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Abstract

In a modern aircraft, there are many variations in its mass, stiffness, and aerodynamic characteristics. Recently, an analytical 

approach was proposed, and this approach uses the idea of uncertainty to find out the most critical flight flutter boundary due 

to the variations in such aerodynamic characteristics. An analytical method that has been suggested to predict robust stability 

is the mu method. We previously analyzed the robust flutter boundary by using the mu method, and in that study, aerodynamic 

variations in the Mach number, atmospheric density, and flight speed were taken into consideration. The authors’ previous 

attempt and the results are currently quoted as varying Mach number mu analysis. In the author’s previous method, when the 

initial flight conditions were located far from the nominal flutter boundary, conservative predictions were obtained. However, 

relationships among those aerodynamic parameters were not applied. Thus, the varying Mach number mu analysis results 

required validation. Using an optimization approach, the varying Mach number mu analysis was found out to be capable of 

capturing a reasonable robust flutter boundary, i.e., with a low percentage difference from boundaries that were obtained by 

optimization. Regarding the optimization approach, a discrete nominal flutter boundary is to be obtained in advance, and based 

on that boundary, an interpolated function was established. Thus, the optimization approach required more computational 

effort for a larger number of uncertainty variables. And, this produced results similar to those from the mu method which had 

lower computational complexity. Thus, during the estimation of robust aeroelastic stability, the mu method was regarded as more 

efficient than the optimization method was. The mu method predicts reasonable results when an initial condition is located near 

the nominal flutter boundary, but it does not consider the relationships that are among the aerodynamic parameters, and its 

predictions are not very accurate when the initial condition is located far from the nominal flutter boundary. In order to provide 

predictions that are more accurate, the relationships among the uncertainties should also be included in the mu method. 
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Nomenclature

MS = Generalized mass matrix

KS = Generalized stiffness matrix

Aij = Structural coupling matrix

Bij = Bending coefficient matrix

Tii = Torsional coefficient matrix

ψi = Bending mode shape function

Θi = Torsional mode shape matrix

Ξwi
 = Generalized three-dimensional lift

Ξθi
 = Generalized three-dimensional pitching moment

L΄ = Two-dimensional lift

M΄1/4 = Two-dimensional pitching moment

AQ0
, BQ0

, CQ0
, DQ0

= Aerodynamic state matrix

C(k) = Theodorsen’s lift deficiency function

AM = Generalized aerodynamic mass matrix

AC = Generalized aerodynamic damping matrix

AK = Generalized aerodynamic stiffness matrix

Ax = Generalized aerodynamic lag state matrix

WU, Wρ = �Weighting value for the flight speed and 

atmospheric density

WA, WB, WC, WD = Weighting matrix for the state matrix
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P = Robust aeroelastic system matrix

Zw = Uncertainty output

Ww = Uncertainty input

r(t) = �Nominal aeroelastic flutter boundary function in 

terms of the discrete Mach number, altitude, and 

flight speed

M(t) = �Mach number variation function in terms of the 

discrete parameters

H(t) = �Altitude variation function in terms of the discrete 

parameters

V(t) = �Flight speed variation function in terms of the 

discrete parameters

Aij, upper, Aij, lower, Bij, upper, Bij, lower, Cij, upper, Cij, lower, Dij, upper, Dij, lower

              = Upper and lower bounds of the state matrix

Arobust, Brobust, Crobust, Drobust = �Robust aerodynamic state 

matrices

unew = State input for an aerodynamic state equation

uwnew
 = State lift input for an aerodynamic state equation

uθnew 
= �State pitching moment input for aerodynamic state 

equation

S1, S2 = �Distance between each initial condition and the 

nominal flutter boundary

d1, d2 = �Distance in altitude between each initial condition 

and the nominal flutter boundary

h1, h2 = �Distance between each mu prediction and the 

optimization result regarding the robust flutter 

boundary

a = Structural unbalance factor

b = Semi-chord length

1. Introduction

Advanced maneuverability is generally required for a 

modern combat aircraft to complete mission segments 

such as severe maneuvers. The aerodynamics of the wing 

varies under different flight conditions such as with different 

flight speeds and atmospheric densities. Wing structural 

characteristics also vary according to their mass and stiffness. 

Moreover, structural characteristics may reflect on the 

external store requirements. For example, the mode shape 

and natural frequencies of a wing can vary with the location 

of the store, and it may also change with a change in mass 

such as during the launch of a missile. The shape and location 

of the store item will also affect the wing aerodynamics. The 

study of such variations is important as these changes may be 

unpredictable. Thus, for reliable prediction of an aeroelastic 

stability boundary such as flutter, the above parameters 

should be included. However, an accurate prediction of 

a combat aircraft’s flutter margin is difficult practically 

and this is due to their high maneuverability and rapidly 

changing aerodynamic environment. Due to the difficulties 

mentioned during aircraft design, a flutter margin of 15% 

is generally adopted as a solution to this difficult problem. 

Thus, for aeroelastic analysis, a more accurate and reliable 

method that considers several possible sources of variation 

is required.

Recently, a new approach to aeroelastic analysis based 

on robust control theory and the mu method was used to 

determine the robust aeroelastic stability boundary [1, 2]. 

The mu method is reported to be effective for the prediction 

of the stability boundary of an uncertain system. In particular, 

it obtains a more conservative result compared to the 

nominal flutter boundary. Thus, the use of the mu method 

has been suggested as a predictor for robust aeroelastic 

systems [1, 2]. Since then, many robust analysis results 

have been reported. A robust flutter boundary with varying 

dynamic pressures was investigated by Lind [1], who found 

out that the results of the robust flutter margin were about 

4% more conservative than the nominal flutter boundary. 

A frequency domain analysis was performed by Borglund 

[3, 4], who presented the mu value and reduced frequency 

results. Moreover, an uncertainty quantification method 

has been suggested by Kurdi and Lindsley [5]. Aerodynamic 

uncertainty was considered because accurate prediction 

capability was needed under the varying aerodynamics 

environment. Practically, many factors which cause the 

variation in aerodynamic forces exist. These factors are 

considered as uncertainties and they cannot be predicted in 

a systematic manner. Recently, researchers have suggested a 

few methods for uncertainty quantification. Yuting showed 

that aerodynamic uncertainties were predicted from the 

differences between the doublet lattice method (DLM) 

and Computational Fluid Dynamics (CFD) [6]. In fact, 

the boundaries of the uncertainty were defined with the 

maximum and minimum differences between DLM and 

CFD.

In order to predict flutter boundary conservatively, 

aerodynamic uncertainties need be quantified and included 

in the analysis appropriately. The pilot also has to be aware of 

the flutter boundary at the current flight state.

Since such uncertainties cannot be predicted in a 

systematic manner, approximate arbitrary margin will be 

applied. The mu method has been suggested as one of the 

methods for the compensation of such limitations. However, 

the mu method can be applied only for a single variable 

problem. Therefore, all the preceding analyses were done 

under the assumption of a constant Mach number. Practically 

an aircraft experiences complex flight conditions such as 

varying Mach number, atmospheric density, and flight 
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speed. Thus, the previous analyses under a constant Mach 

number assumption have a limitation, and a more complete 

analysis that considers variations in the Mach number. This 

is required for a more general and accurate prediction.

The mu method, when using a constant Mach number 

approach, produces conservative results as shown in Fig. 1 

and this is adapted from Borglund [4]. However, the constant 

Mach number analysis is limited as it does not consider 

the structural and aerodynamic force variations within an 

aircraft. For example, Mach number and altitude variations 

affect aerodynamic forces when the aircraft does a maneuver. 

Thus, both the Mach number and altitude aspects of the 

flutter boundary problem should be analyzed.

The authors’ previous attempt and results are currently 

quoted as varying Mach number mu analysis. In such varying 

Mach number mu analysis, the mu analysis was performed 

by varying Mach numbers, altitudes, flight speeds, and 

atmospheric densities, and variations in aerodynamic 

forces within a certain flight envelope were represented 

as uncertainties [7]. In that analysis, the relevant variation 

ranges were estimated and they were prescribed by using the 

doublet lattice method (DLM). By comparing the resulting 

aerodynamics with Theodorsen’s function, the validity of 

a range was proved. Subsequently, a robust aeroelastic 

governing equation was constructed, and the mu method 

was applied to find out the robust flutter boundary. In a 

constant Mach number analysis, the mu method predicted 

a 4~5% conservative result that was relative to the nominal 

flutter boundary and only the structural uncertainties were 

included[2]. In the varying Mach number mu analysis, 

variations of the flutter Mach number are increased by 0.8–

2.2% over the nominal value [7]. As mentioned, variations 

in the Mach number, atmospheric density, and flight speed 

were taken into consideration in that study. During analysis, 

two of those three variables were deemed dependent and 

one was independent. The relationship between the two 

dependent variables should have been considered during 

mu analysis. However, the relationship was not considered 

in the varying Mach number mu analysis. For this reason, 

reliable worst case flutter results were obtained only 

when the initial condition was located near the nominal 

flutter boundary. However, the method predicted a more 

conservative result when the initial condition was located 

far from the nominal flutter boundary. Thus, the result of 

the mu analysis in the varying Mach number mu analysis 

work still required validation. The previous studies of other 

researchers’ have attempted to validate the results of the mu 

analysis by evaluating the eigenvalues at the obtained flutter 

boundary [4]. However, the validation was done under 

constant Mach number flight conditions. Thus, when the 

Mach number which corresponds to the worst case flutter 

boundary is varied from a value at a given initial condition, 

that validation exhibits a limitation. Here, we present a new 

and more complete validation of the mu analysis result.

In the present paper, we focus on the validation of the 

positive boundary, i.e., on obtaining a conservative result. 

The mu method is an optimization method that considers 

uncertainty. Therefore, our validation of the mu analysis 

uses an optimization approach. First, the nominal flutter 

boundary results in the varying Mach number mu analysis 

and they were validated at specific initial conditions. The 

nominal flutter boundary obtained previously by the 

authors [7] was validated with those by Goland [8] and 

Brown [9]. Based on the previous result for the nominal 

flutter boundary, an interpolation function to represent the 

nominal flutter boundary was then obtained. Subsequently, 

an optimization approach was used to find out the nearest 

point to the interpolated flutter boundary which is so-called 

as the most critical flutter boundary. Results obtained by 

using this optimization approach were then compared with 

those obtained by the varying Mach number mu analysis.

As a result, the comparison result and differences between 

the nominal flutter, mu analysis, and validation result are 

summarized at numerical results.

The mu method results are presented to be -3.2 ~ 4.3 % 

more conservative than the nominal flutter boundary. The 

Mach number is not changed in nominal flutter result, but 

the Mach number is changed in varying Mach number mu 

analysis result. As shown in the present numerical results, 

the varying Mach number mu analysis result shows good 

agreement with the Optimization method. Despite, a new 

method for flutter prediction is required at varying Mach 

number condition, only few have attempted to apply the mu 

method. Moreover, there are few papers that consider the 

validation of the mu result. In the present paper, the variation 
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Figure 1. Nominal and Robust Flutter Margin at Constant Mach Number [4] 
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Fig. 1. �Nominal and Robust Flutter Margin at Constant Mach Number 
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results of varying Mach mu method result are shown. Based 

on the optimization method, validation is performed.

2. Formulation

2.1 Structural Modeling

In the present aeroelastic analysis, Goland’s wing is used 

(Table 1). The present Goland’s wing is illustrated in Figure 2.

As shown in Figure 2, the present Goland’s wing is 

considered as a cantilevered beam and it includes static 

unbalance. Even though the present wing has NACA 0009 

airfoil, its thickness effect was ignored for simplicity.

Eqs. (1) and (2) express the mass and stiffness matrices 

respectively and they were used in the present analysis,[7, 10].

(1)

(2)

In the above equations, [A] is the modal coupling matrix 

due to static unbalance in the wing cross section, while the 

matrices [B] and [T] contain the bending and torsion stiffness 

coefficients, respectively. In the present paper, the first 

bending and the first torsion mode were only considered. 

Thus, the present structural model utilized two degrees of 

freedom. Detailed formulation of this structural analysis 

model is described by Chung [7].

2.2 Aerodynamic Modeling

The three-dimensional aerodynamic force is derived 

from the two-dimensional lift and pitching moment [10]. 

The three-dimensional generalized aerodynamic force is 

expressed as follows,

(3)

(4)

In the above equation, L´ and [M´1/4 + (1/2 + a)bL´] is the 

two-dimensional lift and pitching moment, respectively. 

Theodorsen’s function C(k) is included in both of them. The 

three-dimensional lift and aerodynamic pitching moment 

can be obtained by integration.

In the varying Mach number mu analysis, a state-

space model was suggested by using a rational function 

approximation (RFA) [5] and in that paper, the DLM and RFA 

results were compared with respect to the Mach number. 

However, this approach showed a slight difference between 

the two results for large values of reduced frequency. Due to 

this limitation, the following frequency domain approach 

was used to obtain predictions that are even more accurate. 

In the frequency domain analysis, aerodynamic variation will 

be formulated in terms of reduced frequency. The detailed 

formulation of the aerodynamic analysis and the relevant 

RFA can be found in Chung [7].

2.3 Aeroelastic Equation

The aeroelastic formulation can be obtained by an equation 

that was used to analyze the general mechanical vibration 

[7]. The governing equation can be written as follows.

(5)

3. �Robust Aeroelastic Analysis Considering 
Aerodynamic Variation

The mu method which is adopted in the present paper has 

limitations upon an object with large number of D.O.F. Due 

to this, the mu method is based on LMI theory. The present 

structural matrices are still expressed with two degrees of 

freedom. The aeroelastic system matrix is a combination 

of the structure and aerodynamic models and it features 

seven degrees of freedom which includes three aerodynamic 

lag state variables. Thus, it will be possible to apply the mu 

method for the present problem.

Our varying Mach number mu analysis took aerodynamic 

variations into account [7]. Hence, the mu method was 

adopted, and the aerodynamic force was assumed to be 

uncertain. Modeling of the aerodynamic variations and 

the relevant formulation were done as follows. First, the 
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Figure 2. A Three-dimensional Cantilevered Wing [7] 
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variations that are related to the flight speed and atmospheric 

density were formulated, respectively, as

(6)

(7)

Where, WU and Wρ are the weighted scalar values that 

prescribe the ranges of the variations. Due to the inclusion 

of variations in the flight speed and atmospheric density, the 

aerodynamic state matrix is time varying with a weighted 

factor. In our varying Mach number mu analysis, the 

aerodynamic state matrix was obtained by using RFA, and its 

variations were defined by using a weighting matrix [7]. Here, 

the state-space model of aerodynamic forces is given as,

(8)

(9)

Where, matrices AQ0
 and BQ0

 are the aerodynamic 

system and input matrices, respectively. The output of the 

aerodynamic vector, y is represented in terms of CQ0
 and DQ0

 

matrices. The vector, x denotes an aerodynamic lag state. In 

Eq. (9), the output vector is further represented by a form 

that is similar to the Theodorsen’s lift deficiency function as,

(10)

In Eqs. (8) – (10), unew is represented as follows,

(11)

The components uwnew and uθnew were previously defined by 

Kurdi (2007). Its details are given in Appendix.

The weighting matrices are expressed as,

(12)

(13)

(14)

(15)

A final state-space form of the aeroelastic equation for the 

mu analysis was obtained as follows,

(16)

In Eq. (16), the nominal aeroelastic equation and the 

variation denoted by Ww are coupled. In a relevant analysis, 

the altitude and the Mach number were prescribed by  

Chung [7].

4. Optimization

4.1 �Physical Meaning of the Most Critical Flutter 
Boundary

In the varying Mach mu analysis, we attempted to analyze 

the most critical flutter boundary from a robust aeroelastic 

system by using the mu method [7]. In the previous study 

by the authors, the Mach number, atmospheric density, and 

flight speed were considered as uncertainties. Moreover, 

there were two dependent variables and one independent 

variable but the relationship between the dependent variables 

was not taken into consideration. Thus, the varying Mach 

number mu analysis flutter prediction became conservative. 

When the initial condition was located near or at the 

nominal flutter boundary, the varying Mach number mu 

analysis result was deemed to be reasonable. However when 

the initial condition was located at a greater distance from 

the nominal flutter boundary, the varying Mach number mu 

results were conservative. Thus, the varying Mach number 

mu results required validation through an alternate analysis. 

The optimization analysis used here is based on the nominal 

flutter boundary and it was predicted with respect to each 

discrete aerodynamic condition. From each nominal flutter 

boundary, an interpolation function will be described. In the 

present validation, a so-called most critical flutter boundary 

term is used and this term indicates a flutter boundary that 

is nearest to a given initial condition. The objective of this 

optimization was to find out the most critical flutter boundary 

and compare it with the robust flutter prediction result that 

was obtained by using the mu method. This comparison is 

possible because the present optimization was capable of 

predicting a robust flutter boundary and this is regardless of 

the location of the initial condition. Physically, this implies 

that the most critical boundary is at a location where the 

flutter occurs with the least amount of kinetic energy in 

the fluid particles which flow nearby. This most critical 

boundary corresponds to a lower flutter flight speed, a lower 

flutter atmospheric density (i.e., higher flutter altitude), 

and a lower flutter Mach number. Geometrically, the most 

critical boundary on the nominal flutter boundary has the 

shortest distance from a specific initial condition. Repetition 

of the process under different initial conditions produced a 

line that was drawn normal to the nominal flutter boundary. 
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Such points can be determined by using a minimization 

process. In the varying Mach number investigation based on 

the mu method, the physical meaning of the robust flutter 

boundary was set as the most critical flutter boundary after 

the consideration of all the possible variations. Thus, both 

methods should yield the same result regarding the worst 

case flutter boundary.

The concept of the present optimization is illustrated as 

shown in Fig. 3. The solid line denotes the nominal flutter 

boundary with respect to both the dynamic pressure and 

altitude. When the nominal flutter boundary is expressed in 

terms of a specific Mach number, an interpolation function 

of the nominal flutter boundary can be obtained. When an 

initial condition is given, the most critical flutter boundary 

can be obtained by minimizing the distance between the 

initial condition at a given Mach and the interpolated 

nominal flutter boundary.

In Fig. 3, the black square denotes a prescribed initial 

condition at Mach 1. The optimization method finds the 

nearest point and it is denoted as a white-filled square, 

along the nominal flutter boundary. The normal direction 

from an initial condition to the nominal flutter boundary 

is to be considered. As shown in the figure, a change in the 

Mach number occurs while finding out the nearest point for 

a specific initial condition through optimization.

4.2 Interpolation of the Nominal Flutter Boundary

In the present validation, all the relevant parameters 

are to be represented in the nominal flutter boundary. 

This requires additional computations which may not be 

practical or effective. Thus, interpolation was adopted in the 

current approach. Practically, the discrete nominal flutter 

boundaries will be expressed in terms of the Mach number, 

altitude, and flight speed. The nominal flutter boundary is 

represented in the three-dimensional space as,

(17)

Where,

(18)

(19)

(20)

The distance r(t) is then constructed in terms of the Mach 

number M(t), altitude H(t), and flight speed S(t). In the 

above equations, the parameter t, which is the number of 

discrete parameters in the flutter boundary is introduced. 

Comparisons between the previously obtained nominal 

flutter boundary and the interpolated function obtained 

values that are shown in Fig. 4(a) – (c). The interpolation 

functions are illustrated in terms of the parameter, t to describe 

Mach number, altitude, and flight speed. The interpolation 

functions for the Mach number vs. t, altitude vs. t, and flight 

speed vs. t were obtained based on the functions that are 

shown in Fig. 4. The coefficients shown in Eqs. (18) – (20) 

were obtained from MATLAB. By using these coefficients, a 

continuous nominal flutter boundary was obtained. Based 

on Eqs. (18) - (20), the nominal flutter boundary curve 

expressed in Eq. (17) was obtained, and it is shown in Fig. 5 

(a). In Fig. 5 (b) – (d), the functions that represent Mach vs. 

altitude, Mach vs. speed, and altitude vs. speed, are shown. 

And these figures are obtained by projecting Fig. 5 (a) into 

each two-dimensional plane.

4.3 Optimization

The most critical flutter boundary can be obtained by 

the optimization with a formulation and it is expressed as 

follows,

(21)

The performance index function indicates a distance 

from a certain initial condition and the variables with the 

subscript zero are to be minimized. The minimized value 

of the function was computed by using the “fminunc” 

command that was provided in the MATLAB Optimization 

Toolbox [11]. Other constraints were not considered, but an 

automatic constraint of t < 10 was used due to the discrete 

point number.
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Figure 3. Nominal and Most Critical Flutter Boundaries 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dynamic pressure

A
tit

ud
e

Mach 1 Mach 2 Nominal flutter 
boundary

Initial 
condition

Most critical 
flutter boundary

Nominal flutter boundary 
with respect to Mach 1

Nominal flutter boundary 
with respect to Mach 2

Fig. 3. Nominal and Most Critical Flutter Boundaries



49

ChanHoon Chung    Validation of a Robust Flutter Prediction by Optimization

http://ijass.org

5. Numerical Result

5.1 Characteristics of the Three-Dimensional Wing

Goland’s wing was used for the present validation. Its 

characteristic values are summarized in Table 1.

5.2 Robust Aeroelastic Analysis Validation Result

Results of the robust aeroelastic stability analysis by using 
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(a) Interpolation on the Nominal Flutter Mach number 

 

 

(b) Interpolation on the Nominal Flutter Altitude 
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(a) Interpolation on the Nominal Flutter Mach number 
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(c) Interpolation on the Nominal Flutter Speed 

Figure 4. Interpolation Functions and Nominal flutter boundary 
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(a) Interpolated and Nominal Flutter Boundaries in terms of the Mach Number, Altitude, and 

Flight Speed 

 

 

(b) Interpolated and Nominal Flutter Boundaries in terms of Altitude and Flight Speed 
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(a) Interpolated and Nominal Flutter Boundaries in terms of the Mach Number, Altitude, and 

Flight Speed 
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(c) Interpolated and Nominal Flutter Boundaries with respect to the Mach Number and 

Altitude 
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Figure 5. Interpolated and Nominal Flutter Boundaries in the Three- and Two-dimensional 
Space 
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the varying Mach number mu method and those of the 

present optimization method are summarized in Table 2. 

Three different initial conditions were used. In the first case, 

the initial Mach number was 0.5, and the initial altitudes 

were 20,000, 25,000, 30,000, and 40,000 ft. In the second case, 

the altitudes were 45,000, 50,000, and 60,000 ft with an initial 

Mach number of 0.6. In the third case, the altitudes were 

55,000 ft, 60,000 ft, and 65,000 ft with an initial Mach number 

of 0.7.

In the present robust analysis results, the values of the 

weighting matrix were selected and they were according to 

the aerodynamic regime. In the present analysis, the values 

for the weighting matrices were chosen from the difference 

between the upper and lower bounds in the aerodynamic 

state matrices. The upper and lower bounds were selected 

by an approximation on the Theodorsen’s function, by 

applying RFA when the upper and lower Mach number was 

prescribed.

In the present paper, the results of the authors’ varying 

Mach number mu results were revised with an updated 

aerodynamic regime, and the updated results were validated 

by using the optimization method. The presently revised and 

validated results are summarized in Table 2.

In Table 2, the updated aerodynamic regime was defined 

with the following assumptions: (1) the initial Mach number 

must be located at the middle point of the Mach number 

region. (2) The initial altitude was given at the middle point 

of the defined altitude regime. The present revised mu results 

are shown in Table 2. These upgrade results are obtained by 

using the new aerodynamic regime. The new aerodynamic 

regimes that were used in the present research were defined 

with new Mach number and new altitude regimes. In the 

authors’ varying Mach number mu analysis, Mach number 

regime was assumed to be 0.5 ~ 0.7 and this was regardless of 

the initial Mach number. On the other hand, the initial Mach 

numbers for the present revised results were located at the 

middle point in the new Mach number regime. In the above 

conditions, the regime of altitude was allowed between -10% 

~ +10% for each initial altitude.

In Table 2, the robust flutter boundary was predicted to be 

more conservative in each given initial condition. In the first 

case, the initial Mach number was 0.5, and the initial altitudes 

were 20,000, 25,000, 30,000, and 40,000 ft. In the second case, 

the altitudes were 45,000, 50,000, and 60,000 ft with an initial 

Mach number of 0.6. In the third case, the altitudes were 

55,000 ft, 60,000 ft, and 65,000 ft with an initial Mach number 

of 0.7. In the first case, the new Mach number regime was 

defined to be 0.5 ~ 0.76. Moreover, the weighting value of the 

Mach number considered to be twice of differences between 

Mach number 0.5 ~ 0.76. The flutter speeds at the altitude are 

obtained by using mu analysis and they ranged from 518.5 

to 529.14 ft/sec (Table 2a). Compared to the results that are 

obtained by using the nominal flutter prediction, the mu 

flutter speeds results have differences of about -1.3 to 2.8%. 

By using the mu method, the flutter altitude ranged from 

19,662 to 38,467 ft, and the corresponding dynamic pressure 

range was from 179.43 to 86.51 slugs/ft3 (Table 2a). The mu 

results were validated with the optimization method. By 

using the optimization, the flutter altitudes were -2.2 to 4.84% 

lower compared to those from the mu method. Furthermore, 

the Mach numbers from the mu method ranged from 0.503 

to 0.506 while the range that uses the optimization was from 

0.50 to 0.570. Therefore, compared to the results that were 

obtained by optimization, the mu results were in the range 

of -12.8 to +1.0% .

In the second case, the Mach number regime considered 

0.5 ~ 0.76, and the weight factor of the Mach number was 

defined with twice the differences between Mach number 

0.6 and 0.76. The flutter speeds at altitude obtained by the mu 

analysis were from 604 to 610.7 ft/sec. It could be compared 

to the flutter speeds by optimization, 607 to 703 ft/sec. (Table 

2b). The mu results were +0.45 to −16.3% compared to those 

obtained by using optimization under the same conditions. 

By using the mu method, the flutter altitudes ranged from 

44,946 to 58,123 ft, and the corresponding dynamic pressures 

ranged from 91.78 to 49.49 slugs/ft3. By using optimization, 

the flutter altitudes were from 0.48 to -61.33% compared to 

those [obtained?] from the mu method. Moreover, Mach 

numbers from the mu method ranged from 0.601–0.603, 

while those from the optimization ranged from 0.593 to 

0.690. Relative to the results obtained by optimization, 

the mu results were -14.8 to +1.67%. In the third case, the 

Mach number range was the same, but the weighting factor 

was considered as twice the difference between the Mach 

number 0.5 ~ 0.7. The flutter speeds obtained by the mu 

analysis ranged from 700.63 to 703.36ft/sec (Table 2c). The 

mu method-derived flutter speeds were from -0.43 to +1% 

compared to those which were obtained by the optimization 

method under the same conditions. By using the mu method, 

the flutter altitudes ranged from 54,940 to 63,030 ft, and the 

corresponding dynamic pressure range was from 78.11 to 

52.03 slugs/ft3. The flutter altitudes from the mu method 

were from -52.9 to -1.28% compared to those that were 

derived by optimization. Moreover, by using the mu method, 

the Mach number ranges from 0.7 to 0.704 while the Mach 

number calculated by using optimization was consistently 

0.69. The mu Mach numbers were from 0 to 2% compared to 

those which were obtained by optimization.

Overall, the mu and the optimization results in Table 2 

show good agreement over most of the flight conditions that 
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Table 1. �Characteristic Values of a Three-Dimensional Wing

Characteristic Values

Wing span 20 ft Static imbalance(ξ) 0.447 slug / ft

Chord length 6 ft EI m×31.7×106 lb·ft3 / slug

Radius of gyration 25% Chord GJ I×1.23×106 lb·ft / slug

Spanwise elastic axis
33% Chord

(from leading edge)
Mass moment of inertia ( I ) 1.943 slug · ft 2/ft

Center of gravity
43% Chord

(from leading edge)
Mass of unit length

( m )
0.743 slug / ft

Semi chord 3 ft

Table 2.Validation of the Most Critical Flutter Analysis

(a) Mach = 0.5

Initial
Mach

Initial
Altitude

(ft)

Flutter
Speed
(ft/sec)

Flutter
Mach 
No.

Flutter Dynamic Pressure
(slug/ft2∙sec)

Corresponding Altitude
(ft)

Corresponding
Atmospheric Density

(slug/ft3)

0.5

Mu method 

40,000

518.5 0.506 86.51 38,467 6.433·10-4

Optimization 592.0 0.57 104.79 40,295 5.9790·10-4

Difference -14.17% -12.80% -21.13% -4.76% 7.00%

Lind [2] 513.49 0.5 79.80 3,5808 7.1·10-4

Difference 0.99% 1.2% 7.76% -6.91% 10.36%

Nominal 528.2 0.5 177.3 19,981 1.28·10-3

Difference -1.8% 1.2% -51.21% 92.52% -49.22%

Mu method

30,000

513.1 0.5038 123.19 29,490 9.06·10-4

Optimization 526.6 0.506 124.57 29,733 8.98·10-4

Difference -2.59% 0.44% -1.12% -0.82 0.88%

Lind [2] 518.73 0.5 119.9 27,188  9.8·10-4

Difference -0.9% 0.76% 2.67% 7.81% -2.06%

Nominal 528.2 0.5 177.3 19,981 1.28·10-3

Difference -2.78% 0.76% -30.5% -47.59% -41.28%

Mu method

25,000

525.83 0.5053 149.94 24,506 1.084·10-3

Optimization 524.7 0.503 142.84 25,753 1.0·10-3

Difference 0.0% 0.46% 4.7% -4.84% 8.0%

Lind [2] 521.42 0.5 144.8 22,670 1.41·10-3

Difference 0.84% 1.06% 3.43% 7.49% -30.47%

Nominal 528.2 0.5 177.3 19,981 1.28·10-3

Difference -0.5% 1.0-6% -15.43% 22.65% -15.31%

Mu method

20,000

529.14 0.505 179.43 19,662 1.28·10-3

Optimization 522.97 0.500 172.68 20,101 1.26·10-3

Difference 1.18% 1.0% 3.7% 2.2% 1.59%

Lind [2] 524.0 0.5 174.06 18,055 1.35·10-3

Difference 0.97% 1.0% 5.37 8.17% -5.19%

Nominal 528.2 0.5 177.3 19981 1.28·10-3

Difference 1.3% 2.2% 4.3% -3.2% 0.0%
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were analyzed. When the initial Mach number was relatively 

low, the agreement between the two predictions was close 

but even when the initial Mach number was large, the results 

from both the methods were still in good agreement. It 

showed a better agreement when the initial condition was 

located near the nominal flutter boundary. However, the 

most critical flutter boundary predicted by the mu method 

becomes conservative when the initial condition is located far 

from the nominal flutter boundary. Under these conditions, 

the two results show a significant discrepancy.

The present paper focuses on the varying Mach number 

analysis and the corresponding result of the constant Mach 

number analysis that were obtained by Lind (1999) are 

presented in Table 2. The robust aeroelastic formulation used 

by Lind (1999) was constructed by taking into consideration 

the structural uncertainties, and the worst case flutter 

boundary that was predicted by using the mu method. 

When the initial Mach numbers are given as 0.5, 0.6, 0.7 and 

the differences in the flutter speed prediction between the 

constant and varying Mach number analysis were from -0.9 

~ 0.97%, -0.24 ~ 0.2 %, and -0.43 ~ 0.0 %respectively. Lind 

considered only the structural uncertainties in his constant 

Mach number analysis while the present analysis considered 

aerodynamic uncertainties under varying Mach numbers. 

Therefore, even though it may be meaningful the present 

comparison between the two results has limitations as both 

the analyses were based on the same mu method.

Based on the above comparison, the previously reported 

mu analysis method was validated by using this optimization 

approach. The comparison suggests that the mu method is 

capable of predicting a reasonable robust flutter boundary 

with less than a few percent differences from that which was 

(b) Mach = 0.6

Initial
Mach

Initial
Altitude

(ft)

Flutter
Speed
(ft/sec)

Flutter
Mach No.

Flutter Dynamic Pressure
(slug/ft2∙sec)

Corresponding 
Altitude

(ft)

Corresponding
Atmospheric Density

(slug/ft3)

0.6

Mu method

60,000

604.21 0.603 49.49 58,123 2.72·10-4

Optimization 703.0 0.69 79.84 54,489 3.22·10-4

Difference -16.3% -14.43% -61.33 6.25 -15.53%

Lind [2] 602.61 0.6 44.88 55,034 3.14·10-4

Difference 0.2% 0.5% 9.29% 5.56% -12.87%

Nominal 617.0 0.6 102.2 42,962 5.368·10-4

Difference -2.11% 0.5% -51.57% 35.29% -41.36%

Mu method

55,000

605.34 0.602 59.89 54,204 3.268·10-4

Optimization 703.0 0.69 79.84 54,489 3.22·10-4

Difference 16.09% -14.22% -22.14 -0.52% 15.22%

Lind [2] 605.4 0.6 57.7 51,118 3.76·10-4

Difference 0.0% 0.33% 3.66% 5.69% -15.22%

Nominal 617.0 0.6 102.2 42,962 5.368·10-4

Difference -1.94% 0.2% -41.40 26.83% -29.8%

Mu method

50,000

610.3 0.603 76.94 49,049 4.1·10-4

Optimization 688.81 0.68 95.54 49,618 4.02·10-4

Difference -12.58 12.77 -19.47 -1.5% 4.8%

Lind [2] 608.4 0.6 73.28 46,927 4.53·10-4

Difference 0.33% 0.050% 4.04% 4.527% -9.49%

Nominal 617.0 0.6 102.2 42,962 5.368·10-4

Difference -1.13% 0.05% -24.76% 14.17% -23.66%

Mu method

45,000

610.07 0.60 91.78 44,946 4.93·10-4

Optimization 607.33 0.59 91.34 44,829 4.95·10-4

Difference 0.45% 1.67% 0.48% 0.25% -4.06%

Lind [2] 611.53 0.6 92.0 42,540 5.45·10-4

Difference -0.24% 0.0% -0.48% 5.35% -10.53%

Nominal 617.0 0.6 102.2 42,962 5.368·10-4

Difference -1.12% 0.0% -10.18% 4.6% -1.5%
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derived by the optimization method. The previously described 

mu method does not require the additional computations 

that are needed in the optimization approach, such as Eqs. 

(17) – (21) for the creation of the interpolation functions. 

These computations are not required as the parameters in 

those equations were already considered as uncertainties 

and were used during the mu analysis. Thus, we conclude 

that the mu method is a more efficient analytical method 

for the determination of the robust aeroelastic stability of an 

aircraft.

The optimization method that is described here attempts 

to find out the shortest distance between an initial condition 

and a continuous nominal flutter boundary by minimizing 

the specific performance index function. As a result in 

most of the cases, the prediction that is obtained by such 

an optimization is located closer to the nominal flutter 

boundary than the result of the mu analysis. Thus, we deduce 

that our optimization approach predicts a more reasonable 

result compared to that from the varying Mach number mu 

method. However, the present optimization requires more 

computational efforts than the varying Mach number mu 

method. For example, optimization requires preliminary 

information regarding the nominal flutter boundary which 

is as predicted by a separate reliable analysis, and an 

interpolation function for the nominal flutter boundary for 

each varying parameter that has to be obtained in advance. 

The performance index function is defined as the distance 

from an initial condition to the nominal flutter boundary 

from the interpolated function. During the optimization 

analysis, this performance index has to be evaluated and 

minimized. Due to this additional computational procedure, 

the optimization used here will consume more computation 

time compared to that of the mu method and it may even 

reach a numerical limitation when the number of variation 

parameters is increased.

Our varying Mach number mu analysis indicated that 

the mu method gave a conservative result when the initial 

conditions were located far from the nominal flutter 

boundary. However, the present optimization provides an 

accurate prediction of the most critical flutter boundary and 

this is regardless of the magnitude of the variations. In our 

above numerical treatments, when the initial condition is 

located far from the nominal flutter boundary, the difference 

between the values that were derived by the two methods 

becomes larger. In the present comparison, the flutter speed 

predictions showed up to 12 ~ 16% differences at the highest 

(c) Mach = 0.7

Initial
Mach

Initial
Altitude

(ft)

Flutter
Speed
(ft/sec)

Flutter
Mach No.

Flutter Dynamic Pressure
(slug/ft2∙sec)

Corresponding 
Altitude

(ft)

Corresponding
Atmospheric Density

(slug/ft3)

0.7

Mu method 

65,000

700.63 0.704 52.03 63,030 2.12·10-4

Optimization 703.4 0.69 79.84 54,489 3.22·10-4

Difference -0.43% 2.0% -52.9% 13.5% -51.89%

Lind [2] 697.6 0.7 46.54 61,575 2.28·10-4

Difference 0.43% 0.5% 10.5 2.31% -7.02%

Nominal 710.0 0.7 79.7 54,946 3.16·10-4

Difference -1.43% 0.5% -26.67% 12.83% -49.06%

Mu method

60,000

699.19 0.70 60.65 59,924 2.48·10-4

Optimization 703.4 0.69 79.84 55,105 3.22·10-4

Difference -0.57% 1.43% -17.81 8.04% -29.84

Lind [2] 701.1 0.7 60.76 57,358 2.81·10-4

Difference -0.3% 0.0 -0.18% 4.28 -11.74%

Nominal 710.0 0.7 79.7 54,946 3.16·10-4

Difference -1.52% 0.0% -24.12% 9.6% -%11.1

Mu method

55,000

703.36 0.70 78.11 54,940 3.15·10-4

Optimization 703.4 0.69 79.84 54,489 3.22·10-4

Difference 0.0% -1.43% -1.28% 1% -2.2%

Lind [2] 704.8 0.7 78.21 52,933 3.46·10-4

Difference 0.0% 0.0% 0.0% 3.4% -9.1%

Nominal 710.0 0.7 79.7 54,946 3.16·10-4

Difference -1.0% 0.0% -2.01% 0.0% -0.32%
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altitudes for the three Mach numbers tested while the 

dynamic pressure calculations were up to 13 ~ 67% different 

at the highest altitudes for the three Mach numbers tested. 

However, when the initial conditions are located near the 

nominal flutter boundary, the differences in the flutter speed 

prediction decreased to 0.8 ~ 3%, and it was also observed 

that the differences in the dynamic pressures was 0 ~ 1.18 

%. In Fig. 6, Mach numbers 1 and 2 correspond to the Mach 

numbers 0.5 and 0.6, respectively and they are presented in 

Table 2.

In the figure 6, initial condition 1 and Mach number 1 

illustrate a case when the initial condition is located near the 

nominal flutter boundary at an initial Mach number of 0.5. 

On the other hand, the initial condition 2 and Mach number 2 

denote a case when the initial conditions are located far from 

the nominal flutter boundary at an initial Mach number of 

0.6. Distances d1 and d2 are the altitude distances between 

the initial altitude and the nominal flutter boundary while p1 

and p2 are the dynamic pressure differences between each 

initial condition and the nominal flutter dynamic pressure. 

The distances h1 and h2 are estimated to be approximately 

1,828 and 120.0 ft, respectively and the corresponding 

dynamic pressure distances p1 and p2 are approximately 

18.28 and 0.44 slug/ft2∙sec, respectively. With regard to 

the flutter dynamic pressure in the former case, both the 

mu method and the optimization method yielded similar 

boundaries. However, the latter case in which there was 

a larger difference between the initial condition and the 

nominal flutter boundary, showed a marked difference. Fig. 

7 provides a more detailed view of the parameters that are 

presented in Fig. 6 and it is based on the results which are 

presented in Table 2(b).

Fig. 7 shows the comparison of the two results (mu- and 

optimization-based) for an initial Mach number of 0.6. 

When the altitude distance between the initial condition 

and the nominal flutter boundary was 15,000 ft, the dynamic 

pressure difference was 49.49 slug/ft2∙sec and the distance 

S1 was 15,000 ft. In this example, the distance h1 between the 

flutter boundary predicted by the optimization method and 

that predicted by the mu method was approximately 3,634ft. 

However, when the altitude distance between the initial 

condition and the nominal flutter boundary was 1,984 ft, 

the dynamic pressure difference was only, 0.44 slug/ft2∙sec 

and this resulted in a geometrically different distance S2, of 

approximately 1,984 ft. In that case, the distance h2 between 

the mu method and optimization method predictions 

decreased by about 45%.

In the present paper, the worst case flutter boundary was 

obtained by varying the altitude during the mu analysis. 

When the worst case flutter altitude was obtained, the 

corresponding worst case flutter speed and the atmospheric 

density can also be predicted. The worst case flutter Mach 

number can be obtained by applying the relationship 

between the standard atmospheric density and Mach 

number. However in this paper, such a relationship has not yet 

been considered. If the relationship among the aerodynamic 

factors such as Mach number, flight speed, and atmospheric 

density were considered in the present mu analysis then, 

the uncertainty effect will be further reduced. Moreover, the 

finally updated results will be closer to the nominal flutter 

boundary and the present optimization result. Thus, an 

improved procedure that updates the relevant functional 

relationships in the mu analysis has to be developed and 

applied. Moreover, as mentioned in the previous section, 

a frequency-domain analysis approach can be adopted to 

represent the relevant aerodynamics and obtain results that 

are far more accurate.
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Figure 6. Change in Flutter Dynamic Pressure with respect to an Initial Altitude 
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Figure 7. Change in the Flutter Dynamic Pressure and Altitude with respect to Initial 
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6. Conclusion

In the present paper, prediction results for the robust 

flutter boundary were introduced in a varying Mach number 

mu study by the authors is revised with new aerodynamic 

regime and is validated by using the optimization method. In 

the varying Mach number mu study, robust flutter boundary 

results were obtained by using the mu method. In that 

method, aerodynamic variation was prescribed by using a 

concept of uncertainty. However, the relationships among 

the variables were not considered during the mu analysis. 

In the mu analysis, when the initial condition was located 

far from the nominal flutter boundary, a conservative 

result was predicted. Thus, a thorough validation based 

on a separate analysis was deemed necessary by the usage 

of the optimization method. In order to apply the idea 

of optimization, the nominal flutter boundary needs to 

be analyzed, and an interpolation is required. By using 

optimization, the most critical flutter boundary which is the 

boundary located at the shortest distance from a given initial 

condition can be obtained. The robust flutter result previously 

obtained by using the mu method was then compared with 

that obtained by the optimization method. According to 

the present numerical results, the varying Mach number 

mu analysis has been validated by using the optimization 

analysis. First, the varying Mach number mu method is 

deemed capable of predicting a robust flutter boundary 

with low percentage differences from that obtained from the 

present optimization. Moreover, the varying Mach number 

mu method requires less computational time compared to 

that of the optimization method. This is due to a preliminary 

nominal flutter boundary prediction and its subsequent 

interpolation is not required during the mu analysis. Thus, 

we conclude that compared to the optimization method, the 

mu method is a more efficient analysis to find out the robust 

aeroelastic stability. When the number of the uncertainty 

parameters is increased, the present optimization will require 

more computational effort and time. However, even with an 

increase in the number of parameters, the mu method will 

involve less computational effort. Second, in the present 

paper, we have also observed that the mu method is capable 

of correctly predicting the nearest point only when the initial 

flight condition is located near the nominal flutter boundary. 

This is due to the inter-parameter variations that were not 

updated during the varying Mach number mu analysis. 

Updation of these variations should also be included in the 

mu analysis to compensate for this limitation. We suggest 

that if the relationships among the various aerodynamic 

parameters are taken into consideration, the mu method 

will be able to more reliably predict reasonable results. Thus, 

a more refined procedure that considers the relationships 

among the various flight parameters has to be investigated. 

It is expected that such studies will develop new suggestions 

for the future improvements of the mu method.
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Appendix

A. Structural Matrices

A.1 Mass Matrix

The mass matrix for the present wing is represented as,

(A.1)

Where, the matrix [A] denotes the structural mode 

coupling and its elements are expressed as follows.

(A.2)

In Eq. (A.2), Θi, ψi denote the torsion and bending mode 

shape functions that are obtained as

(A.3)

(A.4)

A.2 Stiffness Matrix

The stiffness matrix is based on the bending and torsion 

stiffness.

(A.5)

Where, [B], [T] denotes bending and torsion factor 

matrices and its element is obtained as follows.

(A.6)

(A.7)

B. Aerodynamic Forces

B.1 Two-dimensional Aerodynamic Force

The three-dimensional aerodynamic force that is used in 

the present paper is obtained from the two-dimensional lift 

and pitching moment. Two-dimensional lift and pitching 

moment are expressed as follows.

(B.1)

(B.2)

B.2 Three-dimensional Aerodynamic Force

The three-dimensional unsteady aerodynamic forces are 

based on the two-dimensional aerodynamic forces, and they 

can be obtained by integration as follows

(B.3)

(B.4)

The final expression for the aerodynamic forces is obtained 

as follows,

(B.5)

B.3 Rational Function Approximation (RFA)

For the aeroelastic equation in a state-space form, rational 

function approximation is adopted and its equation is given 

as follows.

(B.6)

In the present paper, the Theodorsen’s function is 

approximated by RFA, and it can be represented as the 

following state equation.

(B.7)

(B.8)

In the above equation, u is an aerodynamic input and it 
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can be represented as follows.

(B.9)

(B.10)

C. Robust Aeroelastic Analysis

The present robust aeroelastic equation is based on the 

variation in aerodynamic force, and the aerodynamic forces 

can be expressed as follows,

(C.1)

(C.2)

The approximated Theodorsen’s function can be applied 

for the relevant robust aeroelastic analysis. The improved 

Theodorsen’s function and aerodynamic input can be 

derived as follows,

(C.3)

(C.4)

(C.5)

The corresponding state matrices are to be revised properly 

for the foregoing robust aeroelastic analysis

(C.6)

(C.7)

(C.8)

(C.9)

Based on the above derivation, the uncertainty matrix is 

obtained as,

(C.10)

The final form of the robust aeroelastic analysis equation 

that combines the aerodynamic uncertainty and nominal 

aeroelastic equation, is derived as,

(C.11)

Where,

(C.12)

In matrix P, Q̄L1~L21 and Q̄M1~M21 are the lift and pitching 

moment coefficients, respectively and they consider 

aerodynamic variation. Q̄A1~A21 represents an aerodynamic 

lag-state variable.


