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Abstract

Some methods have been presented to avoid collisions among satellites for
satellite formation flying mission. The potential function method based on Lyapunov’s
theory is known as a powerful tool for collision avoidance in the robotic system
because of its robustness and flexibility. During the last decade, a potential function
has also been applied to UAV’s and spacecraft operations, which consists of repulsive
and attractive potential. In this study, the controller is designed using a potential
function via sliding mode technique for the configuration of satellite formation flying.
The strategy is based on enforcing the satellite to move along the gradient of a given
potential function. The new scalar velocity function is introduced such that all
satellites reach the goal points simultaneously. Simulation results show that the
controller drives the satellite toward the desired point along the gradient of the
potential function and is robust against external disturbances.
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Introduction

Recently, satellite formation flying (SFF) has been a topic of significant research interest in
aerospace society because it provides potential benefits compared to a single large spacecraft. The
spatial separation between spacecrafts can range from a few meters to several kilometers for
some SFF missions. Thus collision avoidance is a critical requirement for the configuration or
reconfiguration maneuver of SFF which involves multiple satellites. Many techniques have been
developed to solve the problem of path planning and collision avoidance for SFF missions.
Especially the potential function technique is regarded as a very powerful tool for collision
avoidance in the robotic system, which is based on the Lyapunov’s stability theory. This
technique has been generalized to spacecraft applications[1-3] because of simplicity of handling
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collision avoidance constraints. Other techniques have been developed for path-planning with
collision avoidance constraints such as randomized algorithms[4], splines[5] and a mixed-integer
linear programming[6]. Richards et al[6] introduced a method of finding fuel-optimal trajectories
considering collision avoidances and plume impingements based on a mixed-integer linear
programming for the satellite formation reconfiguration. In recent years, the parameter
optimization technique was presented for optimal formation trajectory planning(7]. Lim et al[7]
developed the new constraints of nonlinear equality for final configuration and nonlinear inequality
for collision avoidance.

Most SFF control laws have been designed on the base of the simplified relative dynamic
equations such as Hill’s equations. These equations cannot capture the J2 perturbation effect
because they are derived under the assumption that the reference orbit is circular, the Earth is
spherically symmetric, and the target satellite is very close to the reference orbit. Control designs
based on Hill's equations require high fuel consumption and can imperil the formation flying
mission with long duration and large separation between satellites since Hill's equations disregard
the perturbation and nonlinear terms on the relative motion dynamics. So many nonlinear control
theories have been researched in SFF. Queiroz et al.[8] developed a nonlinear adaptive control law
for the relative position tracking of multiple satellites. Gurfil et al[9] proposed a nonlinear
adaptive neural control methodology for deep-space SFF. Sliding mode controller was developed
to track the desired trajectories with the extended Kalman filter for estimating the state vector
based on measurements of relative distance between two satellites[10]. Pongvthithum et al.[11]
developed the tracking control law using the universal adaptive control scheme. Currently, most
nonlinear control schemes for SFF use full state feedback controllers, which require both position
and velocity sensors. Wong et al.[12] designed a adaptive output feedback tracking control in the
absence of velocity measurements.

In this paper, the sliding mode controller is developed for a problem of SFF configuration
using a potential function which is used for collision avoidance and gives the global minimum at
the desired point. It is not sure that all satellites arrive at their desired positions simultaneously.
Thus, The scalar velocity function is introduced to the sliding manifold to overcome this problem.

System Dynamics and Potential Function

A rotating local-vertical-local-horizontal (LVLH) frame is used to visualize the relative
motion with respect to the reference satellite. The x-axis points in the radial direction, the z-axis
is perpendicular to the orbital plane and points in the direction of the angular momentum vector.
Finally, the y-axis points in the along-track direction. The relative motion dynamics can be
derived using the Lagrangian mechanics based on the LVLH frame[12]. This derivation utilizes
the fact that the total energy(sum of potential and kinetic energy) of the satellite is conserved
under the gravitational field. The relative dynamics for an eccentric reference orbit is given by
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where x =|[z,y,z] € R® is a vector denoting the position of the follower satellite,
D =[D,.D,,D.] € R® denotes external disturbances, u =[u,,u,,u.] € R* describes the
control inputs, R presents the radius of the reference satellite, and p is the gravitational constant.
0 refers to the latitude angle of the reference satellite in Eq. (1) which describes the circular orbit
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for the case of § =constant, ie. § =0.

The potential function method is based on Lyapunov’s theory which determines the stability
properties of a nonlinear system by constructing a scalar energy-like function. The potential
function method has been extensively investigated in the field of robot motion planning because it
is a powerful tool for avoiding collision between collaborative systems. Some approaches based on
potential functions were developed for spacecraft applications to handle collision avoidance
strategies. The basic idea of the potential function method is to establish a potential field with a
global minimum at the desired state and local maxima in the obstacles. So, the potential function
is composed of attractive and repulsive terms. According to the Lyapunov’s stability theory, if the
gradient of the potential function of the system is always negative, the system can be drived to
the desired state without collision of obstacles. Thus, controller is designed such that the velocity
of the system is pointed along the negative gradient of the potential function.

Numerous potential functions have been proposed in the past decade. However, the problem
lies in that the formulations of potential function suffer from local minima which can lead to the
robot to stay at the undesired locations. In many papers, a harmonic function is proposed to avoid
this local minima problem as a potential function. A harmonic function gives a unique global
minimum because it satisfies the Laplace equation:
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where @ represents potential function. In this study, the potential function of the ith satellite[1] is
defined as
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The subscript i denotes the ith satellite, and the superscript d represents the desired state
which the satellite can reach in the finite time, and N is the total number of satellites in SFF
missions. The matrix M and Q is taken to be positive definite, and the constant A is also positive
definite. The first term of Eq. (3) describes the attractive potential with a global minimum at the
desired state, whereas the second term represents the repulsive potential for collision avoidance
against other satellites.

Design of Sliding Mode Controller

In this section, a sliding mode controller is designed for tracking the gradient of the
potential function defined in Eq. (3). It is known that a sliding mode control generally yields exact
tracking performance of the gradient lines and is robust with respect to parametric uncertainty
and disturbances in system dynamics. The strategy of designing the controller is based on
enforcing the satellite to move along the gradient of a given potential function. Let us assume that
the reference satellite moves in the circular orbit and the external disturbances are unknown and

bounded, ie. ID(t)|<D. Then, the nonlinear system dynamics can be rewritten by

x =F(x,x )+D({)+u (4)
where
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To enforce the velocity of the system along the negative gradient of the potential function,
the sliding manifold of the ith spacecraft is defined as
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The scalar velocity function, k(x ) is introduced such that all satellites reach the desired
point simultaneously, which determines the magnitude of the velocity. The gradient of the
potential function gives the direction of motion, whereas the velocity of a satellite can be
controlled through the function & (x ). a is a scalar constant velocity, and the function K (x)is
bounded because of the properties of a hyperbolic tangent, i.e. 0 < K (x )< 2a. Furthermore, let
us define the Lyapunov function
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Using Eq. (4) and (5), the derivative of V, can be derived as
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If the last term of Eq. (7) is assumed to be bounded for all x € R® (refer to [13] for the
boundness), then we can derive the following result:
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Thus we can choose the control law such that the derivative of the Lyapunov function is
negative. In particular, by choosing
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where sgn( - ) means the signum function. Thus, the derivative of Lyapunov function can be
obtained by
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where the gain u, of the control inputs is chosen to be u ,~0>.(7i. Eq. (10) ensures that all

trajectories starting off the sliding manifold reach it in finite time and those on the sliding
manifold cannot leave it. The sliding mode control law causes chattering phenomenon since it is
discontinuous across the sliding manifold. Chattering describes rapid control signal switching
between positive negative values because the control input enforces the system to reach to the
sliding manifold. To eliminate the unwanted chattering, the signum function in the control law is
substituted with a hyperbolic tangent:

u; =—1Uu; tanh(/gst)—Fl(x’x) (11)

Simulation and Results

The configuration problem of SFF consisting of three satellites is simulated in the only x-y
plane of the LVLH frame as an example and the results are presented. The final configuration is
a equilateral triangle of the projected circular orbit with 300 m radius. The relative dynamics is
assumed to be a circular orbit but external disturbances are considered. The sliding mode
controller works to minimize the difference between the velocity and the normalized gradient of
the potential function multiplied by the scalar function. Thus, all satellites arrive at the desired
points in finite time because the global minimums of the potential function are the desired points.
If all satellites are in the circle with 0.1 m radius from the desired points, simulation will be
finished. The sliding manifold and control inputs are computed with the interval of 0.5 second to
track the gradient of the potential function. All numerical data is given in Table 1 for the
simulation of the sliding mode control law.

Table 1. Numerical data for the simulation

Radius of reference satellite {km) R=7178.137
x , = (800, 1200]™
Initial Position [m] x , = (1000, 1000]"
x 5= [1200, 800]T
Initial velocity [m/s] v,=v,=v;=[0,0)"
Satellites x =300 X [cos (0),sin (0)]*
Desired Position [m] x 3=1300 X [cos (27/3), sin (27/3)] T
x =300 X [cos (47/3), sin (47/3)]”
. 2 . 1.9106E—5
External disturbances [m/s’] sin (2 X @ xt) X _ L1517 E— 5
u, [m/s?] [0.002, 0.002]T
M, Q M=10X 1L, Q=1L
Parameters A A A =1.0E6, \,=1.0E—4
a, B, u; a=150%x46, 3=20

Fig. 1 shows the initial potential field of the 1st satellite, in which the star mark denotes the
desired position. The potential function has the high values near the position of other satellites
due to the repulsive term and the lowest value at the desired position due to the attractive term.
The trajectories of three satellites are displayed in Fig. 2. We can see that the lst and 2nd
satellite take a detour due to the repulsive potential function in Fig. 2.
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Fig. 1. Potential function of the 1st satellite at Fig. 2. Satellite trajectories in the x-y
the initial time plane
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Fig. 3. Relative Distances Fig. 4. Distances from the desired positions

(satellite 1 & 2, 1 & 3, and 2 & 3)

Fig. 3 and Fig. 4 show that all satellites approach their desired positions simultaneously
without collision against each other. The relative distances are larger than about 100 m, and all
satellites arrive at their desired positions at the same time (Note that total simulation time is 78.3
minute). The total AV for the maneuver of the configuration is 6.4 m/s for the 1% satellite, 6.8
m/s for the 2", and 6.2 m/s for the 3".

Even though one satellite gets to the desired point, it should stay near the point to make the
final configuration until other satellites approach to their desired points. This problem can make
the satellite waste fuel near the desired position because the satellite does not stay in the vicinity
of the desired point due to the external disturbances and properties of relative dynamics if control
inputs are not applied. Thus the second simulation was done using & (x ) = a instead of Eq. 5 to
investigate this problem. In this study, the scalar velocity function k(x ) is introduced to
overcome this problem, which determines the appropriate velocity of a satellite and makes all
satellites approach at their desired points simultaneously. Fig. 5(a) shows the control inputs of the
1% satellite using the scalar velocity function defined in Eq. (5), and Fig. 5(b) displays the results
from the second simulation. The additional control inputs are not necessary to make the final
configuration in Fig. 5(a) because three satellites arrive at their desired positions simultaneously.
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Fig. 5. Control inputs of satellites

However, vibrations of the control inputs appear after about 80 minute in Fig. 5(b) because the 1%
satellite arrives at its desired point faster than other satellites, i.e. there is no function in
k(x )= @ to make all satellites approach the desired points simultaneously. It means that control
efforts are necessary to make the 1% satellite stay near the desired point under the external
disturbances and the relative dynamics until other satellites get close to their goal positions.
According to the second simulation, the 1st satellite arrived at the desired position in 84.05 minute,
but the configuration was completed in 125.6 minute. This problem increased the total AV for the
maneuver of the configuration. The total is 11.5 m/s for the 1* satellite, 11.8 m/s for the 2™ and
119 m/s for the 3 in the second simulation.

Conclusions

It is known that a potential function is a powerful tool for collision avoidance in the
collaborative system. Thus, sliding mode controller based on a potential function was designed for
collision avoidance in the configuration of SFF. The sliding manifold was constructed to enforce
the satellite to move along the gradient of a potential function. The scalar velocity function was
introduced in the sliding manifold such that all satellites reach the goal point simultaneously. The
controller guaranteed the exact tracking of the gradient of a potential function. Simulation results
show that the designed controller is robust because it drives the satellite toward the desired
position along the gradient of the potential function under external disturbances.
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