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Abstract

Robust optimal control problem for flexible spacecraft/structures using on-off type
discrete actuators has been a subject of intensive research. Optimization by switching
time parameterization can be used to minimize the maneuver time subject to equality
boundary constraints. Sensitivity of the switching times with respect to modal parameters
could be a critical factor degrading the performance of the time optimal solutions. A
new approach for the robustness enhancement of switching times with respect to modal
parameter uncertainty is introduced. A new concept so—called augmented dynamic model
is added to account for the modal uncertainty. The proposed approach turns out to be
similar to some previous methods, but it essentially provides some new results.

Key Word : Attitude control, flexible spacecraft, Lyapunov function, output feedback,
three-axis attitude dynamics

Introduction

The time optimal control for the attitude maneuver of flexible space spacecraft/structures can
be achieved by control input at the maximum level[1-3]. Some input shaping methods were proposed
to reduce residual vibration due to model uncertainty[4-7]. In particular, for a rest-to-rest maneuver,
anti-symmetric control torque profile with symmetric switching times lead to vibration control as
well as attitude changes[1]. It is well known that for a linear undamped mechanical system with
N modes, there are at most 2N— 1switching instants for the control of every mode[1,8,9]. Various
approaches have emerged to find out the switching instants(times) in such a way that the maneuver
time is minimized while the induced vibration is effectively suppressed. One of the most popular
methods to design the switching times is the parameter optimization technique. The switching times
are parameterized as unknowns, and then they are computed by optimization algorithm with equality
constraints[1,8.9]. The cost function to be optimized is the final maneuver time, while the equality
constraints should be satisfied simultaneously. The equality constraints represent conditions for the
final attitude by rigid motion and zero residual vibration. In some cases, other forms of cost function
such as combined time-fuel optimal control have been employed.

The time optimal control solution as derived by parameter optimization is usually subject to
robustness with respect to the modal characteristics of the system. Robust approaches have been
investigated to overcome the issue of sensitivity of the control command with respect to the modal
characteristics in some previous studies.[8-11] It turns out that adding more switching times than
the exact optimal solution can lead to responses being robust about model uncertainties. The number
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of equality constraints increases due to the extra switching times. However, enhanced robustness
is achievable by this approach[8-11].

In this study, we use the so-called augmented dynamics method to design robust switching
profiles for time optimal control solution for flexible structures. In order to overcome the sensitivity
problem, a virtual dynamic model with a modal frequency perturbed from the actual vaule is augmented.
The virtual dynamic model does not really exist, but it is primarily used to provide robustness in
modal characteristics. The augmented dynamic model also results in increased switching times and
corresponding robustness. The new approach is essentially similar to the previous ones[8-10] where
the sensitivity of the modal responses with respect to the natural frequencies was set to zero. In
the augmented dynamic model approach, the modal parameter is selected by designer’s choice. Hence,
the new method leaves some room for shaping responses while still maintaining enhanced robustness
by virtue of judicious selection of the modal parameters. The modal frequencies for the augmented
system can be tailored to produce a desired performance. It is also verified in this study that the
previous approach of employing sensitivity constraint equation could be considered as a special case
of the proposed idea in this study.

Time Optimal Control

First, a linearized second order mechanical system with a rigid—body mode and flexible vibrational
modes are described as

M g+ Kq=Fu (1)

where g=1[4q,qy, ...,qn] Tisa generalized coordinate vector, M, K are mass and stiffness matrices,

and F', u are input influence matrix and control input vector, respectively. For simplicity, no damping
term is assumed in the governing equations of motion. The control input is a single input subject
to the magnitude constraint such as |#(H|<N .

The modal coordinates( 7) can be used to replace the governing equation in the following form:

"771 T w%ﬂl =¢u

7y + Wiy = dou
N @)
TNt ONIN= PNu

where 7; usually corresponds to the rigid body mode with @;equal to zero. For a time-optimal

attitude maneuver, in particular, rest-to-rest maneuver for a flexible model with N modes, the
boundary conditions are prescribed as

n0)= 700=0, 720)= 20)=0 att=0 3)
n(D= »,, ;71(7‘)7—0,77,'(7'): 7:(D=0at t=T

where {=1,2,...,N. T is the maneuver time and 7, represents the final target displacement of
the rigid body mode.
The performance index for the time-optimal control is defined as

J= fo "t @)

It is well known that for a flexible structural system with N modes of motion, the time-optimal
rest-to-rest maneuver strategy should be a bang-bang input. The actuator input is saturated at
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the maximum level with multiple switching times. According to the previous studies, there should
be at most 2N—1 switching times distributed symmetrically about the half maneuver time. The
control input can be represented in terms of step functions such as[89]

= ﬁOM,Us(t— £) )

where U is a step function and M; represents the magnitude of the control input which should
be anti-symmetrically distributed in the form M;= N{1, -2,2, —2,...,2, —1}.
There are switching times( #,, 5, ..., £ o5y—1) that are symmetric about the half maneuver time #,( 7/2).

By the control input profiles given by Eq. (6), the responses of the modal coordinates are computed
as[8,9]

n(h="5- [(T-1ym, ©

2{)=——3 2 Mjcoswlt—t;), i=2,..,N

w; 1=
for = T. The time-optimal control switching times can be formulated into a parameter optimization
problem. The cost function in Eq. (4) as the total maneuver time is minimized subject to the equality
constraints. The equality constraints consist of the rigid—-body mode displacement and zero-residual
oscillation for the flexible modes such as

¢

"= g(T_ £)°M;=0 o
i NS .

T gnM,cosw,-(t t)=0, i=2,..,N

The second equation of Eq. (7) can be rewritten, by the anti-symmetric input profile, as follows[8,9]
ﬁ)MjCOS(I)i(tj_tk)zo, Z=2,,N (8)
=

A parameter optimization algorithm can be applied to solve the optimization problem for the optimal
switching times( ¢;, =1, 2, ...,2N—1). There are software tools available for the nonlinear parameter
optimization problems with equality constraints. The MATLAB Optimization Toolbox could be a
candidate for moderate sizes of problems.

Robust Time-Optimal Control

It is well known that the time-optimal control solution is dependent upon the modal parameters
of the system. This is quite obvious from the equality constraints; a nonlinear function of modal
parameters. The switching times are sensitive to the modal parameters as it is shown in the optimization
formulation. Thus some robustness measure should be taken for parameter insensitive control input
design.

A promising approach introduced in the previous studies is to establish extra constraints for
the purpose of robustness enhancement. For instance, the sensitivity of the modal coordinate responses
to the natural frequencies is set to zerol[89]:

an; bi i
dw; @ % w(t—ty) ,g)( ti— twM;sin (t;— 1) ©
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The above condition can be rewritten as

i(t;‘_ tMsinw(t;—t) =0 (10)
=

for i=2,3,...,N. Similarly, high order robustness constraints such as 37! /dw; =0(m=2,3, ...)

can be imposed. This approach is discussed in detail in Ref. [8].

Due to the robustness constraint, the number of constraint equations increases. Hence, the
original constraint by the modal coordinate responses are combined with the robustness constraints
for complete solution. In order to satisfy the extra constraints, the number of parameters, i.e, switching
times should increase as well. In Refs. [8] and [9], the number of switching parameters was increased

to satisfy additional constraints for the robustness constraints. If 7 robustness constraints are introduced,
then the switching times should increase by 27. Hence, the control input in Eq. (5) with additional
constraints needs to be modified as[89]

24t ")
i 2 MUt~ 1) (a1

The same parameter optimization procedure can be applied except for the increased number
of switching parameters and constraint equations. It turns out that the robustness constraints and
corresponding control input with increased switching times contribute to improving robustness
noticeably[8]. The zero deflection derivative constraint with respect to the modal parameters is effectively
satisfied to produce robustified time responses.

Another approach proposed in this study for robust control profile is the so-called augmented
dynamic approach. The augmented dynamic approach is to add an auxiliary dynamic mode around
a particular mode to account for model uncertainty. The extra dynamic mode is assumed to be perturbed
from the nominal model. The augmented dynamic mode is not actual model, but just used to generate
a robustified switching profile. For instance, consider a kth flexible mode dynamic described as

et Oine= du (12)

Now, a augmented dynamic model for the kth flexible mode is introduced as

" ~ 2 ~

77k+ Wr 1= ¢ku (13)
where ;]k represents the augmented dynamic mode and ?uk is the natural frequency perturbed
from the original ;. Hence, the total dynamic system model including the virtual dynamic mode

is written as
- 2
mt w m=e¢u
" * 2
et wp 7= Pru
. ~ 2
Mt wp 1= dpu (14)

" M 2 _
INe1t ONe1“ TN 1= DU

The number of modal coordinates increases due to the augmented mode. It is assumed that

?0k= @~ dw, where the perturbation parameter( dw) could be selected by a designer. Now, the

control input profile should be modified to accommodate the augmented dynamic mode. Thus the
number of switching parameters naturally increases by two for each virtually augmented mode. The
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state of the virtual dynamics introduces additional constraint prescribed as

- ¢k 2(N+1) N
n(H=-=% ZMjcosa)k(t_ %) (15)

(2Paay=;

The augmented modal coordinate should also satisfy the terminal boundary conditions such
as 7,(H)=0, t=T. In other words,

2(N+)
ZMjcosa)k(tj—t,,)=O (16)
=0
The new constraint equation is added to the original constraint equation(Eq. (8)) covering the
augmented dynamic mode also. In order to help us to understand the physical meaning of the new
constraint by the virtual dynamic mode, let us consider
AN+ 1) -
Mjcos wk(t;—t,)
=

2( 1) L

= 2 Mcos (w, £ dw)(t;—t;) a7
2( 1) 2( 1)

= 3 Mcoswit;— )T o0 2 ML t)sinwt— 1)

1=

From Eq. (16) and the terminal constraint on 7, one can easily show that Eq. (17) can be simplified

into
2% D .
ﬁ M,-(t,-—th)sma)k(t,-—th)=0 (18)
=

The new constraint equation is essentially equivalent to the zero derivative condition in Eq.
(10). Hence, the augmented dynamic approach may be regarded as generalization for the constraint

on the sensitivity given by Eq. (10). Further expansion of Eq. (18) for higher-order terms in Jw
yields

24 1) N
g Mjcos w,(t;—ty) (19)
2044 1) 2(Q£1)
= < MjCOS(I)k(tj_ th)+ g M,‘ mglawmfm(t)

where the mth term in the series expansion is equal to

1 2+ 1) ar
fu(D= p g} M; do,” cos wy(t;— t)) (20)

with m=2,...,q. Thus the optimality condition for the high order dw terms can be expressed as
(D=0, m=2,3,.. 1)

This equation is also identical that of Ref. [8]. Hence, we can see again that the augmented dynamic
model serves the same purpose as zero sensitivity equation enhancing robustness.

To help further understanding on the virtual model and corresponding optimal solution for
switching times, the constraints equations, Egs. (8) and (16) are combined together. Consider a switching

time( £;), which should satisfy the constraints for the original as well as augmented dynamic modes.

Let us introduce the following notations for the uncertain model parameter.
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C;e: wi(ti—ty) (22)
= wp(t;— 1))

It can be rewritten in a matrix form as
w c*
ok ](t,-— t)=| < (23)
Wy, C;

One can see that the above form is equivalent to a least-square problem. The switching times are
sought in a way that the parameter perturbation in the augmented mode is computed in the least-square
sense.

The proposed analysis could be used to claim the robustness of the sufficient condition. The
modal coordinate equation in Eq. (3) can be cast into a state space form:

x=Ax+Bu (24)
where the state vector X consists of modal coordinates as x=1[7;, 571,772, ;72, /YA 57N]T
and the system matrices are given by

01 0
00 &,
0 () 0
A= —wy 0 B=| ¢, (25)
0 N 0
—wy 0 éN

For the given cost function in Eq.(5) and the state equation in Eq.(23), the Hamiltonian of
the system can be expressed as[8]

H=1+ A"(A x+ Buw) (26)

for which A represents a costate vector with components given as A=[4;, Ay, ...,Ay, An]”. The

costate vector satisfies the following differential equation
A=—AT2 (27)

One can also see that the Hamiltonian is not an explicit function of time, hence H($) =0 should
hold over the optimal trajectory. The Pontryagin’s maximum principle with the Hamiltonian produces
the following control law

u(#) =— Nsgn[ BTA(D] (28)

where sgn(x) function represents a signum function with sgn(x) =1 if x>0 and sgn(x)=—1
if x<0. Each component of the costate vector satisfies the following differential equations

}11 =0
A=A (29)
A A
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for i=2,3,...,N. It was shown that the costate vector at the half-maneuver time is prescribed

as A(ty) =[A1(£4),0, A5(2,),0, ..., An(2,), 01 7111,

The solution to the differential equations for the costate, therefore, becomes

A= A (ty)

A =—(t—t)A (1)
lli(t)zA[(th)COS(l)i(t_‘ th)
7i(t)=—/1,~(t;,)sina),-(t— th)

(30

for =2, 3, ..., N. From the costate vector solution, the switching function of the system is formulated
from Eq. (28) as follows

&)= A"B (31

By using the costate equation solution, the switching function becomes

D= pli( (1= 1)+ 2 dAt)sinw (i 1,) &

For sufficient condition of optimality, the switching function should be equal to zero for ¢= £y, f5, ..., In.
Now it is assumed that the virtual dynamic mode is added for the kth modal coordinate. A
modal coordinate( ;7k)is added and corresponding change is accommodated in the state and costate

equations. Thus, the new switching function including the kth virtual dynamic mode is given by
E(t) = ¢1/11(th)(t— th) + g:zqﬁi/l,-(th)sinw,»(t— th)+ ¢k )k(th)sin ’C\bk(t‘_ th) (33)

where Z)k= w,* 0w represents the perturbed natural frequency of the kth flexible mode and A b

is a costate. The new switching function should also satisfy
B(H=0, for t=twiivtinps weslan (34)
together with

1+¢1A(8)(t—t,) + g:ﬁﬂ;(th)sinwit:O (35)

Eqs. (33) and (34) can be used to compute A;(#,),A5(2s), ..., Ap(£s) and A, (2,). The sufficient condition

for the optimality thus can be claimed by examining the new shaping function. The augmented dynamic
method thus produces the sufficient condition of optimality. It should be noted that in the previous
approaches[8], where the sufficient condition by robust solution was not dealt with. This is because
extra switching times were just introduced to satisfy necessary boundary and robust constraints.
In our case, the feedback control law becomes

u(f)=— Nsgn[ B” &(9)] (36)

where Bis modified from the original B to associate with the new mode( ;]k).

Simulation Results

Sample simulation results are produced for a two-mass model connected by a spring as
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Fig. 1. X

This model has been used in Ref. [8], and the same model 1——-—?‘ k l——x>2
is adopted in this study for the purpose of benchmark test. This
model represents a simplified flexible spacecraft model m, —W m,
combination of center rigid body and flexible structures
cantilevered to the center body. The governing equations of motion Fig. 1. A two-mass spring
described in terms of displacement of each mass is model

m, /’%1+k(xl_XZ)= U
mo xz—k(xl _xz) =0 37

The mass and stiffness properties are given as m; = my=1kg, and k= 1N/m, respectively.
A rest-to-rest maneuver condition is specified by the following boundary conditions

x1(0)=xz(0)=0, xl(T)=x2(T)=1
x1(0)= %(0)=0, x(D= x(D=1

The modal coordinate equations corresponding to the original governing equations in Eq. (35)
are written as

:01 + ol = du
o+ Wiy = dou (38)

where it can be easily computed as u *
0, =0, wy=V 2k/m=V 2rad| sec. There are two
modes of motion including the rigid-body motion and
one flexible mode. The number of switching times
for the normal minimum-time rest-to-rest maneuver 4 L |4 T
is therefore equal to three as illustrated in Fig. 2.

The symmetric property for the switching '
times can be exploited to reduce the number of
switching parameters to two. The equality
constraints by the boundary conditions for the modal Fig. 2. Control input profile for the
coordinates can be shown to be[8] example model

1

2+28+ B—4tt,=0 (39)
1—2coswy(t;— t) + cos wyty; =0 (40)

The time optimal control solution for the total maneuver time( 2£,) can be solved in conjunction
with the inequality constraints by using the MATLAB optimization Toolbox. For the given parameters,
it can be shown that the solution is exactly same as Ref. [8].

Simulation results for the displacement( x,) of the second mass by the control input with optimized

switching times are presented in Fig. 3. Different values of the material parameter( k) are tested
to examine the robustness of the system responses. As it can be shown, the system response is
dependent upon £ to a significant extent. In fact, Fig. 3 looks almost identical to that of Ref. [8]
for benchmarking purpose.

As we can see, the response satisfies exactly the time-optimal rest-to-rest maneuver conditions
with a perfect model parameter information. However, as the model parameter changes, residual
oscillations are induced. With significant model error, large amount of residual error energy results.
In fact, this result is identical to that of the previous study in Ref. [8].
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Fig. 3. Simulation results with optimized Fig. 4. Control input profile for with a
switching times augmented mode

Now we test the robust control approach by assuming uncertainty in the natural frequency
3. The virtual model approach is taken again by introducing the augmented modal parameter Z)z.

The number of switching times increases by two, so it is equal to five as Fig. 4.
Again, symmetric property for the switching times reduces the number of switching parameters
to three. Constraint equation including the virtual dynamic mode are expressed as

2428 — 28— B— At 1+ Aty =0
CoS Wots — 2cos wo t3— 1) + 2 cos wy(t3-t) —1=10

< ~ 2 (41)
cos wyt3—2cos wy(t3—H)+2cos wy(t3—t)—1=0

The MATLAB Optimization Toolbox is used to solve the optimization problem. Several values
of the model parameter( %) are also examined for simulation. The natural frequency of the augmented
dynamic is setto @, ="V 1.8rad/sec to check the performance of the proposed method. The switching

times obtained are used to plot the responses of modal coordinates. Simulation results are presented
in Fig. 5.

Response of x2
Response of x2
=4
@

k=1 08
A wammsrmssaes Fe09 k=10
0.4 7 e k=08 1 04t k=09
—_ k=07 £z === k=08
02p 5 02 — — — - k=07
% 2 r G 8 10 12 % s G 5 w0 12w

Time(secconds) Time(secconds)

Fig. 5. Simulation results by using robust Fig. 6. Simulation results by using robust
switching times( w,=V 1.8 rad/sec) switching times( w,=V 2.2 rad/sec)

As it can be shown in Fig. 5, the system response looks more robust than Fig. 3 with the
help of the augmented dynamic mode. The perturbation of the modal parameter for the augmented

dynamic mode is made in the direction consistent with change in 4. Next, we select the modal parameter
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perturbation in the direction opposite to the change in /. Hence, it is selected as w,=V 2.2rad/sec.
Switching times are obtained again by optimization, and simulation results using the optimized switching
times are displayed in Fig. 6.

The residual oscillations in Fig. 6 is slightly greater than those of Fig. 5. This is because
the modal parameter perturbation is assumed in the wrong direction. Thus, it may be important to
decide the modal parameter perturbation in a manner consistent with actual parameter change. However,
still noticeable improvement in the transient response in Fig. 6 over Fig. 3 is observed. Thus modal
parameter perturbation method shows inherent robustness.

Next, we assume that the modal parameter perturbation is exactly matched with the worst

case uncertain model parameter( 2= ().7). Thus, the perturbed natural frequency of the second mode
is selected as wy=V 2k/m=V 1.4 rad/sec. Simulation result based upon the optimization result
by taking the new w, is presented in Fig. 7

s 08 = 08
k=1
§ 06 P 1 g 06 ; o :::;
k=09 o / ;
- S k=13
----- k=08
04 o _ 4-07 0A}
02t 02
0 : y - - - L 0 . . =L = - :
1] 2 4 3] 8 10 12 14 0 2 4 13 8 10 12 14
Time(secconds) Time(seconds)
Fig. 7. Simulation results by the perturbed Fig. 8. Simulation results for different
modal parameter exactly matching direction of change in
the worst case model uncertainty K w,=V 2.2rad/sec)

The transient response in Fig. 7 is quite small, and it is because of the modal parameter perturbation
( E)z) exactly matching the worst case model parameter change.

In the simulation results, robustness of the response with respect to the model parameter
change has improved significantly by augmented dynamic mode. Hence, a proper choice for the perturbed

modal parameter ( E)z) can lead to satisfactory performance in the presence of significant model
error. Theoretically, if one choose Z)z in such a way as to exactly match the parameter £, then

the best performance is assured. It should be noted only the first order condition is considered subject

to a small perturbation Jw. For a large value in dw, high order constraints in Eq. (23) should be
imposed.

Also, perturbation in the direction of increasing % was examined. The simulation results are

displayed in Fig. 8. This time, the parameter Z)g is set to be equal to that of Fig. 6. Since the

perturbed Z)g is close to the actual variation of the stiffness( k), the performance should be better
than Fig. 6. This is illustrated well in Fig. 8.

Concluding Remarks

Augmenting a virtual dynamic mode can increase robustness arising from uncertain model
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parameter. It turns out that the new method leads to results similar to the previous approaches by
constraint equations for output sensitivity with respect to model parameter. In the new method, one
can choose the perturbed model parameter like a design parameter. The augmented dynamic approach
results in robust output response over a moderate range of the design parameter. More design freedom
may be provided, therefore, by the proposed approach for robust performance of flexible spacecraft
maneuver and vibration control.
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