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Identification of Anisotropic Bearing Non-linearity
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Abstract

Among other critical conditions in rotor systems the large non-linear
vibration excited by bearing non-linearity causes the rotor failure. For reducing this
catastrophic failure and predictive analysis of this phenomena the identification
analysis of bearing non-linearity in an anisotropic rotor system using the higher
order dFRFs are developed and are shown to be theoretically feasible as in
non-rotating structures. For the identification of the anisotropic rotor with
anisotropic bearing non-linearity expressed by the displacement in polynomial form,
the higher order dFRFs based upon the Volterra series are investigated and depict
their features by using the simple forms of the normal and reverse dFRFs. They
produce additional sub-harmonic resonant peaks, which indicate the existence of
higher order non-linearties, and show the energy transfer such that the modes for
normal and reverse dFRFs are exchanged, which are the fundamental differences
from what we can expect in linear ones.

Key Word : identification, bearing non-linearity, non-linear directional frequency
response function, higher order Volterra kernel

Introduction

In general, a rotor-bearing system consists of rotor and stator parts. According to the
non—axisymmetric properties of the rotor and stator, a anisotropic rotor system is defined as:
(Lee and Joh, 1994; Lee and Joh, 1996; Lee, 1997): the rotor is axisymmetric but the stator is
not. The accidental or intended presence of anisotropy in a rotor system may significantly alter
its dynamic characteristics, such as the unbalance response, critical speeds and stability, from
the ideal isotropic (symmetric) rotor. Thus, accurate identification of such anisotropic properties
becomes essential in gaining an adequate physical understanding of the dynamic behavior of
practical rotors.

The critical and local property but generally accepted feature to the defined anisotropic
rotor system is the stator or bearing non-linearity, let alone manufacturing errors, clearances
and joint surfaces. In particular the rolling element bearing, hydrodynamic bearings and squeeze
film dampers are known to possess highly non-linear characteristics and their reliabilities are
directly related to closer predictions and identifications of dynamic responses. Hence it is quite
reasonable to investigate the effective non-linear diagnostic method as its identification for
bearing non-linearity. The mathematical non-linear analysis in rotor systems whose dynamic
behaviors along with the parameter may be determined, still remains some far from practical
applications, however, they are useful and advantageous by explaining the physical phenomena.

As a result, the main issues of the diagnosis for non-linear properties in stator have been
identifying the characteristics of its behavior from the signals in practice. In these respects, Lin
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[1993] presented a non-linear identification of complex modes with hysteretic damping model in
general structure and Ozguven [1993] also introduced the similar concept for non-linear
frequency response. Tiwari [1995] suggested a non-linear parameter identification of rolling
element stiffness by introducing probability density function with the model of a cubic
non-linearity. Liangsheng [1993] introduced the concept of the pseudo-phase diagram and
spectrum from the raw signals. Also other researches have been made using non-linear time
series model as NARMAX for its relatively analytical easiness though its computational efforts
and contamination by noise. Most of those researches are mainly focused on the analysis of
the non-linear phenomena themselves, furthermore, such a case for concentrating practical
non-linear identification is mostly limited to simple general structures or simple isotropic rotor,
which is in practice the same as the simple stationary structure, so that few attempts have
been made in identification of the anisotropic rotor with anisotropic bearing non-linearity.
Further, the advantages of the directional spectrum associated with directional frequency
response functions (dFRFs) developed for linear systems as shown previously [1] have been
never investigated in non-linear ones. As these reasons, in this study, in the sense that if the
non-linearity can be expressed in polynomial form and the system is stable and time-invariant,
the higher order frequency responses (FRFs) based upon the Volterra series [3~5,10~13] are
the practically valuable tool for identifying the nature of non-linearities in wide class of
structure, the higher order dFRFs for anisotropic rotor system are newly investigated and show
its feasibility to further application.
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Representations of Bearing Non-Linearity

The feature of the bearing non-linearity is mainly caused by the dynamic motion of the
fluid film between the rolling element bearing and its journal of the hydrostatic or
hydrodynamic bearing. The stiffness and damping characteristic of these bearings are
non-linear function of their displacements and clearances for relatively large amount of motions
[2]. These two properties are coupled together by motion parameters, i.e., the displacements,
clearances and rotational speeds, so that changes of the damping result in changes of the
stiffness and vice-versa. For non-linear analysis of these bearing properties, however, the
stiffness and damping characteristic are premised and assumed to be polvnomial expressions to
appropriate degrees for the closed form formulation, which is generally accepted and agreeable
in past studies [3,5,71. Hence in such a case, the trades off studies are preceded for the
polynomial degree for closer access to the damping and stiffness non-linearities. The other
non-linear properties of the stator (bearing) beyond these assumed polynomial model are
rubbing, radial clearance, hysteric or coulomb damping, bilinear stiffness etc, in which case the
polynomial assumption is heavy and rough, however, the identification of the others are
naturally deduced by resulting phenomenon of the polynomial model. Based on these premises,
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in this study, let the identification of the polynomial non-linearity of the bearing be considered.
For the anisotropic rigid rotor, which is supposed to be simply supported at both ends
and only one degree of freedom is used for the displacements in the v oand 7 directions, with
non lincarity (cubic) of dampings. €., €, and stiffnesses, k., k&, ol the bearing, (sce Fig. 1
2) which is ubiquitous in Duffing oscillator, the equation is described in the form,
T ; A 3
my+cy, y+J Qz+c ztCp P Hky ythpz+ky, Yy’ =gy,
. . . . . (1)
MmE+c, 2—JpQy+Cy P+Cn B +k 24k y+ky 23 =g,
where m, €y, Cyzy Czy Cys Crys Czs By Bozy Biayy Bnys Bnz, 5, £ are rotor mass, bearing dampings

and its nonlinear coefficients, bearing stiffnesses and its nonlinear coefficients, rotor polar
moment of inertia normalized by squared shaft length and rotational speed, respectively.

Applying the complex notations such as p= y- ;z, B= y—jz, to these equations, the
equation leads to the following complex form

M p+(C; - jJ, ) p+K,p+C,p+K, P+

[Cot (0 +3P"P)HC,, (P +35P°) | +[ K, (P’ +3D7P) K, (P’ +3pP") |= 2, @)

where the bracket terms denote the non-linear effects and their parameters are

M;=m, C, =(c,+c,)/2+j(c, —czy)/2, C,=(c, -—cz)/2+j(cﬁ +czy)/2,
Ke=(k,+k)/2+j(k,—k,)/2, K,=(k,—k)/2+j(k,+k,)/2,

C,=(c,, —c,)/8 C,= (c"y +c,,)/8, Knr=(k,,y —k,)/8 K,=(k,+k,)/8

(3)

In this case the damping and stiffness parameters assumed to be independent of the rotational
speed for more or less higher speed range [1].

Non-Linear Response Analysis [1]

Here the output P(f) of a non-linear system in power of the input g(t) is expressed by
the well-known Volterra series, which is depicted in the form of

PO= [ du- [ duhu,u)el-u) 4)
. n=1 * * r=l ’
where h,,(ul, ..... , U,) are the nth order kernels of the system, in this case the lst order

kernel h,,(ul) is the impulse response of a linear system.

The n-fold Fourier transformation of the kernel is the nth order Volterra kernel that has
analogies to the nth order transfer function, which is described as

] no_ U, =
Hn(a)],"',w”):m Eodu]‘“'Eadunhn(ula”Hun)’];I]e Jorks (b)

’

where the Ist order Volterra kernel H,(w,,....,®,) is the transfer function of a linear

system.
Now to derive the general form of an expression of the Volterra series by the series of

harmonic inputs such as g(H)= ﬁlejw"' [, the dummy coefficients @, and the differential
m=
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o
operator, which is expressed by the form as dq,....oa, o-.-a,-0 , 1S used. Applying this

n .
dummy variable and the sum of n exponential terms as the form of A ,(w)= 2 ae res

to Eq. (5), the nth order Volterra kernel, or the nth order transfer function of the system
becomes

1 .
H,(@1,++,0,) =~ [ du- fwdu,,h,,(ul,---,u,,)DarI‘[zlA,,(a),)' (6)

and from using the multinomial theorem [11] the terms of power by the harmonic inputs
becomes

l'lg(t u,)= D"exp[za,g(t—u)] {Za,g(t u)]

— n {:Zza gme/m,,(l ll,):| D;%[:i gmejry,lA"(a)m):|
[ m=1

r=l m=1

{3 [Tle.e 4]}, @

Ep r;lnﬂ’z' ”,;'{m:l

where #,, means the mth polynomial of the nth factorial number, so that finally from Eq. (6)

and (7) the general complex form of Volterra series of the output by the input of pth multipl
harmonics is derived by the following equation

P(1) = 2<22 Yy — ot {H[g, b M_(wm)}> (8)

=1 \m=lny=1 n, lnl
where il nj=mn, for all i ; #n;=0 (i=1 ~p, { : integer) and here H,,_,,m(a),,,) denotes
=
H,,(wl 5 a5 Wiggs 55 a),) with the mth harmonic input of the w; equal to + w,, and remaining

Wp_m equal to — w,, respectively.

Non-Linear Directional Frequency Response Analysis

Here for the case of the anisotropic rotor system by the input of sweeping single-tone

excitation, g() = Ge™, the solution form of the Volterra series (8) can be deduced from Eq.
(1) based upon the concept of a linear solution associated with the forward (H) and backward

modes ( H ), which is depicted in the form of
p(t) = P(1)+P(r)
=H,(@) Ge™ +H,(0)G e + Hy(w,0,0) G* ' + H,(0,0,0)G* ™ +
H,(@,0,0,0,0) G’ ** + H (0,0,0,0,0)G* e ** + O(H,,H,,H,,H,, ). 9)
where in this relation, the property of conjugate symmetry, ie, H ,,( -—w,..,—w)=

I'/I\,,(a), ..,w) is used and only the principal diagonals of the three and five dimensions are
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employed for simplifying the physical interpretation, i.e., for five dimensional functions,
W)= ...= ws= w. Substituting (9) into (2) with considering terms up to order three only

and equating the coefficients of each exponential order and excitations, the successive
formulations for the higher order (2nd and 3rd) transfer functions with the 1st order transfer
function can be obtained. Here for notational conveniences lets simplify the terms that

and ﬁg,( w, W, W, ®, ®) = p. Then by using the harmonic probing method [10], for the terms

of Gejwt, Ge —jm, Gle '3(”‘, Ge —’3‘”, Goe®  and Ge —/'Sa)t, respectively, the linear
equations for the 2nd and 3rd order transfer functions are successively described as

Dy (@) p;, +Dy (@) Py, = 1,
55(‘”) Pnt I31‘((") Pn=0 ,

D,(3w) Pt D,(3w) p,; = “(C..jjw3 + k,./)(!’/n3 + 3pjlzﬁhl) -
(cnbjw3 +knb)(ﬁb13+3p[l ﬁblz) )

D,(3®) py3 +D;(30) By =~ e’ + kyy X By’ +3Pn P’ -
(E,.bjf’)3 + knl:)(le3 +3P/|2 Py)

D,(5®) ps + D, (50) Bys =~3(3¢, ja + k, NPy’ Prs+ Py Pos + 2P0 D3 P) =
3(3¢,J@ + kX P3Py’ +Po Prs+ 2P PuPrs)s
D, (5®) pss + D (50) Pys = ~3(3C,,j@* + kyy )(Py3 B’ + B’ Prs + 2P 1P Pis)
3(3€,,Jj@ +ky )Py’ Pys+P ) Prs+ 2P P3P (10)

where

D, (0K, -@'M; + joC;+J,Qw, D, (w)=K,+ joC,
D (w)K, - @M, + joC, - J Qw, D,(0)=K,+ joC, (11)
From Eq. (10), the 1st, 2nd and 3rd order transfer functions, respectively, are obtained as
P =D(@)D (o)
P = —D(@)Dy (o)
P2 = DBo)| £i(P1> Pu)D:(30)~ Fi(P1, D, (30) |
Pia = DB@)| Ji(21> o )D: 30) - £i(P 11 Bp)D, (B30) |
Pys = D(S®) ;(P11s Puus Pr3s Prs)D(50) = Fi(P 13 B Pras B )Dy(50) |
Pos = D(S®) Fi(P11s Purs P33 Prs)D1(50) = £i(Pj1s B> Py3s B )Dy (50) | (12)

where

D(a’):l:Dr(a’)l—)r(“’)_Dh(a’)ﬁh(“)):l-l , fs(P/lal-’M), Z(p[laﬁbl)' .?S(pfl!ﬁbl’p[S’ﬁbB) and

fs(p/hﬁwl’ﬂ’ﬁ'ﬂ) are right-hand sides of the 3rd to 6th equation in Eq. (10), respectively. For
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the linear system, ie., in the case of no medium bracket terms in Eq. (2), the response
associated with the 1st order transfer function becomes

p()=p, Ge™! + Py ae—jw" (13)
which becomes the same form as shown in reference [1].
From the linear complex modal analysis for rotor systems, p, denotes the linear normal
directional FRF (dFRF) and p, denotes the reverese dFRF, whereas, in this non-linear

analysis of the higher order frequency response function (HFRF), pg and pu;3( pg and D)

denote the non-linear normal and reverese dFRF of 3rd (5th) order, respectively. From these
non-linear normal and reverese dFRFs, the property of the bearing non-linearity can be
identified easily.

Numerical Example

In this simulation, the following numerical values have been used : m=4 kg, ¢,=20
Ns/m, ¢,=15 Ns/m, ¢,, =3000 Ns/m, c,,=2000 Ns/m, ¢,,=— €,,=20 Ns/m, k,,=k,=0,

,=3x10° Ns/m, k,=2x10° N/m, k,,=2x10" N/m, #,,=1.5x10"" N/m, 2=100
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Fig. 3. Nonlinear FRFs for Anisotropic Rotor with Bearing Nonlinerity

pS, fp=0.0185 kg/mz/mz. Based upon these linear and non-linear parameters Fig. 3 shows
the simulated frequency response functions for the Ist (linear), 3rd and 5th order, respectively.
In Eq. (1), if there are no cross-coupled damping and stiffness coefficients, then the dFRFs are
symmetric to negative domain in frequencies so that half of the dFRFs are sufficient, by which
in this case the dFRFs shows the same profiles as the conventional FRFs [1].

From Fig. 3a, we see the typical result of linear dFRFs of the anisotropic rotor system
associated with one pair of the forward (F) and backward conjugate (F) in the normal and
reverse mode, whereas in Fig. 3b, for the 3rd order FRF shows two pairs of the resonant

peaks, one at ,s and the other one at w,s/3, which indicate the existence of a cubic
non-linearty. For the 5th order FRFs, Fig. 3c shows three pairs of the resonant peaks, ®,S,

w,s/3 and ,s/5, which indicate the existence of a linear, cubic and quintic non-linearties,

respectively. The peculiar feature of the results shown in Fig. 3 is that the higher order dFRFs
(3rd and 5th) do not show any distortion so that they behave like the linear FRFs. This is due
to the fact that for simplifying the physical interpretation, only the principal diagonals are
employed so that they represent the exact Volterra kernel transforms, which is unique and
independent of the excitation level. If the extra terms of higher order transfer functions
associated with additional sweeping multi-tone eXcitation levels are introduced, these
distortional phenomena are explicitly displayed. Another important feature in higher order
transfer function is that they cause energy transfer whereby an input at one frequency level
influence the other frequency ones, further, the mode exchanges occur in normal and reverse
ones as shown in Figs. 1 b,c. This is also clearly represented in Eq. (10) in that the normal
dFRFs are disappeared in case of no anisotropy whereas in linear dFRFs the reverse ones are
disappeared. From these results we see that the higher order FRFs are fundamentally different
from what one can expect in linear ones and measure in practice.

Conclusions

The identification of bearing non-linearity in an anisotropic rotor system using the higher
order dFRFs, which are known to represent the non-linear degree of anisotropy, is developed
and shown to be theoretically feasible as in non-rotating structure or isotropic rotor. The
non-linear stiffness and damping forces in rolling or journal bearings are modeled along with
displacement in cubic polynomial form whose higher order transfer function can be possible
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from Volterra series. By using the principal diagonals of the dimensions of higher order
transfer functions, the physical interpretation is simplified at one excitation level and the
computational efforts are lessen so that the simple forms of the normal and reverse dFRFs can
be derived. From these results, the higher order dFRFs shows additional sub-harmonic
resonant peaks, which indicate the existence of higher order non-linearties. Also another
feature of higher order dFRFs is that due to energy transfer the modes for the normal and
reverse dFRFs are exchanged so that they suggest the fundamental differences from what one
can expect in linear ones. Through this study it is suggested that the non-linear normal and
reverse dFRFs display their properties effectively and show their feasibilities to further
application.
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