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Abstract

An INS(Inertial Navigation System) is composed of a navigation computer and
an IMU(Inertial Measurement Unit), and can be applied to estimate a vehicle’s state.
But the inertial sensors assembled in the IMU are too complicated and expensive to
use for the general application purpose. In this study, a new concept of inertial sensor
system using magnetic levitation is proposed. The proposed system is expected to
replace one single-axis rate or position gyroscope, and one single-axis accelerometer
concurrently with a relatively simple structure. A simulation of the proposed system
is given to describe the capability of this new concept.

Introduction

A magnetic levitation system(Choi and Baek, 2002; Park et al, 1995) can be applied to
precision position control equipment, high-speed magnetic bearings, and mechanical heart
actuators to prevent a blood corpuscle from damage. The advantage of such a system is that an
instrument may be supported with a minimum friction force and in the absence of a physical
contact surface. Friction factors for this case are associated with magnetic eddy current damping,
the unbalance problem of processing, and air drag, etc. But in the case where relevant motion is
small, it is possible to make ideal frictionless situations due to several technical considerations.
Recently, by using this property, there was research (Park et al, 1998) related to sensors that
measure the motion of transportation. The work done is of mainly academic use because there is
no consideration of rotational motion and it is fundamentally necessary to compensate for the
three dimensional motion. In this research, by using one magnetic system we propose to measure
angular motion and linear acceleration about a single axis. A cone-shaped cylinder can be
levitated around an equilibrium point by magnetic force and a couple of four magnetic-pairs at
each end. Therefore, we can control five degrees of freedom, which is the motion of the X, Y, Z
translational directions, and the Y, Z rotational directions motion with a minimum of eight

magnets (Jung, 1998). In this system, we assume disturbances are the linear acceleration 2 and

the angular acceleration € from the outside. Neglecting disturbances, the levitated magnetic body
can move from the equilibrium point if the disturbances disappear, it returns to the equilibrium
point.
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At this moment the displacement can be divided into the translational displacement by the linear
acceleration, and the rotational displacement by the angular acceleration. Hence, if we control to
increase the linear acceleration with the infinitesimal displacement of the magnet’s X direction
and eliminate the acceleration disturbance in the remaining directions, we can get the linear
acceleration in the X-direction. Also, under this condition, if we measure the relevant angle
between the outer frame of the system and the levitated magnet, we can measure the angular
motion about the X direction. That is, the gyroscope maintains the inertial attitude due to the
gyroscopic stiffness of an object rotating with high speed, while this system measures attitude
due to the inertia of the levitated magnet with the frictionless support.

The controller is designed to separate the state equations of this system into the
translational motion of the X-axis and the remaining motion modes. For the X-axis direction
translational motion mode, this system is designed to have a desired damping ratio and natural
frequency with feedback using position stiffness and current stiffness coefficients. Then for the
axis direction acceleration component, the displacement indicates the acceleration. Also for the Y,
Z-axis direction translational and rotational motion modes, the magnetic levitation system can
reach a zero steady state error for disturbance by using the LQG/LTR technique with free
integral action. We considered the low sensitivity of the sensor and the robustness as well as the
disturbance rejection.

System Modeling
2.1 System Configuration

Fig. 1 shows the composition of the system. The ferromagnetic body with both ends
cone-shaped in the center of this figure will be levitated by the magnetic force. Five sensors are
fixed to measure the desired state variables from this system. The magnetic force is applied to
the ferromagnetic body in the perpendicular direction. It is separated into the X-axis direction and
its perpendicular direction component, and is applied to the motion of the ferromagnetic body with
five degrees of freedom.

The resolver has no relation to the control motion. When the controller operates it will measure
the rotational motion about the X-axis. Table 1 lists the modeling parameter values of the system
that will be used in the simulation and experiment. The slope angle of the cone-shaped body was
designed to be 26.57[deg] so that control force can be applied to each mode equally. The
self-inductance(L) of the electromagnet was obtained by using the parameter identification
technique.
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Fig. 1. System Configuration
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Table 1. MODELING VALUE

Description . value unit
M mass 0.696 kg
| moment of inertia 2.4e-03 kg T
a slope angle of cone 26.57 deg.
()] geometric parameter 7755 deg.
a geometric parameter 46.00e-03 m
hi moment arm, X—dir 18.94e-03 m
h2 moment arm, Y-dir 67.89e-03 m

voltage gain of

Amp power amplifier 1 kd
internal + current
R detect resistor 2.759+0.1 -
L self-inductance of coil 0.043 H
d gap at equilibrium point 1.0e-03 m
lo bias current 2.0 A
2.2 Equations of Motion

We assume the following to derive the equations of motion:
- The magnetic body is a rigid body and moves through an infinitesimal displacement
around the equilibrium point.
The self- inductance (L) of the electromagnet is constant and has no relation to the
interval distance and the change of magnetic flux around the equilibrium point.
Eight electromagnets have the same properties, also the power amplifiers to actuate the
eight channels are the same.

Fig. 2. Modeling of Magnetic Body

The magnetic force of each electromagnet has the following relations.

7" 7Y
Fl]' = kANP_’in= 0.27 lj].lo
dl]- dl]-

I = Current [A], d = Interval distance[mm)],

Fij = Force [K&r]
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Where & AN Pmean the turn, area, and permittivity, respectively.

The sucking force equation of the electromagnet can be obtained by measuring the load of
the load cell current and distance repeatedly in the static state. So we can obtain equation (1)
with a proper unit conversion. If no acceleration exists on the system, the magnetic force and the
motion of the magnetic body including gravity can be expressed as equations (2) based on Fig.2.

Il

4
mi = 3 (Fe ~Fiay)
k=1

M.

mj =Y (Fyy - Fup)

(Fuz “Fslz)

3
[N
1]
M~
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i

g =
Iéy =h(F. +Fa, = Fo. = B )+ h(Fo + By - Ry = Fy)
18, = hy(F,,, +Fyy = Faoy = Fy )+ h(Fy + Fop = Foye = Fy,)

(=}

First, to design the control system, we must find the translation and rotation position in the
center of the magnetic body from the fixed five displacement sensors. We can then find the
interval distances between each of the electromagnets and the magnetic body by using the
position values.

We can find the X, Z axis direction translation and Y axis direction rotation through the
displacement sensors #1, #2, #4 in the X-Z plane of Fig. 3. The displacement sensors #1, #3, #5 are
used in the X-Y plane. The motion of the magnetic body in the X-Y plane induces the error of
the observation equation in the X-Z plane, but we assume the effect is very small because of the
infinitesimal displacement. If we linearize these equations to obtain the control law, the nonlinear

terms can be eliminated. The measured distance 11, 12, I;can be known, and we can find the

at equilibrium position
rotation + translation

.
>
b - \8 .}
O ieamessttt
.................... . T I
O . L

laser #1

Fig. 3. Translation and Rotation Observation

infinitesimal X, Z, gyabout the translation and rotation from the measured value. From Fig. 3,
equations (3) can be driven by the geometric consideration.
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le+b=1+(a-x)tanf , + b +z
coiey
IL,+b=1l;—-(a+x)tan@, + +z
e 47 (@rxtndy + e, &)
I,+c=0L+ztan8 , + +x
& 1Te y cosGy

Because of the infinitesimal displacement motion, these equations can be approximated as

cos@, =1, tan 8, =0, .4 linearized based on the average distance of the sensors. We can
then obtain equations (4).

x = 1,-1
1
zZ = le—5(12+l4)
(4)
9 s l4 —12
y %d

In the X-Y plane we can get the observation equation by the same method and then obtain
a simple equation, such as equation (5), by redefining the distance information from the
displacement sensors.

1 0 0 0 0
1 1

0o o — 0 —
X 2 2 gl
Y o L o L o[
r4 = 2 2 63 (5)
By 0 21— 0 - ZL 0 S,
6. a | a s,

o 0 -— —

L 2a 2a ]

S, =1,-1 , i=12734,5

Also, we need the relative equations between each electromagnet, which depends on the
translation and rotation of the center of the magnetic body, and the distance of the surface of
inclination. First, we assume the following:

The surface where the electromagnet and the magnetic body face is constant.

The line of action of the magnetic force is the same as the perpendicular line to the
electromagnet surface at its point of bisection. Therefore, this line of action doesn’t
move on the fixed coordinates of the magnetic compensation system.

For the infinitesimal displacement of the magnetic body, we can think of each case of
translational and rotational motion at the center of mass of the magnetic body. We derive the
related equations for each motion and the whole related equations are obtained as equations (6) by

superposition. Distance,d, is the distance from the equilibrium point. Each of the eight

d

i is the distance between each of the

my n,
electromagnets and varies by translational and rotational motion. ! is defined as 6, or oz .

electromagnets has the same parameter values. Also

where, ¥ = 90 —¢[deg] d; = f;(%,¥,2,0,,0.) @& means the inclination angle between the
electromagnet and the magnetic body.
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dll

d, =d - (sin
d, =d - (sin
d, =d - (sin
d, =d + (sin
d, =d + (sin
d,, =d + (sin
d,, =d + (sin

=d - (sin a)x—(cos a¢)z—-1lcos(y +a)f,

a)x—(cos a)y+1lcos(y +a)d.

a)x+ (cos a)z+1
a)x+ (cos o)y -1
a)x—(cos o)z + 1
a)x—(cos o)y -1
a)x+ (cos a)z -1
a)x+ (cos )y + 1

cos( ¥ + )b .
cos( ¥ + )b,
cos( v +a )b,
cos( ¥ + a)f .
cos( ¥ + )b,
cos( ¥ +a )b .

Equations (7) show the relation of the distances and the current, respectively.

dy=d+r,, I,=1,+i,

Here, d and 1 0are the average distance
terms are caused by the magnetic force of the

ij o

at this point the following linear equations are obtained:
F,, =cyiy, + c,x+ cyz+ c,0,+1.051
F, =cjiy +c,x+cyz-c,0,+1.051
Fy =cyiy +cyx—cyz-c¢c,0,+1.051
Fu =ciig +c,x—cyz+c,0 +1.051
Fi, =cyi, —c,x+cyz—-c¢c,8,+1.051
F, =ciiy —c,x+cyz+ ¢80, +1.051
Fy =cyiy —cyx—cyz+ c,08,+1.051
F, =cji, —c,x—c3z2—-c,0,+1.051

where €1 ~ €4 are the linearization coefficients.
Finally, the following equation can be obtained

Mij=Ti+Py

where, 1 =

!:

[x y z 6,
[in Iy 3

M = Inertia Matrix
I’ = Current Stiffness Matrix
P = Position Stiffness Matrix

2.3 State Equation and Mode Separation

from these results and equations (2).

i32 i42 ]T

(6)

(7

and the bias current, respectively. The nonlinear
electromagnet, so that by linearizing equation (1)

(8)

)]

The actuator for this system consists of the power amplifier and the electromagnet. The
control output must be converted into voltage and the magnetic force is induced by current
around the coil. The control voltage and the current around the coil have a delay effect due to the
magnetic impedance of the electromagnet. When the voltage is applied, the current caused by the

electromagnet is represented by the following equations (9).

di

1<

=LZ:+ iR,
d

T(s)=

1

Ls + R

From equation (9), there is a time delay between the control output voltage and the
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magnetic force. Since equations (9) were not considered in designing the controller, the system
will be unstable. In this research, by designing the analog power amplifier as a part of the
actuator, using the current feedback and the lead compensator, we perform the voltage-current
transfer delay compensation that is widely known. This system, as the inner loop, is includedin
the whole magnetic levitation system. If we assume that the pole of the system is more influential
than thepole of the actuator, the following state equations can be obtained by approximation.

11}

i

Mn I“u_’+Pz+Mg

' _ T (10)
where, ﬁ—[vn Uy U3 Uy Uy Uy Uy 042]

=[a‘r a, a, a, a,]7

1

’
Equation (8) is rewritten as equations (10) for the voltage input(%_) and includes the

gravity and the acceleration disturbance(2). From equations (10), the following equations can be
obtained

x(t) = Ax(")+ B (1) + Ef (1)

y(t) =Cx()
where, xeR", “_'eRs,iéRs,ZGRs 11
£=[x,, Xy, oo xlo]T= [x, X, Y, y, z, 2z, 6,, g'y, 6., 0',]’

Z=bl’ ys]r=[x’ Y, 2z, oy, Gz]r

The particular matrices can be expanded as;

] 1 0 0 0 0 0 0 0 0
802;‘)““0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 oic’fnﬂo 0 0 0 0 0 0
0 0 0 0,0 1 0 0 0 0
#= 0 0 0 o-“;ﬂooooo
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 og;ooo
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0005720
[0 0 0 0 0]
1 00 0 0
8?888 1 0 0000000 0
s T2 0010000000
E=[g 99001, c<lo 000100000
R 0000 0O0T1UO00O00
C e od 00 0000UO0GO0TI 0
000 0 0
00 0 0 1]
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0 0 0 0 0 0 0 0 ]
CI Sin a " n " " (1] " "
mR
0 0 0 0 0 0 0 0
0 ¢ cosa 0 — ¢ cosa 0 ¢ cosa 0 —¢ cos
mR mR mR mR
, 0 0 0 0 0 0 0 0
B'=| ¢ cosa 0 —c cosa 0 ¢ cosa 0 — ¢ cosa 0
mR mR mR mR
0 0 0 0 0 0 0 0
& — & -1 &
IR 0 IR 0 IR 0 R 0
0 0 0 0 0 0 0 0
— & & & — &
L ¢ IR 0 IR 0 IR g R ]

Equations (11) represent a controllable, observable and asymptotically unstable system. Also
the system matrix is not coupled, but the input matrix couples the system. In this research, we
think of the application of the acceleration sensor in the translational axis direction and want to
design the controller to reject the disturbance. So if this system is separated, the controller design
is relatively simple. Therefore we can find that the independent control inputs transferred in each
mode are five from the fact that the raw direction rank of input matrix B’ are five. By replacing
the control input matrix with equations (12), this system becomes uncoupled.

1 0 1 1 0

1 1 0 o0 -1

1 0 -1 -1 0

, 1 -1 0 o0 1
Bu=BM ,u= B u 119
- = -1 0 1 -1 0 2

-1 1 0 0 1

-1 0 -1 0

T
u= [UX’ U,, U, Uy, 1191]
where M; is a matrix for mode separation.

By this method and the input vector ¥, the state equation separates and the X-axis
direction translational mode and the other mode can be obtained as equations (13) (Shin et al.,

1994; Chen, 1995).
dix, | |4 0 )x |,
dt| x, 0 A x,

b, 07w, e, O £ (13)
0 B,|lu, 0 E | £,
y=cx, x=[x".x"[

The X-axis direction translational motion, and the remaining two-axis direction
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translational and rotational motions can be separated as in equations(14) and equations(15).

®.
Il

X,=A,x,+bu, +e,f, (14)
ya = x, = X

X, =Ayxy+Byu, +E, [,

y,=Cox=[y. =z 6, 6.7F

(15)

Controller Design

3.1 The Complete System Block Diagram

The block diagram is shown in Fig. 4 to explain the whole system structure. The plant to
be controlled is separated with the x-axis direction translational mode and the two other direction
translational and rotational modes. In equations (14), the state feedback system is designed with
a desired damping ratio, and natural frequency, and has the character of the acceleration sensor
by using the current stiffness and the position stiffness. In equations (15) the controller concerned
with the disturbance rejection ability, stability, robustness and low sensitivity of sensor must be
designed. The effect of self- inductance (L) is neglected in equations (10), but actually in between
the control output and plant input, the system includes the loop for the voltage-current delay
compensator. As the model based compensator, we apply the LQG/LTR method (Kim, 1992;
Lewis, 1963). This method enables us to estimate the state by the Kalman filter loop without
information of the full state. But in the case of the X-axis direction translation mode, the state
feedback is adapted and the state estimator is designed from the information of the X-axis
direction position.

Disturbance to be
rejected

Plant

i i Resolver,
Model Based Controller y, z dir translation angular motion
(LQG/LTR) () and rotation mode [ ) Information

x-dir translation x - dir

State - Space Controller 3 s
& Observer _,»CP mode [ linear acceleration

a, : x-dir portion of linear
acceleration

Position data

Laser Deflection
Sensor

Fig. 4. The Complete System Block Diagram

3.2 Voltage-Current Delay Compensator

The objectives of the controller design are to reduced the time delay, and let input of the
amplifier be maintained within appropriate limit. Lead compensator is performed. The gain margin
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and the phase margin of the compensated system are infinitive, and the poles of system are
located at -181.9 and -56.3, zero of system is positioned at -50. Without the compensation,
0.0104(sec) of time delay and 9.375(A/sec) in slew-rate occurredfor unit step input. However,
through the simulation and the experiment, 0.0037(sec) time delay and 28(A/sec) slew-rate were
obtained with compensation (Carr, 1991).

3.3 Acceleration Measurement System Design

For any second order system, the displacement of the system indicates the acceleration, if
we design the system to produce a higher natural frequency than that of the signal to be
measured. Since equations (14) represent a second order system, first we modelize simply the X-
axis direction translational motion to obtain the second order system and then decide the desired
natural frequency and damping ratio. The feedback gain can then be obtained in comparison with
the characteristic equation by applying state feedback techniques in equations (15). Also the
deadbeat observer is designed to make the full state feedback from the X-axis direction position
information.

Fig. 5 shows simply the X-axis direction translation motion of the magnetic levitation

system. Variables 172 are used to derive the equation. As shown in the picture, the difference
between 1 and "2 is the same as the first term, X1 = X, the state vector of equations (13).
The acceleration applied to the magnetic levitation system from outside is 7). We assume that

the relative motions of M1 and M:include the damping(c) and stiffness (k). We obtain equation
(16) in Fig. 5 (Thomson, 1972).

mi, = -c(ny - 1) -k(n,-m) e
Ny-MN2%X —> a, = 1,
Electro- Ferromagnet El«:ctreo‘-s
magnets, mass = m magnets,
left pair right pair

—>q —>n,

1

Fig. 5. X—axis Direction Translation Motion

If M1 is a sinusoidal wave, position and acceleration are shown as equation(17).
n,=Nsinwt, 7,=-Na’sin ot an

Let M2 =M\ = X in Fig.6, equations (18) can be obtained.
. ¢ . k 9 .
X+—x+—x=Now sinwt (18)
m m
The solution of equation (18) is shown as
0 .,
% r
N p = p (19)
> 272 el 2
\/[1 ()1 + 24 )

n n
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26 (22 .
o =— % ¢ -C g = [k
]_(.w_)z Cr m

wl’l

Suppose that the system results in a higher natural frequency (@,) in comparison with the

frequency of the signal to be measured (@) . Let® /@, = 0  then equations (19) is shown as

w>N  accelerati o
= wz’ L (20)

n n

X =

That is, within the range ® < @ . X is proportional to the acceleration with the rate of

(1 “’: ). The natural frequency,®? », and damping ratio,g , are important design parameters.

The X-axis direction state, equations (14) performs state feedback with control law as
equation (21). The controller then must be designed with the natural frequency and damping ratio
that is desired in the system of Fig. 5.

u, = Kx, = [al azl[;] 21

The following second order differential equation can be obtained by using Table 1 in
equation (14) and equation(21).

X - 18361 a,x — (26222 + 18361 «a,)x = f, (22)

In equation (22), by comparing equation (18) with equation (22), the coefficients ®:1,%
should be determined so as to produce the natural frequency and the damping ratio desired in
equation (18).

For the case of the acceleration sensor used in inertial measurement, the natural frequency
of the system was designed to result in a comparatively low value. If the plant does not measure
the sudden change of acceleration, the precise measurement is possible in measurable bandwidth.
In this research, the natural frequency is designed to result in a low value, but there are design
constraint conditions to be considered. That is, to approximate the magnetic levitated system as
the second differential equation of equation (22), the pole of the power amplifier, included in the
inner loop of the system, should be neglected. Therefore, the pole of the system in equations (14)
and equation (22) must dominate over the minimum pole of the power amplifier. We should also
be careful when the natural frequency and damping ratio is selected, because the pole gets close
to the pole of the power amplifier if the natural frequency is made to be high in equation (18)
(Lee, 1997).

In this study, the pole of equations (14) is designed to reach a value of -16.336+j19.099.

Also, @, = 4[Hz 1, § =0.65 pExamine Fig. 6. This figure shows the sensitivity plot versus

frequency at the given natural frequency.In the case of ¢ = 0.7 , we can obtain the acceleration
with a small error of 0.01% with the indication value up to 0.2 times of natural frequency. If

{ <07 , the measurement bandwidth becomes wider, but the error of indication value becomes
larger. Hence, this system is designed to make the measurable bandwidth as wide as possible.
The indication value has a *1.22% error and the measurable bandwidth is 072.45[Hz]. The phase

of frequency ratio, @ /@ , | must be 0 or proportionally increased to reconstruct the signal
without shape distortion. In case of$ = O, the phase is zero, at ¢ = 0.7 | the phase increases

regularly in the range of 0<®@ /@ ,<1. In Fig. 7, where$ = 0.65 , there is minimal distortion but
the measurable bandwidth becomes wide. In Fig. 6, the measurement sensitivity is the following.
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- Sensitivity : 1.58314X10 *lmm / mm /sec 2] with +1.22%, max. at frequency range 072.45[Hz]

Therefore, for the case of a step disturbance input with the acceleration of 500[mm / sec ]
to the X-axis direction is applied, the displacement of 0.79157[mm] happens in steady state.

To apply the control input as equation (21), we need the full state of the system. The
displacement, X, can be obtained from the sensor. This Xcan be obtained by differentiating.
However, if the signal including the measurement noise is differentiated, the differentiated values
we desire can’t be obtained because the noise of the high frequency area is amplified. Generally,
the solution of this method is to design the observer. Because if the observer includes the
dynamics of the system, the high frequency signal is decreased. We also considered the digital
controller for the system. First, we discretize equations(14).

We assume there is no acceleration disturbance. The discrete state space equation from
Equations (14) is shown as follows

—_ 5 s
la.k+1 - Aa £a,k + .b.-aua
(23)
ya.k =CaXak
x10°

5’ 1.7 T ™~ - 80
3 2 | ¥’
5 165 Max error +1.22% e 70 i
g ) ? & + 0.7 (no phase distortion)e————— 7"
g 16 J— 60T 0.65 (slight phase distortion), et
2 1557 50
2
% O1sf 0r
§
]

1457 Usefu Frequency Band : 0~ 2.45 [Hz]

at natural frequency : 4 [Hz]

14+ damping : 0.65

1351

1.3 -

0 0.5 1 1.5 2 25 3 35 . 03 04 05 06 07 o038
Frequency [Hz] Frequency ratio [w/w,]
Fig. 6. Sensitivity Plot Fig. 7. Phase Angle Plot

Let the state vector estimated by the state estimator Lok Dynamics of the state estimator

based on control input, output and state equation is shown as equation (22) ) (Lee, 1997).

oy = (A - Le )i, +b,u, + Ly,
Jk+1 Wk k Wk (24)

-
The estimator gain is[’ = [L, L2] > L\ L, are scalar balers. The estimator error is

T — — 1 = s _ . . . .
defined as Yak = Yax = Yaux, A.=4,-Lg, is the estimator state matrix. The estimator
characteristic polynomial is shown as equation (25).

AO(Z) = |Z] = Aa‘o (25)

Because this system is observable, L can be determined such that the estimator state
matrix, Aa-o, have the pole at z=0. Then, the estimator error becomes zero after the n sample

period. Characteristics of the observer are defined with AD(Z) =2z = Zz. Comparing
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coefficients with equation (25), the estimator is designed as follows:
L, =2.026222 , L,=1.048642 e’

This method is for the deadbeat observer design.
Xk i _ | 1.0131112 0.0010044 X .
X5 26 .3369994 1.0131112 .
0.0091803 [ ]+ L, ( 23
u -x
18 .4419004 i3] g [0S
The initial condition is %1 (0) = £, (0) =0
Fig. 8 is the block diagram for simulation when the X-axis direction acceleration exists.

Fig. 9 shows the tested time response. The result could be obtained as expected and we also
know the control input was applied properly(Kim, 2000; Cho et al., 2002).

X dir linear acceleration

+ N System

Distb. input
M atrix

I Xy Y Position Out
. c >
- —™ HN=
Output Rt
Matrix
System
M atrix

Output Injection
Matrix

2 A
] + Xy Vi
> B + —»| C
+

Control Input

Observer

K |e
I

Feedback Gain Estimated States

Fig. 8. Acceleration Measurement System

T
1 00
ol | 4 1
s}
T \ J i
E 06 E
T % =
S 4-063
8 04 5
o o
5 %3
X >
0.24 —-1.0 3
R
il H4-12
00 B
T T T T T T T -14
00 02 04 06 08 1.0 12
time [sec]

Fig. 9. Time Response
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3.4 Disturbance Rejection Controller Design

The state equations, which describe the Y, Z-axis direction translational and rotational
motion, are equations (15). The requirements of the controller are:
Steady state error is zero, if the disturbance is constant
Disturbance rejection at bandwidth 0716[Hz]
Low sensitivity character of sensor noise at bandwidth is more than 160[Hz]
Stability, robustness of the model error
Since this system is nonsingular and minimum phase, by using LQG/LTR, the acceleration
disturbance is eliminated and the low sensitivity of the sensor noise, as well as stability and
robustness are considered. The designed plant model that includes the free integral factor is
shown as equations (26). This equation does not consider the steady state error with the
constant disturbance.

= Ax + Bu
y=Cx
. . 26
o T 20

o[ 5] 0= cop e

The transfer function matrix of the LQG/LTR compensator is shown as

K(s)=G(s] - A+ BG + HC)'H @7

The parameter, H, can be obtained through the designing of the target filter loop. Also, G,
through the designing of the loop transfer recovery.

With the LQG/LTR control system design, including plant noise and sensor noise(assumed
as white noise), the state equations for the design plant are shown as follows:

Xx=Ax + Bu + L¢
y=Cx +60
E[E) =EO(1) =0 (28)

E[EME@) 1= 18 -7)
E68()8() 1= pIs(r-1)

Here & and 6 are zero mean white noise vectors with strengths /-1 H# and L are

design parameters. Since the free integral is included, L can be used with equation (27) so that
the singular values in the range of low frequency and high frequency coincide.

[ - [‘[CbAb]BbII] (29)

c'lecT

Fig. 10 is the target filter loop, which is satisfied with the given conditions. From this
figure, the target filter loop is designed to have the disturbance rejection ability in the frequency
range of 0716[Hz] and to have the low sensitivity ability of the sensor noise in the range of more
than 160[Hz]. Generally, the acceleration disturbance, which should be eliminated in the system,
has the energy from the low frequency range. The effect of sensor noise is distributed widely in
the very high frequency range. The singular value, depending on the frequency in the target filter
loop, satisfies the requested capability.
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Fig. 12. Closed Loop Singular Value Plot

Through the loop transfer recovery, the compensated system is recovered to the target filter
loop. The loop transfer recovery is possible by solving the LQR control problem. Because of the
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minimum phase plant, if the loop transfer recovery parameterp approximates to zero, a good
recovery can be expected. Actually, considering a possible control force on the system, the value
selected to be recovered corresponds to 679 times the cross over frequency. When the value of p

is the order of 10_'0, a good loop transfer recovery is performed as in Fig. 11. Fig. 12 is the
compensated closed loop singular value plot and provides the criterion to decide stability and
robustness.
Simulations are performed in the time domain. To determine the capability of the designed
system the following conditions are used.
Sensor noise: The covariance based on the measurement data from the laser

displacement sensor was obtained and mean is @ 220.1642 X107 4t zero mean.

Process noise, acceleration disturbance: Process disturbance was not considered in the
simulation. Acceleration disturbance was estimated about a step input with random strength.
Disturbance strength is not constant. If constant, the response of the system was investigated.

In Fig. 13, when the disturbance is applied constantly, the disturbance rejection ability can

be seen. The disturbance will be applied approximately up to 25[/sec *1 . Fig. 14shows that in
the case when the sampling period is sufficiently small, the control input can be applied to the
power amplifier of the actual plant. We know that the control input is possible within the proper
range and also the high level disturbance is well controlled.

In the case where the input is a ramp (increasing constantly), the steady state output is
kept constant in a state where there is a small departure from the equilibrium point. In the case
where this system is used to measure the angular motion of a body, the body’s acceleration
increases constantly. In the worst case, if the second or higher order function is kept constant for
sometime, it will be outof the equilibrium point or be an unstable state. That is not a problem,
because the acceleration to be rejected represented a vibrational state or the rate of change of
acceleration is not significantly large.
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Fig. 13. Time Response for Disturbance Input Fig. 14. Control Input Applied to PowerAmplifier

Results and Discussion

By using the frictionless supporting character of the magnetic levitation, we suggested a
new method of measuring linear acceleration and rotational motion of an airplane or space vehicle
etc. By using the specific parameter modeling values in table 1, we did the system modeling and
designed the controller using state feedback and the model-based compensator techniques. We
assumed the power amplifier from the lead compensator and current feedback circuit compensates
the delay effect of the self-inductance.

There are three ways for undertaking the controller design problem. First, the power
amplifier and the electromagnet controller design using the current feedback and the lead
compensator were performed for the voltage-current transfer delay compensation. Without the
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compensation, 0.0104(sec) of time delay and 9.375(A/sec) in slew-rate occurred. However, through
the simulation and the experiment, 0.0037(sec) time delay and 28(A/sec) slew-rate were obtained
with compensation. Second, the acceleration measurement system of the X-axis translation mode
was designed. In this controller design, the system performed within 0 ~ 2.45(Hz) of the
measurable bandwidth, 158314 x 10 *%(mm/mm/sec” in sensitivity, and +1.22% maximum
indication error within the bandwidth. Third, the controllers for the Y-axis and Z-axis direction
translational and rotational modes were designed for disturbance rejection and stability/robustness.
As the model based compensator, the LQG/LTR method was applied. The designed system
showed that disturbance was rejected within 0 ~ 16(Hz) frequency range. Also it has a low
sensitivity character for sensor noise above 160(Hz).

The modeling parameter values of this system are obtained by experiment. Therefore, there
is room to improve by optimizing the modeling parameter values and doing further research on
preventing an energy loss by using a hybrid method, super-conduct coil, etc.
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