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Near-Optimal Collision Avoidance Maneuvers for UAV
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Abstract

Collision avoidance for multiple aircraft can be stated as a problem of
maintaining safe distance between aircraft in conflict. Optimal collision avoidance
problem seeks to minimize the given cost function while simultaneously satisfying
constraints. The cost function could be a function of time or control input. This paper
addresses the trajectory time-optimization problem for collision avoidance of
unmanned aerial vehicles(UAVs). The problem is difficult to handle in general due to
the two-point boundary value problem subject to dynamic environments. Some
simplifying algorithms are used for potential applications in on-line operation.
Although under possibility of more complicated problems, a dynamic problem is
transformed into a static one by prediction of the conflict time and some appropriate
assumptions.
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application

Introduction

In recent aerospace technology areas, collision avoidance for multiple aircraft have
emerged as an issue of significant interest. Collision avoidance for the aircraft can be stated as
a problem of maintaining a safe distance between aircraft in conflict. Optimal collision
avoidance problem seeks to minimize the given cost function while simultaneously satisfying
the constraints. The cost function can be a function of time and/or control input depending on
the mission requirements involving specific maneuvers.

A number of studies have been conducted already on UAVs and mobile robots avoiding
obstacles arriving at a destination safely[1-4] in a given time period. Various strategies
associated with path planning approach were proposed. The problem formulation may differ by
the type of target obstacles; moving or non-moving obstacles. There is an on-line application
and optimal solution in the case of non-moving obstacles [3]. However, it becomes a quite
different problem for a moving obstacle. The problem is difficult to handle and it is not easy
to derive an optimal solution in on-line operation.

Piorini and Shiller investigated optimal trajectory of a mobile robot over dynamic
environment [4]. They assumed that the obstacle moves straight with a constant speed. Since
there is no limit on the robot speed, it is difficult to apply this method directly to the UAV.
On the other hand, there is a certain lower limit in the UAV speed. Hu, et al investigated
collision avoidance between aircraft [5]. They did not include the aircraft dynamics and treated
the problem as finding a middle waypoint.

In this paper, we consider the aircraft dynamics and construct the performance index as
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a function of time. A solution to minimize the performance index while avoiding the obstacle
simultaneously is derived. Some simplifying algorithms are employed in order to apply it to a
on-line operation. Although there may be more complicated problems by prediction of conflict
time and some assumptions, we transform the dynamic environment problem into a static one.

The analytic solution of the time optimal trajectory for the static obstacle is derived, and
expected conflict time and distance for a moving obstacle is computed also. Then the algorithm
for estimation of the desired heading angle for collision avoidance maneuver and potential
on-line application technique are investigated. Finally simulation study is performed to
demonstrate the proposed algorithm for various situations.

Analytic Solution of Time Optimal Collision Avoidance Problem for
Non-moving Obstacle

First, the optimal trajectory in the static environment is briefly discussed. A dynamic
obstacle with a certain lateral acceleration level is treated as a static model by calculating the
expected conflict time and distance by assumptions. This simplification is very useful in
handling our problem.

Let us assume that the aircraft is a point mass in the 2-dimensional space. Then the
aircraft dynamics and kinematics can be simplified as

J:C= Vecos¥
y= Vsin¥ (1)
U=y

where ¥ is the heading angle of the aircraft, V is the velocity, and x,y represent
2-dimensional position of the aircraft, respectively. A performance index is defined as the
elapsed maneuver time such that

t
J= 1a ()

which is subject to
S(x,y) =R —(x—0)*—(y—0,)*<0
ld<C
where R, represents a safe distance, O,, O, corresponds to the position of the obstacle in the

x,y axes, respectively, « is the input to the aircraft, and C is the constant limit for the
control input.

This problem is an inequality constraint problem, hence the solution can be divided into
two cases. One solution may lie in the feasible region and while the other is at the boundary
region.

Feasible region
For the case of S(x,y)<0, we define the Hamiltonian as

H=1+A,Vcos ¥+ A, Vsin T+ Ayu (3)

According to basic optimal control theory,

_oH  oH

AT= ox ' “du 0
it follows
A.=0, A,=0
Ap-— A Vsin®+ A, VeosT (4)

Ap=0 = Ap=0
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Consequently, the optimal heading angles is the solution of

tan ¥= —:"- = constant (5)

Thus, one can easily see that
= constant

which makes sense from physical point of view.
Boundary region

In this case, the solution lies in the boundary of the constraint plane such that S(x,y)=0.
Fig. 1 shows the trajectory of the aircraft on the boundary of the constraint surface. Since S(x,y)
has no input term, one can differentiate S(x,y) with respect to ¢ until an expression explicitly
dependent on input « is derived.

S(x,y)=—2(x—0,) Vcos ¥—2(y— 0,) Vsin ¥=0

S(x, y) =—2V*+2(x— 0,) Vsin Wu—2(y— 0,) Vcos ¥u=0 e

Hence a new constraint equation in the form of S(x,? has been derived. The corresponding
Hamiltonian with the new constraint equation can be formulated as

H=1+A,Vcos T+ A, Vsin T+ Agu+ p( —2V:+2(x— 0,) Vsin®u—2(y— 0,) Veos¥u) (7)
then, the solution indeed becomes
__x=0 __1_
Again, we differentiate the above equation with respect to time arriving at
. xy—0,)— Wx—0,)
r=— . = g 9
(y_ Oy)g 0S ( )
with
sin?¥+ cos2¥=1 (10)

Next, let us combine Egs.(8),(10) and dynamics Eq.(1), which produces the following final results

(y— 0}
cos *¥= sz)‘ (11)
x—O,=£R;sin ¥, y—O0,=FR,cos ¥ (12)
Then Eqgs.(1) and (11) are substituted into (9) that results in
=t (13)

From the above solution, one find that the aircraft flies straight outside the safety region, and at
the boundary region the aircraft flies along the boundary as illustrated in Fig. 1.

(x,y)
) &

Godl

Fig. 1. Time optimal trajectory
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Numerical Solution of Time Optimal Collision Avoidance Problem for
Moving Obstacle

In the previous section, analytic solution of time optimal collision avoidance problem in
the static environment was derived. We might use this result for solving the dynamic problem
by transforming it into a static one. In this section, transformation of the dynamic problem into
a static one is discussed, and a technique to solve the dynamic problem numerically is
proposed.

Collision avoidance algorithm

In this part, we propose an algorithm to solve the time optimal collision avoidance
problem in the dynamic environment numerically. The algorithm is summarized in Table 1.

Table 1. Summary of collision avoidance algorithm

Do while (Aircraft is not reach the goal)
Calculate the expected conflict time and conflict distance.
If (Conflict distance is greater than the safety distance)
U= U g
else
Calculate right and left maneuvering time
If (Right maneuvering time is greater than left)

u=—min(u g, | %,y 1)
else
u= min(u g, | ;)
end
end

end

Expected conflict time and conflict distance

The expected conflict time and conflict distance in two cases are computed herein. We
can - transform the dynamic problem into static one by adopting this result. We regard the
moving obstacle as non-moving obstacle, where its position is equivalent to the position at the
expected conflict time.

Obstacle with straight movement at a constant speed

If an obstacle moves straight with a constant speed, the solution can be obtained easily
by analytic approach. The positions of the obstacle and the aircraft are defined with respect to
time as follows;

Xr=(xr(, yr(9)

] . (14)
s =xp+ xpt, ydH=yn+t yr

and
X;=(x;(0), v,(8)

x{)=xp+ xt, yAO=yp+ Vit (15)

The range between the aircraft and obstacle is given by

RO= 11X {0~ X D=V (x;()—x7(8)* + (D) — y(D)? (16)
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The expected conflict time can be derived by minimizing the range function R(#). Since R({) is
a monotonic function, we define R (f)=R(f)>. The expected conflict time ¢. is the time
minimizing the range function R(#), and it turns out to be of the form:

_ (xp ‘xm)(i‘i:/— xp)+ (yn—ym}(y}— )’.T)
(x;—x0)*+ (y— yp)*

t.= an

Furthermore, the conflict distance is obtained by substituting Eq.(17) into Eq.(16).

Obstacle with lateral acceleration

If the obstacle moves at a certain lateral acceleration, the problem becomes quite different.
First, the position of the obstacle is expressed as

2

V2 2

x{(h=xp+ a-rT sin¥,;— }Z/TT sin ¥(#)
V 2 V 2

yH=ypn— aTT cos ¥+ aTT cos ¥ (8 (18)
V 2

where @ rp represents the lateral acceleration of the obstacle, and Vi is the velocity of the

obstacle.
The above solution possesses nonlinear terms. So when minimizes the relative distance

RO=V G, () —x D)+ (y,()— y(D)? directly to assess the expected conflict time, there may
exist many local minima and it is not trivial at all to find the unique true solution in general.

Even if the lateral acceleration is constant, the result still remains the same. So we
propose a new different approach to estimate the expected conflict time and distance. There are
two situations between the obstacle and the aircraft trajectory. Figures 2 and 3 illustrate the
two situations. One is when the trajectory of the aircraft crosses the trajectory of the obstacle,
and the other is when the trajectorv of the aircraft does not cross.

Case 1: The trajectory of the aircraft Case 2: The trajectory of the aircraft
crosses the trajectory of the doesnt cross the trajectory of the
obstacle obstacle

Fig. 2. Aircraft penetrates in the turn Fig. 3. Aircraft flies outside the turn radius
radius of obstacle of the obstacle
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In fact, the second case could be ignored because collision situation does not occur. So
only the first case is taken into account. In the first case, the time region for search is
restricted as bold lines (7[—?: C—TDj. This prevents us from calculating an incorrect
solution.

Let us denote ¢,y tc tp as the time at A, B, C, D in Fig.2. The center of the turn circle

of the obstacle O, is defined to be

0:=[0s,0,) (19)
where
0n=xp+Rsin(¥p)
0=y — Rrcos(¥p)
__v
R,;= 2]

and Ry is the turn radius of the obstacle while ¥ represents the initial heading angle of the

obstacle. And the trajectory function of the aircraft is
XD=[xg+tot, yy+ ol (20)

where v,, v, represent the velocity of the aircraft in the x, y axes, respectively. Moreover, from
the center of the turn circle of the obstacle 6: from Eq.(19), one can obtain time ¢, which
minimizes the range between the aircraft and the center of the turn circle 6:'-

— (OCx—xO)vx+ (OCy——yO)UV
v+ v}

Ly (21)

So the minimum range R, between the aircraft and the center of the turn circle of the obstacle
becomes

R, =V (g + Vet m—0c)* + (0 + 0,8, —0¢,)° (22)

From Fig.2, t, represents the time to 71’, and ¢ the time to B expressed in the form

ta= RAx — (Rox_RaA

VeV (23)
t — RBI — (Rar_RoB

BV, Vi

where R,,, R,z R, are given by

R,=10-Al=V (Rr+R,)*— R,
R,=[0-B=V (R,—R)'- R,? (24)
R,=10-4=V[0,— d4%— R,?

In and analogous manner, one can obtain fg, ¢, to <. _5, respectively. However when
reducing the search region, it is impossible to obtain a closed-form solution because the
equations still consist of nonlinear terms.

Obstacle velocity linearization

In this section, The obstacle velocity linearization method is introduced for on-line
application. It can be made possible by assuming that the turn angle of the obstacle in the
search region is small.

The path function of the obstacle is already defined in Eq.(18). By rewriting this equation
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from A to B, one arrives at

xT(t) =xTu+ TTGln w'n)—RTSin[ Wo—a-,-/ VTtA_aT/ VT(t_ tA)]
=xpt+ Rsin¥pq— R sin(T,(t,))cos(aqp/ Vi{t—ts))
- COS( ZITT(ZA))sin(aT/ Vr(t_ tA))]

v =ym+ Rocos Tn+ Rl cos (Tr(t))cos(ag/ Volt—ta) (25)
+ sin( ¥ (t4))sinla/ VA{t—t))]
Ui(ty) = ¥n—ar/ Vs
If a/V{t—t,) is very small, Eq.(25) can be rewritten in the form
x{f)=a+B-t
y:(t)= y+68-t (26)

where each parameter is defined to be

a=xp+ R sin¥p—Rsin(Tpy—ar/ Vita)— Vitacos(Fpy—ar/ Vita)
B=Vcos(Tp—ar/Vity)
y=yp+ RcosTp+ Rrcos(Tpy—ar/ Vity)— Vitasin(Tp—ar/ Vita)
0= V-,Sln( Wm—aT/VTtA)

Substituting this equation into Eq. (17), the expected conflict time and conflict range could be
calculated as follows;

_ (xl()— a)(Q.C]—B)"'(yK)— 7)(5’1_ )
fou™ = B+ (5,= 8)? i

From C to —5, the expected conflict time and conflict range are computed in an analogous
approach.

Maneuvering time calculation

In this section we propose a numerical algorithm to calculate the maneuvering time from
present position to the goal position. The length of the trajectory to the goal should be
computed in order to evaluate the maneuvering time. The desired heading angle to obtain the
collision avoidance direction maneuver and input lateral acceleration are obtained by comparing
left and right maneuvering times.

When there exists an obstacle such as Fig.4, first two angle variables are introduced
such that
1( CC)’;v )

Vix—0,)+(y—0,)?
-1 R, )
V(=00 +(y—0,)

.= sin"

(28)

6= sin

Using Eq.(28) the desired heading angle and lateral acceleration input from the present state are
designed to be

91": 6‘.+ 0—v
0o=0.— 60—
u,ﬂ=0L/At (29)

U =0p/ Ot

where At is the time interval for simulation. Furthermore, the angles related to the goal position
are also obtained identically.
l( Vi~ Co )
V (x— 0.) + (y,~ Oc_v)2
R

P »
sin ~'(

V(x— 0.0+ (3~ 04)?

@,.= sin

£

0gL= BgR:
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Fig. 4. Calculating desired heading
angle dynamic obstacle

From Eq.(30), the following relationships hold true

Oop=7— 0.+ 0— 0,0+ O @
Oor=0.+ 60+ 0,0+ 0, —7 :

Based upon the above equations, one can evaluate left and right maneuvering time from the
present position to the target position as follows;

i man= (| Wi = X1+ R, 00x + | X,~ Wea)/ V, —_—
o man=( Wea= X1+ R, 00, +1 X, — W )V,

From Eq.(32), the maneuvering direction for which the maneuver time is smaller can be
decided. For a static obstacle, the direction of the obstacle avoidance maneuver and desired
heading angle are determined by the above algorithm, but for a dynamic obstacle it may not
be quite sufficient. Since the obstacle moves toward the aircraft performing avoidance
maneuver, the obstacle region changes during the maneuver. Fig. 5 shows this situation and
possible solutions to overcome such a situation.

In Fig. 5, the collision position of the obstacle is denoted as A if the aircraft does not perform
avoidance maneuver, but during the left obstacle avoidance maneuver the obstacle moves to B, and
during right maneuver the obstacle moves to C. So for the dynamic obstacle, the region B to C
(the grey region) is regard as a type of obstacle. In the above algorithm the desired heading angle
of the dynamic obstacle is expressed as

0,=0,+6-¥
=gy
U o= Ol Ot
and the maneuvering time is
t - man= " Wr— X1+ R, 005+ 1X,— Wee)/ V; )

tL— man=(| WLA—X) + RD60L+ IZ_WL;[)/ VI

where the angle variables satisfy
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Oor=m— 0+ 0= Oucppt Opp (35)
0o=0,1t0+0,+0,—7

Simulation Result

It is assume that the aircraft and the obstacle are two-dimensional point mass objects. Again,
the equations of motion are simply stated in the form:

x= Vcos ¥
y=Vsin¥& (36)
U=u

Safety range is set to be 6,000ft and the initial position of the main aircraft is (0,0) while the final
goal location is assumed as (0, 60760ft). The speed of aircraft and obstacle is selected to be 337
ft/sec.

Simulation has been performed in four cases. In the first case, the obstacle is not moving,
while in the second case it moves straight at a constant forward speed. The third case is the
obstacle moving with a constant lateral acceleration and constant forward speed. For the last
case, the obstacle moves with changing lateral acceleration and constant forward speed.

Collision avoidance maneuver for non-moving obstacle

Two cases of simulation for a static obstacle are examined. The first case is a single
obstacle and the second case is multi-obstacles case. Figures 6 and 7 shows the simulation
results.

----------------------------- = T ;
N —
' ] 1
s AT F======
' ' H
g | e | L -
r [ 0 ] '
] 5 ] I | E—
I S
. I i
- e
| a L
3 - 2 2 4 [}
x-axis () no‘ xlo‘
Fig. 6. One obstacle case Fig. 7. Multi-obstacle case

It can be shown that the aircraft maneuvers as expected, and collision avoidance is achieved
with satisfactory performance . Inequality constraints to avoid collisions are satisfied for every obstacle
over the multiple obstacles.

Collision avoidance maneuver for moving obstacle

For the dynamic obstacle case, the obstacle is assumed to be a two-dimensional point mass,
and equations of motion are already presented in Eq. (36).

Straight and constant speed obstacle

Simulation result against an obstacle at a constant speed is presented in Fig. 8 in the
2-dimensional plane.
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Fig. 8. Collision avoidance for straight and constant speed obstacle

The simulation results again illustrate the collision avoidance strategy works as designed.
Dynamic motions of the obstacle are handled well by the designed maneuver strategy.

Moving obstacle at a constant lateral acceleration

x 10°

2 3
x 10°

Fig. 9. Collision avoidance for obstacle with constant acceleration

Moving obstacle with a random lateral acceleration

In this simulation, the obstacle moves with changing lateral acceleration and constant speed.
For the simulation, the lateral acceleration of the obstacle is settled into a cosine wave as presented
in Fig. 10. The corresponding trajectory of the aircraft for avoidance is displayed in Fig. 11.

As it can be shown the collision avoidance is achieved against an obstacle with time-varying
acceleration. The constraint conditions are all satisfied during the maneuver. The simulation results
presented so far illustrate the practical merit of the proposed approach for collision management against
various conditions of target UAVs. The formulation itself was restricted to 2-dimensional plane,
but there is ample opportunity for extension into 3-dimensional space. Other performance indices
will certainly provided different levels of solutions to satisfy additional mission objectives.
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Fig. 10. Applied acceleration of obstacle Fig. 11. Collision avoidance for obstacle with
cosine wave acceleration

Conclusions

A near-minimum-time optimal collision avoidance for UAV was studied. Optimal solutions
minimizing the performance index and avoiding obstacle simultaneously were derived. Analytic solution
of the time optimal trajectory for a static obstacle was derived, and the expected conflict time and
distance for a moving obstacle were evaluated. The moving obstacle was treated as a static object,
and the numerical solution for the collision avoidance for moving obstacle was also sought. Simulations
for the static and dynamic environments were conducted. Simulation results illustrate the usefulness
of the proposed technique for collision avoidance of UAVs. Despite some significant results derived
in this study, there remains further work to be done. First, the chattering problem in the aircraft
input should be resolved. And the case of multi-moving-obstacles should be investigated for extension
into three-dimensional cases.
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