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Abstract

An advanced aeroelastic formulation for flutter analyses is presented in this paper. Refined 1D structural models were coupled 

with the doublet lattice method, and the g-method was used for flutter analyses. Structural models were developed in the 

framework of the Carrera Unified Formulation (CUF). Higher-order 1D structural models were obtained by using Taylor-like 

expansions of the cross-section displacement field of the structure. The order (N) of the expansion was considered as a free 

parameter since it can be arbitrarily chosen as an input of the analysis. Convergence studies on the order of the structural 

model can be straightforwardly conducted in order to establish the proper 1D structural model for a given problem. Flutter 

analyses were conducted on several wing configurations and the results were compared to those from literature. Results show 

the enhanced capabilities of CUF 1D in dealing with the flutter analysis of typical wing structures with high accuracy and low 

computational costs.

Key words: �Unified Formulation, Beam, Doublet Lattice Method, G-Method

1. Introduction

Flutter is one of the most important aeroelastic phenomena. 

Flutter can occur to a structure in a flow field, and it consists of 

undamped vibrations that can lead to catastrophic collapses. 

This implies that flight vehicles or bridges, for instance, 

must be clear of flutter. Different analysis tools have been 

developed over the last decades to predict flutter. A vast range 

of aerodynamic models have been utilized in aeroelastic 

problems, from strip theories to Reynolds-averaged Navier-

Stokes (RANS). Excellent reviews about these methodologies 

are presented in [1] and [2]. One of the first methods for flutter 

analysis was strip theory [3-4]. From the early 1940s to the 

1960s, strip theory and its variations represented the most 

important tools for flutter. The doublet lattice method (DLM) 

emerged in the late 1960s [5]. More recently, an improved 

version of DLM has been proposed by Rodden [6], and it is 

this version that is utilized in this work. To date, DLM is one 

of the most powerful tools for linear flutter analyses in the 

subsonic regime. Three main features are responsible for 

DLM’s success [1]: 

1. �It offers good accuracy (unless transonic regimes are 

considered and/or separation occurs). 

2. �DLM is cost competitive with respect to simpler 

methods such as strip theories. 

3. �Fairly complex geometries can be analyzed. 

The structural component of the aeroelastic formulation 

adopted in this paper was based on 1D higher-order structural 

models commonly known as beams. Beam theories are 

extensively used to analyze the structural behavior of slender 

bodies, such as columns, arches, blades, aircraft wings and 

bridges. In a beam model, the 3D problem is reduced to a set 

of variables that only depends on the beam-axis coordinate. 

One-dimensional structural elements are simpler and 

computationally more efficient than 2D (plate/shell) and 3D 

(solid) elements. This feature makes beam theories still very 

attractive for the static, dynamic and aeroelastic analysis of 

structures. 

The classical theories are those by Euler-Bernoulli [7-8] 
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and Timoshenko [9]. None of these theories can detect 

non-classical effects such as warping, out- and in-plane 

deformations, torsion-bending coupling or localized 

boundary conditions (geometrical or mechanical). These 

effects are important when, for instance, small slenderness 

ratios, thin walls and the anisotropy of the materials are 

considered. An accurate aeroelastic analysis requires the 

proper detection of non-classical effects. 

Many methods have been proposed to overcome the 

limitations of classical theories and to extend the application 

of 1D models to any geometry or boundary conditions [10]. 

Most recent developments in 1D models have been obtained 

by means of the following approaches: 

1. The introduction of shear correction factors. 

2. �The use of warping functions based on the de Saint-

Venant solution. 

3. The variational asymptotic solution (VABS). 

4. Generalized beam theories (GBT). 

5. Higher-order beam models. 

A considerable amount of work has been done to try to 

improve the global response of classical beam theories 

through the use of appropriate shear correction factors, as 

in the books by Timoshenko [11] and Sokolnikoff [12]. Many 

interesting articles [13-17] have been published on this 

topic. 

El Fatmi [18] introduced improvements of the displacement 

models over the beam section by introducing a warping 

function to enhance the description of the normal and shear 

stress of the beam. End effects due to boundary conditions 

have been investigated by means of this model [19]. 

The de Saint-Venant solution has been the theoretical 

framework of many advanced beam models. 3D elasticity 

equations were reduced to beam-like structures [20]. The 

resulting solution was modeled as the sum of a de Saint-

Venant part and a residual part, and applied to high-aspect-

ratio beams with thin-walled sections. Other beam theories 

have been based on the displacement field proposed [21] and 

solved by means of semi-analytical finite elements as in [22].

Asymptotic-type expansions have been proposed in [23] 

on the basis of variational methods. That work represented 

the starting point of an alternative approach to constructing 

refined beam theories where a characteristic parameter 

(e.g. the cross-sectional thickness of a beam) is exploited 

to build an asymptotic series. Those terms that exhibit the 

same order of magnitude as the parameter when it vanishes 

are retained. Some valuable contributions on asymptotic 

methods are those related to VABS [24-26]. The key feature 

of this methodology is that the 1D model is governed by 

variationally consistent and geometrically exact governing 

equations which provide asymptotically exact stress and 

strain recovery by means of a beam model having a low 

number of degrees of freedom. Regular and thin-walled 

beams can be accounted for. 

Generalized beam theories (GBT) have been derived 

from Schardt’s work [27]. GBT enhances classical theories 

by exploiting piece-wise beam descriptions of thin-walled 

sections. It has been extensively employed and extended in 

various forms [28]. In the GBT framework, the cross-section 

displacement field of a thin-walled beam is assumed as 

a linear combination of deformation modes defined on a 

number of cross-section nodes. The proper choice of the 

number of modes depends on the cross-section type and the 

number of fold lines [29]. 

Many other higher-order theories which are based on 

enhanced displacement fields over the beam cross-section 

have been introduced to include non-classical effects. Some 

considerations on higher order beam theories were made 

by Washizu [30]. An advanced model was proposed in [31] 

where classical finite beam elements were improved by 

introducing new degrees of freedom to describe the cross-

section behavior. Other refined beam models can be found 

in the excellent reviews by Kapania and Raciti [32-33], which 

focused on: bending, vibration, wave propagations, buckling 

and post-buckling. Excellent papers on structural dynamic 

and aeroelastic problems of thin-walled structures by means 

of higher-order beams are those by Librescu [34-36]. 

The aim of this work is to present aeroelastic models 

based on highly accurate structural models and low-order 

aerodynamic tools. Particular attention was given to the flutter 

of wings and thin-walled panels. The adoption of the present 

formulation allows one to predict flutter with remarkable 

reductions of computational costs and acceptable accuracy. 

This work is embedded in the framework of the Carrera 

Unified Formulation (CUF) for higher-order 1D models 

[37]. CUF had been initially developed for plates and shells 

[38-39], and more recently for beams [40-41]. The unique 

contribution given by CUF models is due to their hierarchical 

capabilities which make the choice of the expansion 

functions (Fτ) and their order arbitrary. This means that any-

order structural models can be implemented with no need 

for formal changes in the problem equations and matrices. 

CUF can therefore deal with arbitrary geometries, boundary 

conditions and material characteristics with no need for ad 

hoc formulations. 

Static [41-43], free-vibration [44-46] and buckling [47-

48] analyses have shown the enhanced capabilities of CUF 

1D models, which are able to detect shell- and solid-like 

solutions for different structural models, including thin-

walled models under point loads and shell-like natural 

modes. A further extension of the present formulation [49-
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51] dealt with open cross-sections, boundary conditions 

enforced on lateral edges and component-wise approaches. 

Varello et al. [52] extended CUF 1D to steady aeroelasticity 

by using the Vortex Lattice Method (VLM). In this work, 

unsteady aeroelasticity is considered through the Doublet 

Lattice Method (DLM). CUF was exploited to derive structural 

refined finite 1D elements; that is, the structural component 

of the proposed advanced aeroelastic formulation was based 

on 1D CUF higher-order models. This paper is organized as 

follows: first, the structural and aeroelastic formulations are 

briefly described; afterwards, results and their discussion are 

presented; eventually, main conclusions are drawn.

2. Structural Formulation: CUF 1D Models

The unified formulation of the beam cross-section 

displacement field is described by an expansion of generic 

functions, Fτ, 

(1)

where Fτ are functions of the cross-section coordinates 

x and z, uτ is the displacement vector, and M stands for the 

number of terms of the expansion. According to the Einstein 

notation, the repeated subscript τ indicates summation. 

The choice of Fτ and M is arbitrary, that is, different base 

functions of any order can be taken into account to model 

the displacement field of a beam above its cross-section. In 

this work, Taylor-like polynomial expansions (xi z j) of the 

displacement field above the cross-section of the structure 

were used, where i and j are positive integers. The order N 

of the expansion is arbitrary and is set as an input of the 

analysis. The choice of N for a given structural problem is 

usually made through a convergence study. For example, 

the second-order model, N = 2, is based on the following 

displacement field: 

(2)

The 1D model described by Eq. 2 has 18 generalized 

displacement variables: three constant, six linear, and nine 

parabolic terms. 

The governing equations were derived by means of 

the Principle of Virtual Displacements (PVD). Starting 

from the unified form of the displacement field in Eq. 1, 

stiffness, mass, and loading arrays can be obtained in terms 

of fundamental nuclei whose form is independent of the 

order of the model. The finite element method (FEM) was 

adopted to overcome the limits of analytical solutions in 

terms of geometry, loading, and boundary conditions. The 

displacement variables are interpolated along the axis of the 

beam by means of the shape functions, Ni, 

(3)

where qτi is the nodal displacement vector. Beam elements 

with four (B4) nodes were considered in this paper. It is 

important to emphasize that the beam model order is given 

by the expansion on the cross-section, whereas the number 

of nodes per each element is related to the approximation 

along the longitudinal axis of the beam (y). An N-order beam 

model is therefore a theory that exploits an N-order Taylor-

like polynomial to describe the kinematics of the beam 

cross-section. 

According to the principle of virtual displacements, 

(4)

where Lint stands for the strain energy, Lext is the work of 

the external loadings, δ stands for the virtual variation, σ is 

the stress vector and ε is the strain vector. A compact form of 

the virtual variation of the strain energy can be obtained as 

shown in [37], 

(5)

where Kijτs is the stiffness matrix written in the form of the 

fundamental nuclei. Superscripts indicate the four indexes 

exploited to assemble the matrix: i and j are related to the 

shape functions, and τ and s are related to the expansion 

functions. The fundamental nucleus is a 3 × 3 array which 

is formally independent of the order of the beam model. In 

compact notation, the stiffness matrix for a given material 

property set can be written as: 

(6)

where 

(7)

(8)
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C̃ is the material coefficient matrix and D is the differential 

operator matrix. For the sake of brevity, their expressions are 

not reported here, but they can be found in [37]. The following 

about the formal expression of K ijτs should be emphasized:

1. That it does not depend on the expansion order, 

2. �Nor does it depend on the choice of the Fτ expansion 

polynomials. 

These are key points of CUF which permit the 

implementation of any order of multiple class theories, with 

only nine FORTRAN statements. 

The virtual variation of the work of inertial loadings is 

(9)

where ρ stands for the density of the material, and ü is the 

acceleration vector. Equation 9 can be rewritten in a compact 

manner as follows: 

(10)

where Mijτs is the mass matrix in the form of the fundamental 

nucleus whose components can be found in [50]. 

The undamped dynamic problem can be written as 

follows: 

(11)

where a is the vector of the nodal unknowns and p is the 

loading vector. Introducing harmonic solutions, it is possible 

to compute the natural frequencies, Ωi, for the homogenous 

case, by solving an eigenvalue problem, 

(12)

where φi is the i-th eigenvector.

3. �Aeroelastic Formulation: Doublet Lattice 
Method and Mesh-to-Mesh Transforma-
tions

Following Landahl [53] or Albano [5], the normalwash at 

a point with coordinates x, y due to the pulsating pressure 

jump Δ-p- in the point ξ, η has the following expression: 

(13)

where M is the Mach number, ω is the circular frequency 

and 

(14)

The kernel function (K) formal expression is not reported 

here for the sake of brevity, but can be found in [53]. Eq. 13 

can be numerically solved by means of the doublet lattice 

method (DLM). In the DLM framework, a lifting surface is 

discretized in a number of panels, and the following algebraic 

system of equations has to be solved: 

(15)

where NAP indicates the total number of aerodynamic 

panels and Dij is the normal wash factor. In this paper, 

Dij was calculated by exploiting Rodden’s quartic DLM 

[6]. For the sake of brevity, the procedure to compute the 

normalwash factor is not reported here, but it can be found 

in Rodden’s paper. It is important to emphasize that the 

steady contribution to Dij was computed via the vortex lattice 

method (VLM) [54]. 

The unsteady aeroelastic analysis was carried out by 

considering a set of modal shapes as generalized motions 

for the unsteady aerodynamic generalized force generation. 

Each set of modal shapes, φm, was defined on a set of points 

above the structure. Slopes and displacements at control and 

load points of the aerodynamic panels are then given by 

(16)

(17)

(18)

where A, Ã * and A* are computed through the Infinite 

Plate Spline (IPS) [55]. For the sake of brevity, the explicit 

expressions of these matrices are not reported here, but 

they can be found in [56]. IPS was chosen in order to better 

exploit the shell-like capabilities of the present 1D structural 

formulation, as shown by Varello et al. [52]. Under the 

assumption of simple harmonic motion, it is possible to 

demonstrate that the vector that contains the normalized 

(using the velocity V∞ parallel to x) normalwash has the 

following expression (the boundary condition is enforced on 

all control points of the lifting surface): 

(19)

where all the vector quantities have to be understood as 

vectors of amplitudes of the harmonic motion, and i is the 

imaginary unit.

4. Generalized Matrices and G-Method

The generalized aerodynamic matrix for a given reduced 

frequency (k) is given by 
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(20)

where: 

•	 �k = ωb/L, b is the reference length (equal to the half 

of the reference chord) and L is the length of the 

structure. 

•	 �∆pN
j (ik) is the pressure jump due to the j-th set 

of motions (modal shapes), acting on the N-th 

aerodynamic panel and evaluated for a given 

reduced frequency. The computation of the pressure 

jump is performed by means of the DLM.

•	 �  is the i-th motion set evaluated at the N-th 

aerodynamic panel. Starting from the i-th modal 

shape given by a structural model, the i-th motion 

set is then mapped on the aerodynamic panels 

by means of the splining process. In this work, 

modal shapes were evaluated by means of CUF 1D 

models. 

•	 AN is the area of the N-th panel. 

•	 �Q(ik) is a square matrix with Nmodes × Nmodes elements, 

where Nmodes indicates the total number of natural 

modes adopted. Typically, Nmodes ranges from 10 to 

20.

The generalized mass matrix is given by 

(21)

where: 

•	 �φ is a matrix containing a given number of modal 

shapes, dimension: NDOF × Nmodes. NDOF is the total 

number of DOFs of the structural model. 

•	 �M is the mass matrix of the structure (dimension: 

NDOF × NDOF), M is a square diagonal matrix with 

Nmodes × Nmodes terms. 

•	 �The generalized stiffness matrix is a square diagonal 

(Nmodes × Nmodes) matrix, and its diagonal terms are 

given by 

(22)

where ωi is the oscillatory frequency associated with the 

i-th modal shape. 

The g-method was introduced by Chen [57] and it is 

based on a damping perturbation technique and a first-

order model of the damping term. Its derivation exploits the 

aerodynamics in the Laplace domain and can be found in 

[57]. The basic assumption of the g-method is based on the 

following approximation of the generalized aerodynamic 

matrix: 

(23)

where g = γk  and γ is the transient decay rate coefficient. 

Eq. 23 leads to the g-method equation: 

(24)

Where p is the nondimensional Laplace parameter (p = g 

+ ik)

The generalized aerodynamic matrix, Q̃(ik), is provided 

by the unsteady aerodynamic model (DLM) in the frequency 

domain. The computation of Q̃'(ik) has to be performed 

numerically. A central difference scheme can be used. with a 

forward scheme at k = 0. Three new matrices are introduced, 

(25)

Eq. 24 becomes 

(26)

This is a second-order linear system in g, and the 

g-method aims to find those solutions having Im(g) = 0. Eq. 

26 is rewritten in the state-space form, 

(27)

where 

(28)

A so-called reduced-frequency-sweep technique is 

adopted to find the solution having Im(g) = 0: 

•	 a range of k values is chosen, [0, kmax], with kmax 

as the highest value in the reduced frequency list of the 

unsteady aerodynamic computation; 

•	 a step ∆k is fixed; 

•	 �at each step i the eigenvalues of D are computed for 

ki = ki−1 + ∆k; 

•	 �a sign change of the imaginary part of each 

eigenvalue is searched for; 

•	 �if a sign change occurs and Re(g) > 0, the reduced 

flutter frequency will be computed by means of a 

linear interpolation.
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5. Results and Discussion

Numerical examples are presented and discussed in 

this section. After a preliminary aerodynamic assessment, 

flutter analyses were carried out for the following structural 

configurations: 

1. Single- and double-swept wings. 

2. A panel with the leading edge clamped. 

Results from open literature and experiments were 

exploited for comparison purposes. All results were obtained 

in the case of incompressible flow (M = 0).

5.1 Preliminary doublet lattice method assessment: 
lift distribution of a wing with oscillating flaps

A wing with oscillating outer flaps is considered in this 

section. This model was retrieved from [58] and its geometry 

is shown in Fig. 1 (only half wing is shown), where: L = L1 + 

L2 = 0.88 m (L1 = 0.41 m, L2 = 0.47 m), c = 0.42 m and a = 0.18 

m. The maximum flap oscillation angle is equal to 0.66˚ and 

the reduced oscillatory frequency, k, is equal to 0.372. The 

half wing was divided into three different portions, namely 

1, 2 and 3; different aerodynamic meshes were adopted for 

each portion. Table 1 shows each mesh set adopted in terms 

of chordwise × spanwise aerodynamic panels. 

Table 2 presents lift coefficients, CL, by means of the 

present quartic DLM and the Doublet Point Method (DPM) 

from [59]. Fig. 2 shows chordwise pressure coefficient 

distributions with comparisons between experimental data 

from [58] and analytical results from [60]. It can be stated 

that a general excellent agreement was found between the 

present DLM and the experimental and analytical results.

5.2 Swept wing

Flutter analyses of swept wings were considered in this 
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Figure 1: Wing model with outer flap 

 

Fig. 1. Wing model with outer flap

 
 

 

 

Figure 2: Chordwise pressure distribution at  = 0.69 

 

 

 

 
 

 

 

Figure 3: Swept wing geometry, the sweep angle shown is positive 

 

 

 

 

 

Fig. 2. Chordwise pressure distribution at y/L = 0.69

 
 

 

 

Figure 2: Chordwise pressure distribution at  = 0.69 

 

 

 

 
 

 

 

Figure 3: Swept wing geometry, the sweep angle shown is positive 

 

 

 

 

 

Fig. 3. Swept wing geometry, the sweep angle shown is positive

Table 1. Mesh sets adopted for the wing model with oscillating flaps

Mesh Set Portion 1 Portion 2 Portion 3

1 6 × 3 4 × 4 2 × 4
2 12 × 6 8 × 8 4 × 8
3 24 × 12 16 × 16 8 × 16
4 48 × 24 32 × 32 16 × 32

Table 2. CL coefficient for different mesh sets

 

Table 2: CL coefficient for different mesh sets 

Mesh Set    1 9.262  1.822 
2 9.210  1.818 
3 9.181  1.808 
4 9.169  1.804 

DPM [59], Mesh set 1 9.5  1.8 
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section. The swept wing model was retrieved from [61] where 

plate models based on the Classical Laminated Theory (CLT) 

were used for flutter analyses. The wing model investigated 

has the following characteristics (see Fig. 3): L = 0.305 m, c 

= 0.076 m, thickness, t = 0.001 m. The material is isotropic 

with E = 73.8 GPa, G = 27.6 GPa and ρ = 2768 kg/m3. An 8 × 

30 aerodynamic mesh was adopted, which was chosen via a 

convergence study.

Table 3 presents the first three natural frequencies of a 

backward swept configuration. Unless otherwise indicated, 

the frequencies reported are related to bending modes. 

The results from different 1D structural models are shown, 

including classical models (EBBT and TBT) The indication 

of the number of DOFs of each structural model is reported 

in the last column. Convergence studies are presented in 

Tables 4 and 5, where the effects of the structural mesh and 

the Taylor expansion order on flutter conditions are reported, 

respectively. The flutter conditions for different sweep angles 

are given in Table 6 and Fig. 4, where the results from the 

present formulation are compared with those by Koo [61]. 

The analysis of the results suggests the following: 

1. �Higher-order 1D models are mandatory in order to 

predict torsional modes and flutter conditions of 

wings. 

2. �The proper detection of torsional modes requires at 

least an N = 3 model, as also shown in [37]. 

3. �For these wing configurations, the first torsional mode 

plays a fundamental role in flutter conditions. This 

means that the proper detection of flutter conditions 

requires at least a third-order 1D structural model (N 

= 3). 

4. �Flutter predictions by the present structural 

formulation (1D) are in excellent agreement with 

those by Koo (CLT, 2D). 

 
 

 

 

Figure 4: Effect of the sweep angle on flutter conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Effect of the sweep angle on flutter conditions

 
 

 

 

Figure 5: Double-swept wing geometry, the depicted inbound sweep angle is positive, the outbound 

angle is negative 

 

 

 

 
 

 

 

Figure 6: Effect of the inbound sweep angle on flutter conditions 

 

 

 

 

 

 

Fig. 5. �Double-swept wing geometry, the depicted inbound sweep 
angle is positive, the outbound angle is negative

 
 

 

 

Figure 5: Double-swept wing geometry, the depicted inbound sweep angle is positive, the outbound 

angle is negative 

 

 

 

 
 

 

 

Figure 6: Effect of the inbound sweep angle on flutter conditions 

 

 

 

 

 

 

Fig. 6. Effect of the inbound sweep angle on flutter conditions

Table 3. �Effect of the CUF 1D expansion order (N) on vibration fre-
quencies, Hz, Λ=30°, 20 B4 mesh

Model f1 f2 f3 DOFs
EBBT 8.967 56.192 157.335 183
TBT 8.966 56.189 157.320 305

N = 1 8.966 56.185 157.308 549
N = 2 7.199 44.462 97.939* 1098
N = 3 7.125 43.778 97.939* 1830
N = 4 7.093 43.529 73.296* 2745

  * torsional mode 

Table 4. �Effect of the structural mesh on flutter conditions, N=3, 
Λ=30°

 

 

Table 4: Effect of the structural mesh on flutter conditions, N=3, Λ=30° 
Mesh Velocity, / Frequency,  

20 B4 59.202 53.888 30 B4 59.456 53.688 
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5. Very low computational costs were required.

5.3 Double-Swept wing

A double-swept wing was considered in this section. This 

model was retrieved from [61]. Wing characteristics are 

described in Fig. 5, and their values are the following: Li + L0 = 

0.305 m, Li = Lo, C = 0.076 m, thickness, t = 0.001 m, Λo = −30˚. 
The inbound sweep angle, Λi, was assumed to range from 

−30˚ to +30˚. An isotropic material was considered (E = 73.8 

GPa, G = 27.6 GPa, ρ = 2768 Kg/m3). An 8 × 20 aerodynamic 

mesh was adopted fir each wing segment (320 panels), and a 

20 B4 mesh was used for the structural discretization. These 

meshes were chosen via a convergence study. 

Table 7 shows the effect of the Taylor expansion order on 

flutter conditions for Λi = 30˚. All the other inbound sweep 

angle configurations were considered in Table 8 and Fig. 6, 

where results from the present model and from Koo’s paper 

are shown. 

The following statements hold: 

1. �As previously shown for the single-swept 

configuration, at least an N - 3 model is required to 

compute flutter conditions. 

2. �Very good agreement was found with results based 

on plate models. 

3. �It can be concluded that the present 1D structural 

formulation can properly detect the flutter of double-

Table 5. �Effect of the CUF 1D expansion order, N, on flutter conditions, 
20 B4 mesh

Model Velocity, m/s Frequency, Hz DOFs

N = 2 84.206 67.053 1089

N = 3 59.202 53.888 1830

N = 4 58050 53.490 2745

Table 6. �Flutter conditions for different sweep angles, 20 B4 mesh, 
N=4

 

 

Table 6: Flutter conditions for different sweep angles, 20 B4 mesh, N=4 

 Velocity, / Frequency,  

30∘ 58.050 53.490 

20∘ 51.109 58.339 

10∘ 46.029 61.832 

0∘ 68.406 40.493 

10∘ 64.262 38.865 

20∘ 60.684 36.231 

30∘ 57.339 32.680 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. �Effect of the expansion order on flutter conditions of the 
double swept wing, Λi = 30°

 

 

 

 

Table 7: Effect of the expansion order on flutter conditions of the double swept wing, Λi = 30
° 

  Model   Velocity, /   Frequency,   

N  2 89.467 64.899 

N  3 85.917 55.738 

N  4 84.537 55.403 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Flutter conditions for different inbound sweep angles, N=4

 

 

Table 8: Flutter conditions for different inbound sweep angles, N=4 

 Velocity, / Frequency,  

20∘ 62.161 56.913 

10∘ 67.524 58.777 

0∘ 72.757 59.227 

10∘ 77.510 58.923 

20∘ 81.443 57.481 

Table 9. �Effect of the CUF 1D expansion order, N, on vibration frequencies, Hz, flutter velocity, m/s, and flutter frequency, Hz, of the cantilever 
plate, 20 B4 mesh

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9: Effect of the CUF 1D expansion order, N, on vibration frequencies, Hz, flutter velocity, m/s, 

and flutter frequency, Hz, of the cantilever plate, 20 B4 mesh 

Model      DOFs 

EBBT 6.346 39.770 111.356 26.867 34.779 138 
TBT 6.346 39.769 111.352 26.866 34.779 230   1 6.346 39.769 111.352 26.866 34.779 414   2 6.734 16.842∗ 42.202 28.470 37.420 828   3 6.671 16.189∗ 40.753 28.801 35.785 1380   4 6.667 16.100∗ 40.678 28.779 35.796 2070 
[62] (Exp) 7.8   27.43 40.2  
[63] (CLT) 6.777 42.003 101.14 29.5 36.003  	∗ torsional mode 
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swept wing models.

5.4 Panel flutter

This section was focused on the flutter analysis of a square 

panel clamped along its leading edge and free on the other 

three edges. This model was retrieved from and [62]. [63] 

The plate has a thickness of 0.020 inches and a length of 10 

inches. An isotropic material was adopted (E = 68.9 GPa, v = 

0.33, ρ = 2700 Kg/m3). A 40 × 8 aerodynamic mesh and a 20 

B4 structural mesh were adopted. 

Table 9 shows natural frequencies and flutter conditions 

from different models and experimental results. Unless 

otherwise indicated, natural frequencies are related to 

bending modes. It is important to underline the following: 

1. �Lower-order models are able to quite accurately 

describe bending, whereas higher-order models are 

needed for torsion. 

2. �Since the second bending mode is involved in flutter, 

lower-order models can predict the instability in this 

case. 

3. �Results from the present structural 1D formulation are 

in good agreement with those from experiments and 

CLT; larger differences with the experimental data 

were observed in the detection of the frequencies. 

However, it is important to emphasize that in [62], the 

calculated natural frequencies were also provided, 

and they were equal to 6.7 and 42 Hz, respectively. 

Calculated flutter frequencies were also provided, 

and depending on different aerodynamic models, 

they ranged between 37.5 and 42.6 Hz.

6. Conclusion

Flutter analyses of isotropic lifting surfaces have been 

carried out in this study. The aeroelastic formulation 

exploited in this work was based on 1D advanced structural 

models and the doublet lattice method. The aerodynamic 

and structural mesh coupling has been conducted through 

the infinite plate spline method. Flutter conditions have 

been computed via the g-method. 

The advanced structural models have been developed in 

the framework of the Carrera Unified Formulation (CUF). 

CUF 1D models exploit Taylor-like polynomials to define the 

displacement field above the cross-section of the beam. Any-

order structural models can be implemented since the order 

of the Taylor expansion is a free parameter of the formulation. 

This means that the order of the structural model can be set 

as an input, and convergence studies have to be carried out 

in order to establish the proper theory order necessary for a 

given problem. 

The analyses conducted suggest the following: 

1. �Refined 1D structural models are mandatory for 

proper flutter analyses of lifting surfaces. 

2. �Refinements are needed to capture torsional modal 

shapes and to deal with thin walls. 

3. �The present 1D structural model is cost-competitive 

if compared to 2D plate models, with no accuracy 

losses. 

The use of CUF 1D could offer even greater advantages in 

the fluid-structure-interaction analysis of flexible structures 

with highly deformable cross-section, such as adaptive wings 

or arteries. CUF 1D can, in fact, predict in-plane distortion 

of thin-walled structures with high accuracy and very low 

computational costs, as shown in [37]. Future works should 

deal with the coupling of CUF 1D with computational fluid 

dynamics tools.
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