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Abstract

The vibration characteristics of rotating machinery are directly related with
its condition such as rotor types, thereby it should be acquired the information from
the vibration signal so that operating conditions may be rationally decided.
Accordingly, the study is to focus on developing the analysis for identifying the
operational feature of rotor systems. For this purpose the complex frequency
analysis for identification, which utilizes the directional spectrum for effective
identification of rotor systems, is introduced. From this proposed method, the
analysis of dynamic model of the rotors is performed including the stability
behavior of the general rotor by Floguet theory. Through this process the
excitation methodology to identify the types of rotors is investigated and the
effective way to identification is also suggested.
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Introduction

Rotating machinery is one of the most important and critical items of many mechanical
systems such as power stations, aircraft engines, machine tools, marine propulsion, and medical
equipment, etc. Predictive identification by the condition monitoring of this machinery can
greatly reduces the catastrophic failure and unnecessary maintenance. Therefore, much effort
has been made over past years to develop the practical diagnostic methodology and to identify
the condition along with rotor types and operational feature for rotor system [1~4].

In general, a rotor-bearing system consists of rotors and stator parts. According to the
non-axisymmetric properties of the rotor and stator, let the rotor types be classified as follows
[1]: isotropic (symmetric) rotor system-both the rotor and the stator are axisymmetric;
anisotropic rotor system-the rotor is axisymmetric but the stator is not; asymmetric rotor
system-the stator is axisymmetric but the rotor is not; general rotor system-neither the rotor
nor the stator is axisymmetric. Conditions for the asymmetric rotor system are as follows : the
two pole generators such as a rotor with asymmetric moment of inertia, a shaft with keyway
or rectangular cross section with asymmetric stiffness, a crankshaft with hydrodynamic
bearings or two shafts in parallel connected by a couple of gears, and as a special case for a
crack, which may develop in a open/closing or breathing status. Likewise, the anisotropic rotor
system are; the typical fluid-film bearing and the magnetic or hydrostatic bearing with a
comparatively heavy rotor weight, which have a anisotropic stiffness and damping properties,
and the supporting structure and foundations with usually having different stiffness properties
in the two orthogonal directions.

A general rotor system associated with crack and stator anisotropy is comprehensive case of
above illustrated systems, which is general in practice and real in industry.Most of the rotating
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machineries have the one more combinational or even total properties of a general rotor
system, which includes three types, i.e., isotropic, anisotropic, asymmetric property.

If one could detect the rotor types their conditions are easily identified, through which
health monitoring, diagnostics and even detecting failure accumulations are possible. For this,
the identification of such properties of a general rotor system becomes essential in gaining an
adequate physical understanding of the dynamic behavior of practical rotors.

This paper proposes the efficient identification method by analyzing the directional
spectrum characteristics by harmonic inputs for rotor systems. Also the stability of a general
rotor by Floquets theory[5] is introduced and the methodology to identify the rotor types is to
be investigated.

Complex Analysis and Equation of Motion for Rotor System

The complex modal analysis, which has been recently developed for rotor systems, utilizes
the so-called directional spectrum analysis between complex inputs and outputs for effective
identification technique[l]l. The use of complex coordinates leads to reduction in the size of
equations of motion by one half for axisymmetric systems and allows clear physical
interpretations so that identification of modal properties of the rotor system becomes
straightforward. It also defines the backward and forward modes for clear physical insight and
separates them in the frequency domain, whereas they are heavily overlapped in the classical
modal testing theory, so that the effective modal identification and searching more easy way to
identify the properties of the rotor types are possible.

Here consider a model of simple asymmetric rotor with a rigid disk located on the shaft
axis and rotating on two anisotropic stators or supports as shown in Fig. 1. Here the simple
rotor means considering the translatory motion only for analytical simplicity. A rigid
asymmetric disk element and the stationary coordinates of its center of mass representing

translations are y, z and the rotating coordinates fixed at the shaft are & 7. In this model, the
shaft is assumed to be comparatively light to neglect its mass. Also the stator(bearing) masses
are neglected. Only the disk mass m is considered. No coupling and gyroscopic effect between
y( &) and z( 7)) are assumed. The shaft stiffness and damping coefficients are used as those of
lumped parameters for modeling simplicity. Note that the effect of internal damping cg, ¢, and
shaft stiffness kg, £, include the assembled interference effects as joining or pressed on disk or
sleeve to fit shaft to disk.

The equations of motion is derived from the Lagrangian equation applying the lumped

parameters. For this proposed model for the simple general rotor, the equation of motion can
be obtained in the following complex form as[1,4,6]
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Fig. 1. Modeling a rotor system
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where the response and input vectors are

1'=}’+./Z, Pz[fd, ’[: rz]r, g:[gyd+./gzd’ 0! O]Ts (2)
here overbar P means complex conjugate of P, likewise, overbar notations correspond the
same meaning henthforth; j means the imaginary number; the bar denotes the complex
conjugate; @ is the rotational speed; M, C and K are the 3x3 complex matrices representing
the generalized mass, damping and stiffness, respectively; the subscripts f, b, and r refer to

the forward or mean,anisotropic and asymmetric properties, respectively; 74, 7], 7y are
displacements of disk, #1,2 bearing displacements, respectively, and &4, &, are forces at disk

in y-z directions, respectively; the coefficient matrices for parameters can be also written as
follows
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where [/=1/+ 1/, the subscripts d, 1, 2 denote disk, bearing 1 and bearing 2, respectively. and
the parameters are described in the form of

Cr=(C€+Cn)/2, AC‘,:(Cé"‘Cn)/z, krz(k§+k»,)/2, Ak,=(k€“‘@')/2,

c=(cytc) /2, Ac=(c—c) /2, k=(kH k)2, Ak=(k/k,)/2. )
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Note that the equation of motion (1) reduces to an isotropic rotor where an C, =C,=K, =K, =0,
anisotropic rotor where c, =k, =0, asymmetric rotor where C,=K,=0.

From Eq. (1) and its complex conjugate form, the complex equation of motion can be
constructed as

M§®) +C()q()+Ktq®) =f(t) | (5)

0= iof =[5

2Q¢ K K,+K e/?ﬁf
M=[’" 0] C(t)=[ S } K(t)=[ F o b o }
) ) (6)

where

0m C,+C,e™ C; K, +K e K

Equation (1) can be rewritten in the state space form for response analysis as

A(t)W(t) = B(yw(t) + (1), @
where
[0 ™ M o _{a® [0
AP [M C(t)} B [0 -K(t)]’ v {q(t)}’ F® {f(t)} @®

Now consider the responses with a numerical approach, because no closed form solution is
available for a general rotor system as in Eq. (1). For this the equation form for solution of
the given simple general rotor model for Runge-Kutta integration method is rearranged as

q=E'(Fq+G) ©

where the inversion of E assumed to exist. In this case the bearing responses are condensed

to eliminate the matrix 92«2 because of neglecting bearing masses, which causes corresponding
matrix to be singular and if neglecting the damping coefficients of the shaft and bearings the
corresponding 0 matrix would be condensed further, so that the response and force vectors
become respectively

q=[r, 717 r=[, 7, n, nl"  G=0,, gl , (10)

and the coefficient matrices are
0 m 0] C=C e™+C, A C B -D
A=|m C 9 B= _ 5 _ 20 s E=|_ _ 2 F= 5 =l (11)
o f 0-K¢| D=K,¢ +Ky C A D B

Stability and Directional Spectrum Analysis of Rotor System

The stability of the time-periodic system can not be determined by normal eigenvalues so
that in periodic system one must resort to Floguet analysis[5]. In this case ¢@(#) is a
fundamental matrix that satisfies the matrix equation with the initial condition ¢(O)= L
Here ¢(7T) is the monodromy matrix can be obtained after one period T(= 7/ ) from the
initial condition ¢((0) which is calculated from the numerical as Runge-Kutta method. From
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these premises an eigenvalue problem is derived in the form of [¢(7T)— Al ]r=0 . The
criterion of the stabilities is that the system is stable for the condition that all eigenvalues are
|A |<1whereas unstable if any of the eigenvalues is |A |>1.

The key idea for the directional spectrum(dS) of a general rotor system is that the
harmonic components can be directly identified in the directional spectrum which is acquired
from Fourier transform of the complex-valued signal representing responses derived in equation
(5). The positive(negative) frequency components appearing in the dS physically correspond to
forward(backward) whirling components. Thus from the configurations of the dS for various
harmonic excitations the detection of the rotor types(isotropic, anisotropic, asymmetric and
general rotor), by which the diagnosis for any defect or fault could be effectively used. The
directional spectrum can be directly obtained from the Fourier transformation of this
response[7].

Numerical Simulation Results and Discussions

For simulations, the numerical values of parameters for the proposed simple rotor model
have been used as shown in Table 1 and the common parameters such as disk mass and the
unbalance with 0 phase expressed by me, where m is unbalance mass and e is its eccentricity,
are 8 kg, 10 g.cm, respectively, along with ;= =300 mm.

Table 1. Values of Physical Parameters Used in Rotor Model

Part Parameters lsgg?opric Ani;gg?rpic Asyg:)rgertric General Rotor
- ke 8x10° 8x10°
Shaft Sliffiass 8x10° 8x10°
k, 6x10° 6x10°
Internal | C¢ 500 500
Shaft/Disk | Damping 500 500
(Nsec/m) | ¢, 300 300
6 6
Stiffness Ry . 3x10 o 3x10
(N/m) Bl . 10 .
Bearings ke 2x10 2x10
#1.2) Damping | Cév - 5x10° - 5x10°
X
(Nsec/m) Che 3x10° 3x10°

For the stability conditions of the general rotor, Fig. 2 exhibits the unstable configuration
found around 5000 rpm by Floquet’s maximum characteristic multiplier greater than 1 so that
the system shows inherently diverging, i.e., the 1st critical speed is about 5000 rpm so that the
system resonance is located around that region.
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Fig. 2. Stability Check of General Rotor from Max. Characteristic Multiplier



44 Dong-Ju Han

! T 7 7
-10000 -5000 o 5000 10000 -10000 -5000 o 5000

Frequency ( [z« 60:rpm) Frequency ( I1z ¥ 60:rpm)

(a) lsotropic Rator (b) Anisotropic Rotor

ax
7 7 + 8000
10000 20000 30000

7 ' T
-10000 o 10000 20000 -30000 -20000 10000 o

Frequency ( Hz » 60:rpm) Frequency ( Hz « 60:rpm)

(c) Asymmetric Rotor (d) General Rotor

Fig. 3. Directional Spectra of 4 Rotor Types by Unbalance/Weight Excitation

The proposed directional spectrum by excitations at, disk is obtained from FFT(Fast
Fourier Transform) of the steady state response derived by 4th order Runge-Kutta integration
method. Here the toolbox of fft and shift in MATLAB are used to extract FFT and shift the
frequency spreads over zero position. Fig. 3 show typical cases among other ones the
simulated results of 4 rotor types at disk location. They show overall directional spectra
profiles by waterfall plots at suggested excitations.

Table 2. Simulated Results of Directional Spectra for Identifying 4 Rotor Types by Excitations
[U : Unbalance(Forward 1X), W : Weight , B : Backward 1X]

Isotropic Rotor |Anisotropic Rotor| Asymmetric Rotor General Rotor
U 1X -1, 1X 1X —1X,1X 3x
W 0X 0X 0X.2X -4x,—2X,0X . 2X .4X
U/W/B _1X1 _1X’ —1X1 262K, _1X’
0X,1X OX,1X 0X,1X,2X,3X 0X,1X,2X,3X,4X
u/B —1X,1X —1X,1X | —1X,1X,3X ax,— 11X, 1X,3X
uw 0X,1X | -1X,0X, 1X | oX, 1X2x | -2X—1X,0X,1X.2X,3x
WB | —1X0X |~1X.0X1X —1X,(:(x,2x,3 ax,—2X,—1X,0X, 1X,2X,3X,
ax
B —-1X —1X,1X —1X.3X %, — 1X,1X,3X

[ : Excitations Possible to Identify the 4 Rotor Types
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Here in a general rotor all the modes observed in the three types of rotors are appeared
along with extra modes, ie., the 3rd and 4th order forward and backward modes. The
directional spectra show clearly the characteristics of the 4 rotor types. From clear separations
of spectra in two-side frequencies we can tell diagnostic properties in directional-wise. In a
general rotor, higher harmonics above the 2nd are sporadically appeared according to rotational
speed ranges. Table 2. shows the simulation results of the directional spectra for 4 rotor types
by the various excitation techniques at disk. Here the 7 excitation types are considered to
identify the 4 rotor types, through which they can be discriminated by the directional spectra
of them. Among these the backward excitation looks theoretically best for its simplicity and
observations, however in real world, every rotor system has an unbalance and weight
inherently even small quantities so that pure backward excitation technique is not available.
Other excitations have the similar problems. As a result the use of the unbalance and weight,
which are the inherent properties in real rotor system, can be the most available excitation
techniques for identifying the types of rotors in practice.

Conclusions

To investigate the feasibility of the identifying methodology by using the complex
frequency analysis of a rotor system, the simple general rotor model is formulated. From that
proposed model the system stability analysis is studied in advance by using Floguets theory.
Based upon response analysis the directional spectrum analysis is performed, thereby the
dynamic behaviors of the 4 rotor types are identified, through which the one of the most
effective way to excite for identifying the rotor types is found to be the unbalance and weight,
i.e. the inherent property of the practical rotor system.
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