 
calculated the failure probability.
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performance, and 120 samples ( ),i ix y are used, and 
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employed and the transfer function in hidden layer is 
chosen as 
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The output layer function is :
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Then the fitting results of HU-BP neural network is as 
shown in figure 5 and figure 6.
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The reliability index of the performance with HU-BP 
neural network is Lβ =3.30744; Uβ =3.59621. In order 
to illustrate the method proposed by this paper 
furthermore, the second order RSM is also employed in 
the same problem. In the RSM, 1y and 2y are sampled 
as the unified in the intervals and the two MPP is also 
calculated. After 8 iterations, the reliability index are Lβ
=3.85176; Uβ =4.158613. Comparing the results, it can 
be seen that the reliability indexes obtained by the 

HU-neural network are small than the results obtained by 
the RSM. It demonstrates that the performance function 
obtained by the neural network is more accurate than the 
RSM. In order to verify the results, the failure probability 
of this problem is calculated by the direct MC with 
1000000 samples, and the max probability and min 
probability are as list in table 1. It can be seen that the 
failure probability of U

fP and L
fP obtained through 

the HU-BP neural network and the MC is almost the same,
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method proposed by this paper furthermore, the second 
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6.2 numerical case 2

The performance function of ten-bar truss structure as 
shown in Fig. 7 is 
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Where 2 yu is the horizontal displacement (/m) of the 
joint 2. The length of the horizontal and vertical bars is 
1.0 m. Joint 4 is subjected to the vertical load F1 and Joint 
2 is subjected to the horizontal load F3 and vertical load 
F2. The Young’s Modulus of the material E is normal 
variable, 6 22.0 10 kN / mE = ×µ , variation coefficient

0.01EV = . The mean value and variation coefficient are 
20.36m

iA =µ , 0.1
iAV = . The external load 3F obeys

normal distribution, the mean value and variation 
coefficient are :

3
10F =µ N, 

3
0.1FV = . The external 

loads F1, F2, are interval uncertain, and [ ]1 76,84F ∈ kN, 
[ ]2 9.5,10.5F ∈ .Now we calculate the failure probability 
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For this problem, the displacement 2 yu could be 
obtained through the FEA, and the HU-BP neural 
network method proposed by this paper is utilized for 
reliability analysis. To fitting the performance function, 
150 samples ( ) ( )T

1 2 3, , , ,Ai ix y F F F= are used as input 
variables, and FEA model is used to compute the 
response value ( )2 1 2 34 , , ,Ai yz u F F F= − . The train 
sample sets ( ){ }, ,i i ix y z are obtained in a three-layer 
HU-BP neural network. After 12 iterations, the reliability 
index of this problem are obtained as: U 3.4721=β ;

L 3.3122=β . For the same problem, second order RSM 
and Monte Carlo simulation are also utilized here to 
compute the reliability, the RSM with 150 sample sets for 
fitting the performance and the results of failure 
probability are listed in table 2. The RSM method has 8 
iterations for reliability index but it is rough than the 
results obtained by the method proposed by this paper. 
The whole computational time of the RSM is 0.79 hours,
and the whole computational time of the HU-BP neural 
network is 1.71 hours (the computer with Intel CORE 5 
CPU and 3.00GHz). The MC based on ANN method with 
100000 sample sets, and the computational time is 16 
hours. The results indicate that the HU-neural network 
could get a more precise result for high nonlinearity 
problem, but it cost more time than the RSM method. 
However, it is much more efficient than the MC method. 
It means that the HU-BP neural network is meaningful in 
the implicit high nonlinearity problems

Table 2 Reliability of different methods

Methods UR LR

Method proposed in this paper 0.9997398 0.9995335

RSM 0.9998282 0.9996631
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For this problem, the displacement 2 yu could be 
obtained through the FEA, and the HU-BP neural 
network method proposed by this paper is utilized for 
reliability analysis. To fitting the performance function, 
150 samples ( ) ( )T

1 2 3, , , ,Ai ix y F F F= are used as input 
variables, and FEA model is used to compute the 
response value ( )2 1 2 34 , , ,Ai yz u F F F= − . The train 
sample sets ( ){ }, ,i i ix y z are obtained in a three-layer 
HU-BP neural network. After 12 iterations, the reliability 
index of this problem are obtained as: U 3.4721=β ;

L 3.3122=β . For the same problem, second order RSM 
and Monte Carlo simulation are also utilized here to 
compute the reliability, the RSM with 150 sample sets for 
fitting the performance and the results of failure 
probability are listed in table 2. The RSM method has 8 
iterations for reliability index but it is rough than the 
results obtained by the method proposed by this paper. 
The whole computational time of the RSM is 0.79 hours,
and the whole computational time of the HU-BP neural 
network is 1.71 hours (the computer with Intel CORE 5 
CPU and 3.00GHz). The MC based on ANN method with 
100000 sample sets, and the computational time is 16 
hours. The results indicate that the HU-neural network 
could get a more precise result for high nonlinearity 
problem, but it cost more time than the RSM method. 
However, it is much more efficient than the MC method. 
It means that the HU-BP neural network is meaningful in 
the implicit high nonlinearity problems
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F2. The Young’s Modulus of the material E is normal 
variable, 6 22.0 10 kN / mE = ×µ , variation coefficient

0.01EV = . The mean value and variation coefficient are 
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iAV = . The external load 3F obeys
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coefficient are :
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For this problem, the displacement 2 yu could be 
obtained through the FEA, and the HU-BP neural 
network method proposed by this paper is utilized for 
reliability analysis. To fitting the performance function, 
150 samples ( ) ( )T

1 2 3, , , ,Ai ix y F F F= are used as input 
variables, and FEA model is used to compute the 
response value ( )2 1 2 34 , , ,Ai yz u F F F= − . The train 
sample sets ( ){ }, ,i i ix y z are obtained in a three-layer 
HU-BP neural network. After 12 iterations, the reliability 
index of this problem are obtained as: U 3.4721=β ;

L 3.3122=β . For the same problem, second order RSM 
and Monte Carlo simulation are also utilized here to 
compute the reliability, the RSM with 150 sample sets for 
fitting the performance and the results of failure 
probability are listed in table 2. The RSM method has 8 
iterations for reliability index but it is rough than the 
results obtained by the method proposed by this paper. 
The whole computational time of the RSM is 0.79 hours,
and the whole computational time of the HU-BP neural 
network is 1.71 hours (the computer with Intel CORE 5 
CPU and 3.00GHz). The MC based on ANN method with 
100000 sample sets, and the computational time is 16 
hours. The results indicate that the HU-neural network 
could get a more precise result for high nonlinearity 
problem, but it cost more time than the RSM method. 
However, it is much more efficient than the MC method. 
It means that the HU-BP neural network is meaningful in 
the implicit high nonlinearity problems

Table 2 Reliability of different methods

Methods UR LR

Method proposed in this paper 0.9997398 0.9995335

RSM 0.9998282 0.9996631
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For this problem, the displacement u2y could be obtained 

through the FEA, and the HU-BP neural network method 
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to compute the response value zi=4-u2y(A, F1, F2, F3). The 

2y are interval variables, and [ ]1 4,4.5y ∈ ,
[ ]2 1.6,1.64y ∈ .

The HU-BP neural network is employed to fitting the 
performance, and 120 samples ( ),i ix y are used, and 
equation (19) is used to compute the response value 

( ),i i iz g x y= , the train sample sets ( ){ }, ,i i ix y z are 
obtained. A three-layer HU-BP neural network is 
employed and the transfer function in hidden layer is 
chosen as 

( )tan tanhsigf x x= (20)

The output layer function is :

( )purlinf x x=   (21)

Then the fitting results of HU-BP neural network is as 
shown in figure 5 and figure 6.
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Fig. 6 Fitting results of performance function

The reliability index of the performance with HU-BP 
neural network is Lβ =3.30744; Uβ =3.59621. In order 
to illustrate the method proposed by this paper 
furthermore, the second order RSM is also employed in 
the same problem. In the RSM, 1y and 2y are sampled 
as the unified in the intervals and the two MPP is also 
calculated. After 8 iterations, the reliability index are Lβ
=3.85176; Uβ =4.158613. Comparing the results, it can 
be seen that the reliability indexes obtained by the 

HU-neural network are small than the results obtained by 
the RSM. It demonstrates that the performance function 
obtained by the neural network is more accurate than the 
RSM. In order to verify the results, the failure probability 
of this problem is calculated by the direct MC with 
1000000 samples, and the max probability and min 
probability are as list in table 1. It can be seen that the 
failure probability of U

fP and L
fP obtained through 

the HU-BP neural network and the MC is almost the same,
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Table 1. Failure probability of different methods 

the relative error of reliability are: 0.132e-4 and 0.455e-4.
The relative error of results of the RSM is larger, and they 
are 4.369e-4 and 2.524e-4 respectively. The results 

indicate that the HU-BP neural could get a good result in 
the reliability analysis

Table 1 Failure probability of different methods
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RSM method 5.91e-5 2.57e-5

MC 4.966e-4 2.781e-4

6.2 numerical case 2

The performance function of ten-bar truss structure as 
shown in Fig. 7 is 

( )2 1 2 34 , , , 0ΑyZ u F F F= − = (22)

Where 2 yu is the horizontal displacement (/m) of the 
joint 2. The length of the horizontal and vertical bars is 
1.0 m. Joint 4 is subjected to the vertical load F1 and Joint 
2 is subjected to the horizontal load F3 and vertical load 
F2. The Young’s Modulus of the material E is normal 
variable, 6 22.0 10 kN / mE = ×µ , variation coefficient

0.01EV = . The mean value and variation coefficient are 
20.36m

iA =µ , 0.1
iAV = . The external load 3F obeys

normal distribution, the mean value and variation 
coefficient are :

3
10F =µ N, 

3
0.1FV = . The external 

loads F1, F2, are interval uncertain, and [ ]1 76,84F ∈ kN, 
[ ]2 9.5,10.5F ∈ .Now we calculate the failure probability 
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For this problem, the displacement 2 yu could be 
obtained through the FEA, and the HU-BP neural 
network method proposed by this paper is utilized for 
reliability analysis. To fitting the performance function, 
150 samples ( ) ( )T

1 2 3, , , ,Ai ix y F F F= are used as input 
variables, and FEA model is used to compute the 
response value ( )2 1 2 34 , , ,Ai yz u F F F= − . The train 
sample sets ( ){ }, ,i i ix y z are obtained in a three-layer 
HU-BP neural network. After 12 iterations, the reliability 
index of this problem are obtained as: U 3.4721=β ;

L 3.3122=β . For the same problem, second order RSM 
and Monte Carlo simulation are also utilized here to 
compute the reliability, the RSM with 150 sample sets for 
fitting the performance and the results of failure 
probability are listed in table 2. The RSM method has 8 
iterations for reliability index but it is rough than the 
results obtained by the method proposed by this paper. 
The whole computational time of the RSM is 0.79 hours,
and the whole computational time of the HU-BP neural 
network is 1.71 hours (the computer with Intel CORE 5 
CPU and 3.00GHz). The MC based on ANN method with 
100000 sample sets, and the computational time is 16 
hours. The results indicate that the HU-neural network 
could get a more precise result for high nonlinearity 
problem, but it cost more time than the RSM method. 
However, it is much more efficient than the MC method. 
It means that the HU-BP neural network is meaningful in 
the implicit high nonlinearity problems

Table 2 Reliability of different methods

Methods UR LR

Method proposed in this paper 0.9997398 0.9995335

RSM 0.9998282 0.9996631

the relative error of reliability are: 0.132e-4 and 0.455e-4.
The relative error of results of the RSM is larger, and they 
are 4.369e-4 and 2.524e-4 respectively. The results 

indicate that the HU-BP neural could get a good result in 
the reliability analysis
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joint 2. The length of the horizontal and vertical bars is 
1.0 m. Joint 4 is subjected to the vertical load F1 and Joint 
2 is subjected to the horizontal load F3 and vertical load 
F2. The Young’s Modulus of the material E is normal 
variable, 6 22.0 10 kN / mE = ×µ , variation coefficient

0.01EV = . The mean value and variation coefficient are 
20.36m

iA =µ , 0.1
iAV = . The external load 3F obeys

normal distribution, the mean value and variation 
coefficient are :

3
10F =µ N, 
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For this problem, the displacement 2 yu could be 
obtained through the FEA, and the HU-BP neural 
network method proposed by this paper is utilized for 
reliability analysis. To fitting the performance function, 
150 samples ( ) ( )T

1 2 3, , , ,Ai ix y F F F= are used as input 
variables, and FEA model is used to compute the 
response value ( )2 1 2 34 , , ,Ai yz u F F F= − . The train 
sample sets ( ){ }, ,i i ix y z are obtained in a three-layer 
HU-BP neural network. After 12 iterations, the reliability 
index of this problem are obtained as: U 3.4721=β ;

L 3.3122=β . For the same problem, second order RSM 
and Monte Carlo simulation are also utilized here to 
compute the reliability, the RSM with 150 sample sets for 
fitting the performance and the results of failure 
probability are listed in table 2. The RSM method has 8 
iterations for reliability index but it is rough than the 
results obtained by the method proposed by this paper. 
The whole computational time of the RSM is 0.79 hours,
and the whole computational time of the HU-BP neural 
network is 1.71 hours (the computer with Intel CORE 5 
CPU and 3.00GHz). The MC based on ANN method with 
100000 sample sets, and the computational time is 16 
hours. The results indicate that the HU-neural network 
could get a more precise result for high nonlinearity 
problem, but it cost more time than the RSM method. 
However, it is much more efficient than the MC method. 
It means that the HU-BP neural network is meaningful in 
the implicit high nonlinearity problems

Table 2 Reliability of different methods

Methods UR LR

Method proposed in this paper 0.9997398 0.9995335

RSM 0.9998282 0.9996631
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train sample sets {(xi, yi), zi} are obtained in a three-layer 

HU-BP neural network. After 12 iterations, the reliability 

index of this problem are obtained as: βU=3.4721; βL=3.3122. 

For the same problem, second order RSM and Monte Carlo 

simulation are also utilized here to compute the reliability, 

the RSM with 150 sample sets for fitting the performance 

and the results of failure probability are listed in table 2. 

The RSM method has 8 iterations for reliability index but it 

is rough than the results obtained by the method proposed 

by this paper. The whole computational time of the RSM is 

0.79 hours, and the whole computational time of the HU-BP 

neural network is 1.71 hours (the computer with Intel CORE 

5 CPU and 3.00GHz). The MC based on ANN method with 

100000 sample sets, and the computational time is 16 hours. 

The results indicate that the HU-neural network could get 

a more precise result for high nonlinearity problem, but it 

cost more time than the RSM method. However, it is much 

more efficient than the MC method. It means that the 

HU-BP neural network is meaningful in the implicit high 

nonlinearity problems  

6.3 engineering case

The reliability analysis of locking mechanism in aerospace 

engineering. 

The locking mechanism as shown in Fig. 8, it is a key part in 

support device which is used as the main power transmission 

structure between the spacecraft and transparency nose. 

The locking mechanism works by contacting the inner 

friction plates(IFP) and the outer friction plates(OFP). The 

friction force between IFP and OFP is achieved by the shear 

stress of the IFP underlying the load and the contact area S. 

Now we analyze the friction force reliability of the locking 

mechanism. Referring relative tests and discussions, the 

variables of the performance function are as shown in table 3

The locking mechanism is pressured with the normal load 

P1 and the lateral load P2, and their values are as shown in 

Fig. 9. Obviously this is an implicit high nonlinear problem, 

the HU-BP neural network method and FEA is combined 

to solve this problem. Finite element model of the locking 

Table 2. Reliability of different methods 

the relative error of reliability are: 0.132e-4 and 0.455e-4.
The relative error of results of the RSM is larger, and they 
are 4.369e-4 and 2.524e-4 respectively. The results 

indicate that the HU-BP neural could get a good result in 
the reliability analysis
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joint 2. The length of the horizontal and vertical bars is 
1.0 m. Joint 4 is subjected to the vertical load F1 and Joint 
2 is subjected to the horizontal load F3 and vertical load 
F2. The Young’s Modulus of the material E is normal 
variable, 6 22.0 10 kN / mE = ×µ , variation coefficient

0.01EV = . The mean value and variation coefficient are 
20.36m

iA =µ , 0.1
iAV = . The external load 3F obeys

normal distribution, the mean value and variation 
coefficient are :
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For this problem, the displacement 2 yu could be 
obtained through the FEA, and the HU-BP neural 
network method proposed by this paper is utilized for 
reliability analysis. To fitting the performance function, 
150 samples ( ) ( )T

1 2 3, , , ,Ai ix y F F F= are used as input 
variables, and FEA model is used to compute the 
response value ( )2 1 2 34 , , ,Ai yz u F F F= − . The train 
sample sets ( ){ }, ,i i ix y z are obtained in a three-layer 
HU-BP neural network. After 12 iterations, the reliability 
index of this problem are obtained as: U 3.4721=β ;

L 3.3122=β . For the same problem, second order RSM 
and Monte Carlo simulation are also utilized here to 
compute the reliability, the RSM with 150 sample sets for 
fitting the performance and the results of failure 
probability are listed in table 2. The RSM method has 8 
iterations for reliability index but it is rough than the 
results obtained by the method proposed by this paper. 
The whole computational time of the RSM is 0.79 hours,
and the whole computational time of the HU-BP neural 
network is 1.71 hours (the computer with Intel CORE 5 
CPU and 3.00GHz). The MC based on ANN method with 
100000 sample sets, and the computational time is 16 
hours. The results indicate that the HU-neural network 
could get a more precise result for high nonlinearity 
problem, but it cost more time than the RSM method. 
However, it is much more efficient than the MC method. 
It means that the HU-BP neural network is meaningful in 
the implicit high nonlinearity problems

Table 2 Reliability of different methods

Methods UR LR

Method proposed in this paper 0.9997398 0.9995335

RSM 0.9998282 0.9996631

MC based ANN 0.9997279 0.9995754

6.3 engineering case

The reliability analysis of locking mechanism in 
aerospace engineering. 

The locking mechanism as shown in figure 8, it is a key 
part in support device which is used as the main power 
transmission structure between the spacecraft and 
transparency nose. The locking mechanism works by 
contacting the inner friction plates(IFP) and the outer 
friction plates(OFP). The friction force between IFP and 
OFP is achieved by the shear stress of the IFP underlying 

the load and the contact area S. Now we analyze the 
friction force reliability of the locking mechanism. 
Referring relative tests and discussions, the variables of 
the performance function are as shown in table 3
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Table 3 Thecharacteristic parameters of the locking mechanism

Parameters Physical meaning Values

E1(Gpa) elastic modulus of IFP 65.4

r Passion rate 0.3

ρ(kg/m3) density 2.72e3

G1(GPa) Shear modulus of IFP 25.15

E2(Gpa) elastic modulus of OFP 70

G2(GPa) Shear modulus of OFP 24.81

c1 Static friction coefficient 0.59

c2 viscous damping coefficient 0.15878e9

The locking mechanism is pressured with the normal 
load 1P and the lateral load 2P , and their values are as 
shown in figure 9. Obviously this is an implicit high 
nonlinear problem, the HU-BP neural network method 
and FEA is combined to solve this problem. Finite 
element model of the locking mechanism can be 
established with ANSYS, and the work simulation 
process of contact and shock is carried out in the 
LS-DYNA. In the loading process, the P1 is loading on 

the surface of the flange plate, and the P2 is loading on 
side face of the OFP. The boundary condition is that the 
all the freedom degrees of the Pressure plate are 
constrained. In figure 10, the maximum shear stress is 
12.83MPa, and the stress varying by the time is as shown 
in figure 11. Through the discretization of time interval 
into 84 time point, the average shear stress could be 
obtained as 3.1Mpa according to the table 4.
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mechanism can be established with ANSYS, and the work 

simulation process of contact and shock is carried out in the 

LS-DYNA. In the loading process, the P1 is loading on the 

surface of the flange plate, and the P2  is loading on side face 

of the OFP. The boundary condition is that the all the freedom 

degrees of the Pressure plate are constrained. In Fig. 10, the 

maximum shear stress is 12.83MPa, and the stress varying 

by the time is as shown in Fig. 11. Through the discretization 

of time interval into 84 time point, the average shear stress 

could be obtained as 3.1Mpa according to the table 4. 

-Reliability simulation analysis for locking mechanism

The definition of limit state function and probabilistic 

characteristic and interval range of variables. The model 

of stress and strength interference and hybrid uncertainty 

performance function is applied to compute the failure 

probability. The limit state function is defined as

9 2.50227e6 30 6.42199e6 51 976126 72 2.68522e6

10 2.711e6 31 6.51172e6 52 6.31719e6 73 3.87357e6

11 508333 32 1.0959e6 53 6.61351e6 74 1.71388e6

12 952073 33 4.63751e6 54 2.98379e6 75 1.80908e6

13 709136 34 7.31972e6 55 3.35098e6 76 3.83426e6

14 3.16505e6 35 5.2669e6 56 2.2195e6 77 1.58045e6

15 1.56832e6 36 1.38007e6 57 5.40534e6 78 6.76475e6

16 1.87172e6 37 2.30834e6 58 3.11468e6 79 3.34421e6

17 1.85895e6 38 1.28334e7 59 3.75113e6 80 8.28679e6

18 2.62145e6 39 2.1724e6 60 2.35026e6 81 5.33554e6

19 2.92965e6 40 4.78592e6 61 3.54081e6 82 2.3122e6

20 1.95469e6 41 2.69129e6 62 2.70612e6 83 2.09523e6

21 2.60807e6 42 3.41076e6 63 1.17879e6 84 1.32194e6

Reliability simulation analysis for locking mechanism.
The definition of limit state function and probabilistic 

characteristic and interval range of variables. The model 
of stress and strength interference and hybrid uncertainty 
performance function is applied to compute the failure 
probability. The limit state function is defined as

( )0 1 2 1 2 1 2 0, , , , , ,Z F F f P P E E G G D S F= − = × − (23)

Where ( )1 2 1 2 1 2, , , , , ,f P P E E G G D is the element 
average equivalent stress of the inner friction plate, which 
could be calculated by LS-DYNA. S is the area of the 
plate. 0F is the allowable load.

Based on the limit historic data and the epistemic 
knowledge, the probabilistic and interval characters of 
the variables are in table 5.

Table 5 Probabilistic and interval character of variables

Sequence number Variables Unit Mean

Coefficient

of  variation( γ ) Distribution

1 P1 kN 80 0.1 normal

2 P2 kN 22.5 0.1 normal

3 E1 GPa 65.4 0.01 normal

4 E2 GPa 70 0.01 normal

5 G1 GPa 25.12 0.02 normal

6 G2 GPa 24.81 0.02 normal

(24)

Where f(P1, P2, E1, E2, G1, G2, D) is the element average 

equivalent stress of the inner friction plate, which could be 

calculated by LS-DYNA. S is the area of the plate. F0 is the 

allowable load.

Based on the limit historic data and the epistemic 

knowledge, the probabilistic and interval characters of the 

variables are in table 5.

-Reliability simulation analysis

The limit state function could be approximated by three-

layer HU-BP neural network. The number of neurons for 

input layer is nine and there are eighteen hidden layers, 
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Table 4 Shear stress values with time under the varying loads

No. Value(Pa) No. Value(Pa) No. Value(Pa) No. Value(Pa)

1 2.30337e6 22 2.11395e6 43 2.34749e6 64 4.15947e6

2 2.99647e6 23 1.05623e6 44 4.2094e6 65 1.56383e6

3 997698 24 1.01825e6 45 3.95451e6 66 1.41306e6

4 1.86108e6 25 2.2757e6 46 2.96955e6 67 1.47164e6

5 3.61296e6 26 5.35305e6 47 2.90995e6 68 1.79964e6

6 3.03982e6 27 2.44242e6 48 3.59123e6 69 1.532e6

7 1.53638e6 28 1.45343e6 49 1.13604e6 70 3.38367e6

8 2.59281e6 29 1.51117e6 50 8.51143e6 71 3.20651e6
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Where ( )1 2 1 2 1 2, , , , , ,f P P E E G G D is the element 
average equivalent stress of the inner friction plate, which 
could be calculated by LS-DYNA. S is the area of the 
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one output layer. The number of train set is 50. The relation 

between root mean square error(RMSE) of neural network 

output vector and the number of training epochs is shown as 

in Fig 12 and Fig 13 .

Figure 12 shows that the lowest RMSE of the output vector 

in the training set can be reached after 10 epochs. After 

approximation, the reliability index obtained by the FORM 

is: βZ 
L=3.901, βZ

U=3.901.The failure probability is : Pf
L=4.321e-6, 

Pf
U=e-6. 

To study the impact of the interval uncertainty on the 

failure probability, γs and γF0
 are varied gradually from 0 to 

0.1 and 0 to 0.15 respectively. Fig. 14 and Fig. 15 show the 

variation in the reliability index β and the failure probability 

Pf with the change in γs and γF0
. In Fig. 14, when γF0

=0.06 is 

selected, and the γs changes from 0 to 0.1, the reliability 

index changes from [4.025 ,4.4076 ] to [3.719 , 4.612], the 

failure probability changes from [5.42e-6, 2.67e-5 ] to 

[2.02e-6, 1.042e-4 ]. In Fig. 15, when γs=0.02 is selected, and 

the γF0
 changes from 0 to 0.15, the reliability index changes 

from [4.117 ,4.376 ] to [3.341 ,5.012 ], the failure probability 

changes from [6.21e-6,1.98e-5] to [ 3.01e-7,4.189e-4 ]. This 

information suggests that the increase in uncertainty of 

the interval variables has led to an increased uncertainty in 

the reliability results of the whole system. And the results 

also show that in comparison with the γs, the impact of the 

uncertainty of the γF0
 is more significant.

7. Conclusions

The BP neural network for hybrid uncertainty of random 

variables and interval variables is constructed, and the 

Table 5. Probabilistic and interval character of variables

9 2.50227e6 30 6.42199e6 51 976126 72 2.68522e6
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Where ( )1 2 1 2 1 2, , , , , ,f P P E E G G D is the element 
average equivalent stress of the inner friction plate, which 
could be calculated by LS-DYNA. S is the area of the 
plate. 0F is the allowable load.

Based on the limit historic data and the epistemic 
knowledge, the probabilistic and interval characters of 
the variables are in table 5.

Table 5 Probabilistic and interval character of variables

Sequence number Variables Unit Mean

Coefficient

of  variation( γ ) Distribution

1 P1 kN 80 0.1 normal

2 P2 kN 22.5 0.1 normal

3 E1 GPa 65.4 0.01 normal

4 E2 GPa 70 0.01 normal

5 G1 GPa 25.12 0.02 normal

6 G2 GPa 24.81 0.02 normal

7 ρ kg/m3 2.72e3 0.01 normal

8 S m2 12.16e-3 0.02 interval

9 F0 kN 44.6 0.06 interval

Reliability simulation analysis
The limit state function could be approximated by 

three-layer HU-BP neural network. The number of 
neurons for input layer is nine and there are eighteen 
hidden layers, one output layer. The number of train set is 
50. The relation between root mean square error(RMSE) 
of neural network output vector and the number of 
training epochs is shown as in Fig 12 and Fig 13 .

Fig. 12 RMSE of training set and the number of training epochs

Fig. 13 Training errors vs number of epochs

Figure 12 shows that the lowest RMSE of the output 
vector in the training set can be reached after 10 epochs. 
After approximation, the reliability index obtained by the 
FORM is: L 3.901Z =β , U 4.452Z =β .The failure 
probability is : L

f 4.321P = e-6, U
f 4.814P = e-6.
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Figure 12 shows that the lowest RMSE of the output 
vector in the training set can be reached after 10 epochs. 
After approximation, the reliability index obtained by the 
FORM is: L 3.901Z =β , U 4.452Z =β .The failure 
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f 4.321P = e-6, U
f 4.814P = e-6.
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Fig. 14 effects of the uncertainty Sγ on the failure probability

Fig. 15 Effects of the uncertainty 
0Fγ on the failure probability

To study the impact of the interval uncertainty on the 
failure probability , Sγ and 

0Fγ are varied gradually 
from 0 to 0.1 and 0 to 0.15 respectively. Figure 14 and 
figure 15 show the variation in the reliability index β
and the failure probability fP with the change in Sγ
and

0Fγ . In figure 14, when 
0

0.06F =γ is selected, and 
the Sγ changes from 0 to 0.1, the reliability index 
changes from [4.025 ,4.4076 ] to [3.719 , 4.612], the 
failure probability changes from [5.42e-6, 2.67e-5 ] to 
[2.02e-6, 1.042e-4 ]. In figure 15, when 0.02S =γ is 
selected, and the 

0Fγ changes from 0 to 0.15, the 
reliability index changes from [4.117 ,4.376 ] to 
[3.341 ,5.012 ], the failure probability changes from 
[6.21e-6,1.98e-5] to [ 3.01e-7,4.189e-4 ]. This 
information suggests that the increase in uncertainty of 
the interval variables has led to an increased 
uncertainty in the reliability results of the whole system. 
And the results also show that in comparison with the 

Sγ , the impact of the uncertainty of the 
0Fγ is more 

significant.

7 Conclusions

The BP neural network for hybrid uncertainty of 
random variables and interval variables is constructed, 
and the training rules is defined in the HU-BP neural 
network, it is suitable for approximating high nonlinear 
performance function with hybrid variables;

Hybrid reliability model based analysis method 
combining the neural network, the limit state band is 
introduced concerning on the interval variables in the 
mechanical systems, the reliability index interval based 
on searching for the MPP in performance function is 
employed to evaluate the reliability of mechanical 
systems. It ignored the assumption of probability 
distributions of the non-probabilistic variables and the 
reliability analysis is more confident in real 
engineering. The reliability interval has been proposed 
for the explicit function reliability problem, to the best 
of authors knowledge, this is first contribution in the 
implicit problems.

For high nonlinear, implicit problems of mechanical 
systems, the HU-BP neural network method provides 
an efficient and accurate way for reliability analysis. 
The impact of the interval uncertainty on the failure 
probability could also be obtained, and it is helpful for 
the mechanism design. 
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training rules is defined in the HU-BP neural network, it is 

suitable for approximating high nonlinear performance 

function with hybrid variables;

Hybrid reliability model based analysis method 

combining the neural network, the limit state band is 

introduced concerning on the interval variables in the 

mechanical systems, the reliability index interval based on 

searching for the MPP in performance function is employed 

to evaluate the reliability of mechanical systems. It ignored 

the assumption of probability distributions of the non-

probabilistic variables and the reliability analysis is more 

confident in real engineering. The reliability interval has 

been proposed for the explicit function reliability problem, 

to the best of authors knowledge, this is first contribution in 

the implicit problems.

For high nonlinear, implicit problems of mechanical 

systems, the HU-BP neural network method provides an 

efficient and accurate way for reliability analysis. The impact 

of the interval uncertainty on the failure probability could 

also be obtained, and it is helpful for the mechanism design. 
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