64 KSAS International Journal. Vol. 5, No. 1, May 2004

Load Balancing for CFD Applications
in Grid Computing Environment

Soon-Heum Ko*, Chongam Kim** and Oh-Hyun Rho**

School of Mechanical and Aerospace Engineering
Seoul National University, Seoul, Korea, 151-742

Kum Won Cho***
KISTI Supercomputing Center, Daejeon 305-806, Republic of Korea

Abstract

The Grid is a communication service that collaborates dispersed high
performance computers so that those can be shared and worked together. It enables
the analysis of large-scale problem with the reduction of computation time by
collaborating high performance computing resources in dispersed organizations. Thus,
the present paper focuses on the efficient flow calculation using the Grid. To increase
parallel efficiency, a simple load balance algorithm for the Grid computing is proposed
and applied to various aerodynamic problems.

Key Word : Grid, Load Balancing
Introduction

According to Moore's law, computer speed doubles in every 18 months. In proportion to the
development of computing resources, the problem size in CFD(Computational Fluid Dynamics) has
been remarkably expanded. However, even now, a lot of problems require too enormous
computing power to be analyzed using single parallel cluster. As an alternative proposal, the
concept ‘Grid’ was planned and is on research nowl[1, 2].

It is obvious that the Grid enables a researcher to analyze large-scaled aerodynamic
problems, for example, integral analysis of an airplane and detachment motion analysis of
multi-stage launch vehicle. However, diverse communication speed among computing resources
and various performances of processors can reduce parallel efficiency in the Grid.

Therefore, the present research focuses on the efficient flow calculation in the Grid. As an
investigation of load balancing in the Grid, a simple load balance algorithm is proposed and
applied to various problems. For the validation of proposed algorithm, the flowfield around a 3-D
tangent-ogive cylinder is analyzed by collaborating multiple computing resources in Aerodynamic
Simulations Laboratory, Seoul National University. And then, developed load balance algorithm is
expanded to be applicable to CFD problems with domain decomposition techniques; e.g.,
multiblock technique and Chimera overset technique. As an application to multiblock problem, the
flowfield around a 3-D boattail configuration is analyzed, and, a multi-element wing is analyzed
as an application to Chimera overset mesh. From the results, proposed algorithm partitions the
computational domain considering the performance of each processor and communication speeds
among computing resources. And the results show the validity of proposed algorithm.

* Ph. D Candidate, Aerodynamic Simulation Laboratory, Seoul National University
x* Professor, Seoul National University
E-mail : chongam@plaza.snu.ac kr, Tel : 02-880-1915, Fax @ 02-887-2662
*#x Researcher, KISTI Supercomputing Center

Load Balancing for CFD Applications in Grid Computing Environment 65

GOVERNING EQUATIONS & NUMERICAL SCHEMES

The three-dimensional compressible thin-layer Navier-Stokes Equations are adopted as
governing equations. As a spatial discretization, AUSMPW+(modified Advection Upstream
Splitting Method Press-based Weight function)[3] has been applied and turbulent viscous
components are evaluated using the k-0 SST(Shear-Stress Transport) turbulence modell4].
LU-SGS (Lower-Upper Symmetric Gauss-Seidel) schemel[5] is used as the implicit time
integration method.

A single-block mesh with 71x91x81 mesh points is used for the analysis of a tangent-ogive
cylinder, a boattail problem is analyzed by using multiblock mesh with mesh sizes of 81x25x81
and 81x25x161, and Chimera overset mesh for multi-element wing analysis has 249x37x81 mesh
points as a main grid and 125x37x41 mesh points for a flap.

INVESTIGATION OF PARALLEL EFFICIENCY IN THE GRID

There have been many researches on the development of load balance algorithm for parallel
computation. [6,7,8] However, any algorithm cannot be applied to all applications as load balancing
is a NP-hard problem and the optimal parallelization depends on the characteristics of the problem
itself. Thus, applicable references for efficient parallelization of CFD problems are deficient. [9,10]

Especially, in the Grid where dispersed computing resources collaborate, consideration of
communication speeds among processors should be added for load balancing. Therefore, load
balance algorithm for the Grid should satisfy the minimization of communication time among
resources as well as optimal load distribution considering the capacity of each processor. And the
algorithm should be simple enough for many researchers with little knowledge of computer
science to implement easily.

Thus, a load balancing algorithm is developed to satisfy the requisites mentioned above. To
have optimal load distribution, all processors execute the same amount of calculations and check
their own computation time. And the reverse of computation time is prescribed as the performance
of each processor. Reduction of communication time is achieved by applying the 'Grouping
Method’. Each processor communicates with all other processors and the processors with
relatively faster link are considered as a group. And then, the whole computational domain is
firstly partitioned to the group level and then partitioned again to each processor. It will increase
the possibility that a processor is located near the processors with faster link, reducing the
communication time in the inter-processor boundary. Finally, performance test is accomplished by
using the same flow solver as the analysis solver, and communication time is checked by sending
the residual computed from performance test. Therefore, the algorithm can be easily implemented
to any CFD solvers simply by appending the grouping process and partitioning process to the
solver.

To explain load balancing process easily, some assumptions are added. Firstly, all the
clusters are located in dispersed organizations. It means that each cluster is considered as a single
group as communication speed between resources in different parallel clusters is much slower
than the communication speed between resources in the same cluster and the number of groups
will be the same as the number of collaborating clusters. Secondly, a cluster is composed of many
nodes that have the same capacity. It means that the performances of processors in the same
group will be the same. Finally, a rectangular computational domain is allotted to each processor.
Even though the complicated partitioning method as graph partitioning may increase parallel
performance slightly, it requires severe efforts at generating partitioning routines and modifying
boundary conditions routines. Thus, the whole computational domain is partitioned to be
rectangular domains.

Procedure of the algorithm is as follows.

66 Soon-Heum Ko, Chongam Kim, Oh-Hyun Rho and Kum Won Cho

Algorithm : Load Balance Algorithm in the Grid

C : Total Number of Clusters tm : Computation Time of Processors in the
M : Cluster Number(M=1, -, C) M"™ Cluster
Nwm : Number of Processors in Each Cluster |PFpy : Performance of Processor
TWwm : Total Work Allotted to Each Cluster Wen ° Amount of Work Allotted to Each
PN : Processor Number Processor
(PN=1, ==, Ny+---+Nc) IxJxK : Size of Computational Domain
Ty, T2 : Team Number

0. Supposition : PN from 1 to N; belong to 1** cluster and from N;+1 to N;+Nz to 2™ cluster,
and so on. Cluster number and group number are identical, meaning that the processors in the M
cluster are M™ group.

1. Performance Test : Each processor executes several iterations of flow solver using the
same computational domain(not applying boundary conditions) and check computation time, ¢t». Then
the performance of each processor is:

; (N, + -+ Ny_) +1<PN<(N;+ -+ Ny ,
PFpn = v where
M M=1,-,C

And the capacity of M* " cluster, TWas is defined as TWa = Ny x PFpy , the multiplication
of number of processors in that cluster and the performance of each processor in that cluster. And,
the value of TWy in this step is not the real amount of load to the cluster, but factors.

2. Communication Test : Each processor has no information about which cluster it belongs
to. Thus, communication test is required to judge the cluster number the processor is located. To
find out the cluster number, each processor communicates with all other processors as mentioned
above.

From the result of communication test, grouping process is accomplished. And, each cluster
is considered as a group in this case, based on the first assumption above.

3. Arrangement of Groups to Blocks(Optional) : This step is required when the problems with
domain decomposition methods are analyzed. The explanation is carried out later on.

4. Partitioning of Computational Domain to Each Group : The whole computational domain
is firstly partitioned to each group. Main concept is to split the domain into two zones by considering
computing capacity of each team and repeat the splitting process until each group has its own domain.
And the splitting process is as follows.

4.1 Domain Splitting into 2 Teams : Find the longest section among I, J and K(Suppose
K is maximum.). Then the whole domain IxJ/xK will be distributed into two parts by splitting K
into K and K3, and each part will have the domain of IxJxK; and IxJxK>.

And, combine all groups into two teams. For example, when 3 different groups exist (in this
case, it means that 3 clusters are used as the composition of cluster is identical to the composition

3__
of group), there can be 2 3 2 cases. And each team will have the capacity, 71 and T3, as shown

below :
Team 1 Team 2
T = TW, T2 = TWoATW;3
T = TW:2 To = TWs+TW,;
Tr = TW;s To = TWi+TW:
2€-2

In general, there exist 2 different cases.

Load Balancing for CFD Applications in Grid Computing Environment 67

. . . T, .
The optimal load balancing takes place when the load ratio of two teams, T; is equal to

the ratio of splitted domain size, 7{—1 However, it is impossible as Ki and K> are integer values
2

and they have the constraint that K;+K>=K. Thus, a test parameter is introduced to find an optimal
case :

I,
T\+ T,

T,
T\+ T,

£t S PV

el T T, KT

[Kx NI x|Kx

where [] means Gaussian operator and || means absolute value.
The optimized grouping is when 'Test’ is minimized. And, at that time, K; and K> are

T] TZ

T\+ T, T1+T2)

Ki = round(Kx), K2 = round(Kx
where round means round function.
And, group 1 and group 2 have total work of IxJxK; and Ix]JxK>, respectively.
. _ ™

If 2 different clusters are used, K, = round (K x ™W + TW,) and
_ __TITW,
K, = round (K x W + TW,
= [xJxKo.

4.2 Distribution of Work to Each Cluster System : Processes in Step 4.1 are repeated in
every team until all cluster systems have their own total work.

5. Assignment of Work to Each Processor : Work allotted to each cluster is divided into
all processors in the same cluster system. It is achieved simply by applying the method in step 4
to the processor level. Then, work assigned to each processor is calculated as follows:

Nl+"'+NM_|+ISPNSN1+"‘+NM s

). And, real work loaded in each cluster is TW) = IxJxK; and TW>

Wen = % where
M M=1,-,C
6. Flow Analysis : Flow solver starts.

Now, the procedure in step 3 is to be described. The procedure is very similar to step 4 and
only redistribution of groups is required.

3.1 Allocation of Groups into Each Block : The same process as Step 4 is carried out to
allocate computing resources to each block firstly. In this process, the ratio of 71 and 73 should
be alike to the ratio of Si and Sz + - + S, where S means the size of b™ block. That is,

Test=|(Sy+ -+ S)X T, — S X T,|

should be minimized.

3.2 Division of A Group into 2 Groups : To optimize Test value, some processors in one
group are assigned to other block. Migrated processors are considered as a new group and they
are withdrawn from former one. Therefore, total number of groups increase by one and the capacities
of groups, TWiomer and TWhiew are computed again considering redistributed number of processors,
Nfommer and N, new.

These processes are iterative until all blocks are endowed with their own computing resources.

Even though it is assumed that each cluster constitutes a group, that assumption is introduced
only for convenient explanation of the algorithm. As for the first assumption, there is no problem
when many clusters in one organization collaborate with the clusters in different organizations. The
only standard for the algorithm to classify the resources into groups is the relative differences of
communication speeds. Therefore, if multiple clusters in one organization are used, the algorithm
will judge that clusters as one group. And, the violation of the second assumption doesn’t make

68 Soon-Heum Ko, Chongam Kim, Oh-Hvun Rho and Kum Won Cho

any trouble, either. Each processor checks its performance in the first step. Thus, the capacity of
each group is easily obtained by the summation of performances of processors in that group.

Finally, developed algorithm has the following characteristics.

1. Optimal Balancing of Loads : Each processor fulfills the performance test and the allocation
of load is accomplished based on its own performance. Especially, performance test is carried out
using the flow solver of the user. Therefore, the result of load balancing is optimized for that solver.

2. Reduction of Communication Time : By grouping the resources with faster link, the algorithm
increased the possibility to reduce the communication time in the inter-processor boundary. However,
it is not optimized result to minimize communication time. Change of arrangement of resources and
modification of partitioning technique may improve communication efficiency.

3. Simplicity of the Algorithm : Both performance test and communication test is accomplished
by using existing flow solver. Therefore, only grouping routine and partitioning routine are to be
added to the existing flow solver.

RESULTS

Validation

As a validation problem of the proposed load balance algorithm, a tangent-ogive cylinder is
analyzed. Mesh is shown in Fig. 1 and parallel computations are carried out using computers in
Aerodynamic Simulations Laboratory, Seoul National University. The result of flow analysis is shown
in Fig. 2, showing the validity of the flow solver. Performances of collaborating resources are shown
in table 1.

For the collaboration of resources in WAN(Wide Area Network), Globus[11] is installed to
each resource and, parallel processing is executed using MPICH-G2[12], the Grid-enabled version
of MPICH.

f 05 . Leowa
\‘/ 0.45 § o) Elx_p(Lor:r:ani)
04—6‘ v sx':v‘;?nmm)
035F ;j‘
03fF {y
Sl ¥
0.15F \"v
0.1 'DQ vk
005F © - 2 v
oF o) QOQ 0000
005k Q
L 907,) 1 1
0 2 4 [8 10
X/D
Fig. 1. Single-block Mesh around Fig. 2. Cp of a Tangent-ogive Cylinder
a Tangent-ogive Cylinder (Ma=1.98, Re=0.39+10°, AOA=10")
Table 1. Computing Resources
CPU(s) RAM
SPM cluster(4 Nodes / 8 Procs) P-Ill, 933 MHz 512 MB
fastcfd2 PC(2 Procs) P-Iv, 14 GHz 1 GB
mana PC(1 Proc) P-1lI, 866 MHz 256 MB
fastcfd4 PC(1 Proc) P-Ill, 500 MHz 512 MB

Load Balancing for CFD Applications in Grid Computing Environment 69

To show the validity of proposed algorithm, elapsed time of flow solver with load balancing
is compared with the result without load balancing. In imbalanced case, the whole domain is explicitly
partitioned with the same sized and partitioned domain is allotted to each processor. To see the
performance of the algorithm, 3 different computations are performed. Firstly, as a reference case,
flow solver iterates with no modification. Secondly, to check communication time of inter-processor
boundaries, boundary communication routine is erased from the flow solver and computation is
performed. Finally, to show the validity of load balancing, convergence check routine is deleted and
time for pure calculation is checked. To compare the results, all computations do 1000 iterations.
12 processors are collaborated and the result of mesh allocation to the processors is shown in table
2. As collaborating resources are located in the LAN(Local Area Network), machine-to-machine
communication is the slowest link and, each machine is considered as a group after the grouping
process. Even though SPM is a single cluster with 4 nodes, all nodes in the cluster are considered
as different groups as node-to-node communication speed is far slower than processor-to-processor
communication speed inside the same node.

Table 2. Allocation of Load to Processors

. PE . .
Initial Group (Processing Element) Size Ratio
PEOO 27+48+31=40176 1.69
GRPO1 (SPM Node01)
PEO1 27+48+31=40176 1.69
PEQ2 23+42+42=40572 1.70
GRP02 (SPM Node02)
PEO6 24x42+42=42336 1.78
PEO3 35+48+24=40320 1.69
GRP03 (SPM Node03)
PEO4 35+48+25=42000 1.76
PEQS 35+48+24=40320 1.69
GRP04 (SPM Node04)
PEO8 35+48+25=42000 1.76
PEO7 35+42+38=55860 2.34
GRPO5 (fastcfd2)
PEO9 35+42+38=55860 2.34
GRP06 (mana) PE10 23+42+42=40572 1.70
GRPOQ7 (fastcfd4) PE11 16+48+31=23808 1

The validity of proposed algorithm is confirmed from the results shown in table 3. In table
3, computation times for 3 different analyses are presented and, the reductions of calculation time
and communication time are obtained from these data. Firstly, communication time in inter-processor
boundary is calculated from the difference of analysis 1 and 2. From the results, communication
time in proposed algorithm is about 14.1% more than the result without load balancing. It is unavoidable
that present algorithm partitions the whole mesh unequally and some processors with better
performances will have more inter-processor boundary area.

Elapsed time for convergence check is calculated from the difference of second and third analysis.
And the results of 2 tests are nearly the same. It is natural in the sense that the amount of communication
in convergence check part is directly proportional to the number of processors.

Now, the results of pure calculation time show the validity of proposed algorithm. The algorithm
is ideal if the reduction ratio of calculated time between 2 test cases is proportional to the reduction
rate of domain size allotted to the lowest-performanced processor. As the performance of PE11 is

70 Soon-Heum Ko, Chongam Kim, Oh-Hyun Rho and Kum Won Cho

lowest of all, PE11 requires the longest calculation time in the analysis without load balancing. And
elapsed time is about 1319 seconds. However, in the present algorithm, elapsed time for the calculation
is only about 802 seconds. As the ratio of domain size to the worst processor(PE11) is 56.7% and
the ratio of calculation time is about 60.8%(=802/1319), the algorithm is appropriate.

Table 3. Variation of Computation Time

Analysis Test Case With Load Balancing(®) Without Load Balancing(®)
Full Analysis () 1438.620 1883.366
No Boundary Comm. (@) 904.344 1415.335
Pure Calculation {Worst) (®) 801.787 1318.729

Analysis in the LAN

As an application problem of proposed load balance algorithm, a boattail configuration with
a propulsive jet is analyzed.[13] A multiblock mesh is generated for the analysis of the present problem.
The first block is generated along the body of the configuration, while the second block represents
downstream of the body. Sizes of blocks are 81x25x81 and 81x25x161, respectively. And, generated
computational mesh and pressure contour are presented in Fig. 3. 1000 iterations are performed and
elapsed times of present algorithm and uniform distribution are compared to show the validity in
the problem with domain decomposition method. The result of mesh distribution to the processors
is shown in table 4.

Table 5 shows computation times for 3 analyses as explained in previous chapter. Firstly,
communication time in inter-processor boundary is increased a little. From the results, communication
time in proposed algorithm is about 11.9% more than the result without load balancing. And, elapsed
time for convergence check shows nearly the same result between 2 tests. Finally, the result of
calculation time is decreased a lot as expected. In the present composition of computing resources,
PEO2 shows the lowest performance. Therefore, PEO2 requires the longest calculation time in imbalanced
test case, about 1317 seconds. In the present algorithm, time for the calculation of PE02 (located
in the 2™ block) is only about 774 seconds. As the load to PE02 is 58.5% of the second case and
the ratio of computation time is about 58.7%(=774/1317), it is guaranteed that the present algorithm
balances the load.

However, load imbalances between processors in different blocks are shown in the result. For
example, the load to PE0OO is about 7% more than PE10 even though they have the same performance
and, time consumption of processors in the 1% block is 6.7% more than elapsed time in the 2" block.
It is because a processor should be positioned inside a single block in the present algorithm. Therefore,

a) The Whole Flowfield b) Near Base Region

Fig. 3. Pressure Contour and Multiblock Mesh of a Boattail Problem
(Ma = 2.0, Maexit = 2.5, Pext = 3.0¢Pw)

Load Balancing for CFD Applications in Grid Computing Environment 71

load imbalance between blocks takes place. This phenomenon will be insignificant as the number
of processors increases, while it will cause trouble if the number of blocks is relatively excessive.

Table 4. Allocation of Load to Processors

Block Initial Group PE Size Ratio
PEOO 40+24+40=38400 1.71
GRPO1 (SPM Node01)
PEO1 40+24+40=38400 1.71
1
PEO5 40+24+40=38400 1.71
GRP04 (SPM Node03)
PEOQG 40+24~40=38400 1.71
PEO3 40+24+38=36480 1.62
GRPO03 (SPM Node02)
PEO4 40~24+38=36480 1.62
PEO9 36+24+42=36288 1.62
GRP06 (SPM Node04)
5 PE10 44+24+34=35904 1.60
PEO7 40+24+54=51840 2.31
GRP04 (fastcfd?)
PEO8 40+24+54=51840 2.31
GRPO02 (fastcfd4) PEO2 36+24+26=22464 1
GRP07 (mana) PE11 44+24x34=35904 1.68
Table 5. Variation of Computation Time
Analysis Test Casel vt Load Balancing (@) Without Load Balancing (@)
Full Analysis (D) 1286.3 1741 4
No Boundary Comm. (®) 921.3 14152
Pure Calculation (Worst) (®) (Block 1) 825.6 (PE02) 1317.0
(Block 2) 773.6

As the second application, flow around multi-element airfoil is analyzed using Chimera overset
mesh. NLR 7301 airfoil is stretched to spanwise direction with taper ratio and wingtip is smoothened.
Surface mesh with streamlines is shown in Fig. 4. Main grid is four times larger than sub-grid
in mesh size and, 10 processors are collaborated to compare present result with the analysis without
load balancing. Result of domain partitioning is shown in table 6.

The results of comparison between two cases are shown in table 7. Firstly, communication
time in the boundary is decreased about 3.8% in proposed algorithm. It seems the result is contradictory
to the result presented in the analysis of multiblock. However, it is feasible in the sense that
communication for domain connectivity takes place as well as inter-processor boundary communication
in Chimera grid technique. It is clear that some processors with better performances have more
inter-processor boundary area and they require more communication time. But, communication cost
for domain connectivity solution is basically load-imbalanced as donor cells and fringe cells are
concentrated to some specific positions and sometimes better communication cost can be gained when
superior processors contain less donor and fringe cells.

Time for convergence check in present algorithm is increased about 2 times. It is by the reason
of synchronization problem. Computation time per iteration can be varied even though same calculations

72 Soon-Heum Ko, Chongam Kim, Oh-Hyun Rho and Kum Won Cho

Fig. 4. Surface Mesh with Streamlines
(Ma=0.185, Re=2.51+10%)

are performed in the processor and, it can
cause this kind of result. However, increase
of computation time based on synchronization
problem is a very small portion of total
computation time, not more than 2%.

Finally, calculation time is about 79.6%
comparing to imbalanced case. As the ratio
of load assigned to the lowest-performanced
processor(PE09) between 2 cases is 61.3%,
pure calculation time of the present analysis
should be about 60% to 65% comparing to
the second case. However, reduction of
computation time is not as good as expected
and it is presumed that load imbalance is
present in domain connectivity calculation.
Totally, proposed algorithm gained 17.5%
increase of parallel efficiency comparing to
the result without load balance. However, in

the analysis of Chimera overset mesh, the efficiency of present algorithm is not as good as expected.
Mainly it is caused by the absence of optimized parallel algorithm for Chimera overset mesh and
a propound investigation on parallel algorithm for Chimera mesh is keenly required.

Table 6. Allocation of Load to Processors

Grd Initial Group PE Size Ratio
System
PEOO 62+36+40=89280 1.63
GRPO1 (SPM Node01)
PEO1 62+36+40=89280 1.63
PEQ2 62+36+40=89280 1.63
GRP02 (SPM Node02)
Main Grid PEO3 | 62+36+40=89280 1.63
(wing) GRP04 (fastcfd2) PEO5 | 75+37+46=126900 2.31
GRPO05 (SPM Node04) PEO6 75+36+33=89100 1.62
GRP06 (mana) PEO8 49+36+49=86436 1.58
GRPQ7 (fastcfd4) PEQ9 49+36+31=54364 1
Sub-ari PEO4 62+36+40=89280 1.63
ub=ard | 2p03 (SPM Node0d)
(flap) PEO7 62+36+40=89280 1.63
Table 7. Variation of Computation Time
Analyls Test Case With Load Balancing (®) Without Load Balancing (®)
Full Analysis (D) 52068 63120
No Boundary Comm. (@) 47189 58050
Pure Calculation (Worst) (®) 45621 57304

Load Balancing for CFD Applications in Grid Computing Environment 73

Analysis in the WAN

Now, the algorithm is applied to the collaboration of resources in the Grid. A multiblock problem
of boattail configuration is analyzed collaborating three different clusters in K* Grid. Totally 12
processors are collaborated and 14431 iterations are executed until flow solver converges. Capacities
of resources are presented in table 8.

Table 8. Computing Resources in the Grid

CPU(s) RAM / Node Number of Nodes
Venus(KISTI) P-1v, 20 GHz 512 MB 64
Jupiter(KISTI) P-1v, 1.7 GHz 1 GB 16
Hush1(Postech) P-1ll, 733 MHz 128 MB 24

Elapsed time until convergence is seen in Fig. 5. The result presented in Fig. 5 mainly shows
2 features of the Grid. Firstly, the sharp decrease of communication speed between processors in
the WAN reduces parallel efficiency a lot. It is evident when 5™(Collaboration of 6 processors in
Venus, 4 in Jupiter and 2 in Hush1) and 6"(8 in Venus, 4 in Jupiter collaborating) cases are compared,
where the former collaborates all resources in the WAN, while the latter uses the resources in the
same LAN. As the performance of collaborating resources in the 6" case is better, it is natural that
computation time of the 6" case is less than that of 5" case. However, increase of elapsed time
from 6™ to 5™ case is excessively large, nearly 30%. It means that the collaboration should be performed
when the use of network is scarce, e.g., nighttime, unless collaborating organizations are connected
with exclusive lines.

And, from the comparison of 1* and 2™ case, it is assumed that addition of computing resources
from other organization can increase computation time. Performance of resources is much better in
the 2™(Collaboration of Jupiter and Hush 1) case than the 1¥(Sole Use of Hushl) case. However,
decrease of computation time is slight. It is because collaborating resources in the 2" case are connected
using WAN and, sometimes increase of the whole resources can increase elapsed time. Therefore,

‘Killing Mechanism’ , the judgment whether to add some resources to the current composition
of resources, should be imported to the present algorithm.

18000
16000
14000F
12000
10000
8000
6000
A000F
2000F

Elapsed Time

U I -
Venus(2.0GHz)
Jupiter(1.7GHz) 0 4 4 4 4 4 0
Hush 1(733MHz) 12 8 6 4 2 0 0

Collaborated Resources

Fig. 5. Elapsed Time of Flow Solver

74 Soon-Heum Ko, Chongam Kim, Oh-Hyun Rho and Kum Won Cho

Conclusions

A load balance algorithm for CFD applications in Grid computing is proposed and applied to
various CFD problems. The algorithm considers both various performances of processors and
different communication speeds among resources. And the algorithm automatically partitions the
whole domain to each processor. Developed algorithm is validated by analyzing a tangent-ogive
cylinder in the LAN and applied to the problems with domain decomposition methods. From the
results, proposed algorithm shows a good load balance and guarantees an appropriate increase of
parallel efficiency.

Acknowledgement

The present work was supported by KISTI(Korea Institute of Science and Technology
Information). Authors are grateful for their supports in many respects.

References

1. W. E. Johnston, D. Gannon and B. Nitzberg, 2001, Information Power Grid Implementation
Plan: Research, Development, and Testbeds for High Performance, Widely Distributed, Collaborative,
Computing and Information Systems Supporting Science and Engineering , NASA Ames Research
Center, Version 2.0.

2. M. M. Resch, 2000, "Metacomputing in High Performance Computing Center,” IEEE
0-7659-0771-9/00, pp. 165-172.

3. Kyu Hong Kim, Chongam Kim and Oh Hyun Rho, 1998, ”Accurate Computations of Hypersonic
Flows Using AUSMPW+ Scheme and Shock-aligned-grid Technique,” AIAA Paper 98-2442.

4. F. R. Menter, 1994, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering
Applications,” AIAA Journal, Vol. 32, No. 8, pp. 1598-1605.

5. Yoon, S., and Jameson, A., 1988, "Lower-Upper SymmetricGauss-Seidel Method for the
Euler and Navier-Stokes Equations,” AIAA Journal, Vol. 26, No. 9, pp. 1025-1026.

6. C. Hui and S. Chanson, 1996, Theoretical Analysis of the Heterogeneous Dynamic Load
Balancing Problem Using a Hydro-Dynamic Approach, Technical Report HKUST-CS96-01.

7. M. H. Willebeek-LeMair and A. P. Reeves, 1993, "Strategies for Dynamic Load Balancing
on Highly Parallel Computers,” IEEE Transactions on Parallel and Distributed Systems, vol. 4,
pp.979-993.

8.G.Cybenko, 1989, "Dynamic Load Balancing for Distributed Memory Multiprocessors,” Journal
of Parallel and Distributed Computing, vol. 7, pp.279-301.

9.Y.P.Chien, et. al, 1995, "Load-balancing for Parallel Computation of Fluid Dynamics Problems,”
Computer Methods in Applied Mechanics and Engineering, 120, pp.119-130.

10. J. Rantakokko, 2000, "Partitioning Strategies for Structured Multiblock Grids,” Parallel
Computing, Vol.26, pp.1661-1680.

11. http://www.globus.org.

12. http://www.niu.edu/mpi.

13. G. S. Deiwert, 1984, "Supersonic Axisymmetric Flow over Boattails Containing a Centered
Propulsive Jet,” AIAA Journal, Vol.22-10, pp. 1358-1365.

	Load Balancing for CFD Applications in Grid Computing Environment
	Abstract
	Introduction
	GOVERNING EQUATIONS & NUMERICAL SCHEMES
	INVESTIGATION OF PARALLEL EFFICIENCY IN THE GRID
	RESULTS
	Conclusions
	Acknowledgement
	References

