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Abstract

This paper presents an all-direct domain decomposition approach for large-scale structural analysis. The proposed approach 

achieves computational robustness and efficiency by enforcing the compatibility of the displacement field across the sub-

domain boundaries via local Lagrange multipliers and augmented Lagrangian formulation (ALF). The proposed domain 

decomposition approach was compared to the existing FETI approach in terms of the computational time and memory 

usage. The parallel implementation of the proposed algorithm was described in detail. Finally, a preliminary validation was 

attempted for the proposed approach, and the numerical results of two- and three-dimensional problems were compared to 

those obtained through a dual-primal FETI approach. The results indicate an improvement in the performance as a result of 

the implementing the proposed approach.
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1. Introduction

Advances in computer hardware and software for 

computational fluids and structural dynamics allow for 

multi-physics problems and engineering problems of 

ever increasing size and impact, such as fluid-structure 

interactions, to be solved. Consequently, it is of increasing 

importance to develop effective methodologies to solve 

large-scale structural problems in mechanical and aerospace 

engineering.
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High-precision stress predictions require general finite 

element methods with a large number of elements, and 

the computational costs increase as a result of the increase 

in CPU time and memory size that are required. Practical 

problems may require a significant amount of computational 

time and gigabytes of memory, so it is important to carefully 

select the grid size and the solution methodology. Numerical 

algorithms that can be used in such large-scale problems 

may be classified into the groups that implement a direct 

approach, iterative approach, or a combination of both.

The active column solver is a direct solution approach 

that is most commonly used in commercial finite element 

software [1], and it is based on the tri-factorization of a global 

stiffness matrix. This approach is very efficient when multiple 

right-hand side vectors exist, which is common in structural 

analysis problems that involve multiple load cases. Typically, 

the factorized matrix is used for all iterations at a given time 

step during dynamic analysis, leading to an improvement 

in the computational efficiency. Over the last decade, the 

sparse factorization technique has been widely adopted for 

use in commercial finite element packages.

When these are implemented on parallel computers, the 

active column solver shows limited success in terms of its 

simplicity and scalability. This approach typically requires 

a much larger storage than iterative algorithms do. The 

operation count increases significantly faster as the problem 

size increases than for iterative solvers. Multi-frontal solvers 

[2, 3] have also been proposed for factorization. Although 

multi-frontal solvers allow a parallel solution for large-scale 

problems by using distributed memory, the approach does 

not exhibit an adequate scalability [4]. A direct sparse matrix 

solver [5] has been developed since the early 1990s and is 

based on explicit factorization, i.e., Cholesky factorization. 

The PARDISO package is a direct sparse matrix solver [6] that 

was developed with both serial and parallel versions [7]. Such 

a sparse matrix solver is efficient for large and sparse matrix 

computations, and it provides generality and robustness in 

the solution. However, its performance is sensitive to the 

"sparsity" of the system matrix, which might result in poor 

performance. 

The second approach involves the use of iterative 

algorithms, such as the conjugate gradient or generalized 

minimal residual algorithms [8]. Since the active column 

solvers have scalability issues, iterative solvers have been 

proposed for a parallel implementation of large-scale finite 

element problems. Iterative algorithms will repeatedly 

perform matrix-vector or vector-vector computations until 

the solution converges. However, the convergence rate 

depends on the condition number of the system matrix, and 

good pre-conditioners are required to achieve efficiency. 

Since it is difficult to construct good pre-conditioners, 

iterative solvers have exhibited limited success when applied 

to large structural problems.

The finite element tearing and interconnecting (FETI) 

method is probably the most commonly used domain 

decomposition approach for large-scale structural 

analysis. Farhat and Roux [9, 10, 11] proposed FETI as a 

parallel solution algorithm for elliptic partial differential 

equations, and it is one of the first non-overlapping domain 

decomposition methods to demonstrate scalability in terms 

of both element size and the number of sub-domains. In 

the FETI method, the computational domain is divided into 

non-overlapping sub-domains, and Lagrange multipliers are 

used to enforce continuity across the sub-domain interfaces. 

The overall computational efficiency of the original FETI 

method was improved by using a regulation procedure 

based on a "balanced" perturbed Lagrangian formulation 

[12]. In addition, Dostal et al. [13] applied the augmented 

Lagrangian formulation (ALF) to the FETI method to solve 

the contact problems and proved that the use of the ALF 

would be efficient in spite of the fact that it reintroduced 

ill-conditioning into the auxiliary problems. After that, the 

approach was extended to fourth-order elasticity problems 

(two-level FETI), and a dual-primal FETI (FETI-DP) method 

[14, 15] was recently proposed.

The kernels of the floating sub-domains stiffness matrices 

had to be evaluated for the implementation of the original 

and the two-level FETI methods. In contrast, all sub-domain 

stiffness matrices are invertible for the FETI-DP method. The 

FETI-DP is a dual sub-structuring method that introduces 

both Lagrange multipliers and a small number of coarse 

mesh nodes to enforce continuity at the interfaces of the sub-

domain. The resulting problem is then solved by seeking a 

saddle-point of the relevant Lagrangian functional. The 

difference between the original and the FETI-DP methods is 

the following: 

The original FETI method is a projected conjugate 

gradient algorithm, and hence, cannot be started with an 

arbitrary initial guess. In contrast, the FETI-DP is a standard 

preconditioned conjugate algorithm that can be started from 

an arbitrary initial guess. For both methods, the solution 

of the interface problem is obtained by using an iterative 

process that requires an adequate pre-conditioner. Thus, 

both FETI methods combine the direct solution approach 

for each of the sub-domains and iterative solvers for the 

interface problem.

Typically, a parallel implementation of direct solvers is 

robust, but such an implementation is complex and the 

scalability remains to be addressed issue. Moreover, the 

associated memory and computational costs increase 
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rapidly with the problem size. In contrast, iterative algorithms 

efficiently utilize memory even though they exhibit poor 

performance when confronted with poorly conditioned 

matrices. Therefore, iterative solvers rely on various types of 

preconditioning techniques to improve the convergence of 

the solution.

In view of these limitations, it is appropriate to investigate 

a combination of domain decomposition methods with 

direct solvers. This approach seems to have received little 

attention thus far [16, 17, 18, 19]. Bauchau [20, 21] suggested 

the use of ALF in conjunction with both global and local 

Lagrange multipliers and demonstrated an improvement in 

the conditioning of the interface flexibility matrix. For this 

approach, the stiffness matrices of all sub-domains become 

nonsingular, bypassing the need to evaluate pseudo-

inverses and enabling the use of standard direct solvers. 

The authors proposed an improved domain decomposition 

approach as a preliminary step to the present effort [22], and 

more recently, a FETI-type algorithm was developed for use 

with multibody structures [23]. However, a serial version of 

the column solver has to be adopted to address each of the 

sub-domains as well as the interface problem, and doing 

so is not efficient. In the present paper, the computational 

domain will be divided into non-overlapping sub-domains 

by following the authors' previous study. A column solver 

will then be used in each of the sub-domains, and finally, a 

parallel version of the column solver will be used to address 

the interface problem. The present approach was originally 

developed for use in large-scale structural analysis. However, 

this paper consists of a preliminary validation that applies 

the method to two- and three-dimensional problems, such 

as planar and shell elements. 

The paper is organized as follows. The original FETI 

method will be summarized in the first section, and the 

proposed algorithm will be compared to the original FETI 

method. Next, the proposed algorithm is implemented 

on parallel hardware, and finally, the computational cost 

and the results of the scalability obtained by the proposed 

approach will be presented for a two-dimensional planar 

problem and a three-dimensional cylindrical structure 

modelled with shell elements.

2. Description of the algorithms

Section 2.3 describes the original FETI method, and the 

role of the rigid-body modes is underlined. In Section 2.4, 

an augmented Lagrangian formulation will be introduced, 

and its impact is highlighted in terms of the characteristics 

of the problem. Section 2.5 provides a brief description of 

the interface connection strategy for FETI and the proposed 

approach. 

2.1 Domain decomposition

Consider the planar solid shown in Fig. 1. A parallel 

solution algorithm can be developed for this problem by 

partitioning the solid into Ns non-overlapping sub-domains. 

Fig. 1 depicts a planar system for convenience, but all 

developments presented here are generally applicable to 

three-dimensional problems. The degrees of freedom (dofs) 

for each sub-domain are collected in arrays denoted as 
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original problem into sub-domain, whereas the remaining dofs are internal. Kinematic constraints will 

be imposed at the boundary nodes to enforce the continuity of the displacement field, thereby ensuring 
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The continuity of the displacement field across sub-domain boundaries is enforced by imposing linear 
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Fig. 2. Classical and localized Lagrange multipliers 
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mutually exclusive groups: the internal and the boundary 

dofs. The boundary dofs are those that are exposed when 

dividing the original problem into sub-domains while the 

remaining dofs are internal. Kinematic constraints will be 

imposed at the boundary nodes to enforce continuity in the 

displacement field, thereby ensuring that the behavior of the 

connected sub-domains is identical to that of the original, 

un-partitioned solid.

2.2 Lagrange multipliers

Linear constraints are imposed to enforce the continuity 

of the displacement field across the sub-domain boundaries, 

and an equality in the dofs corresponds to nodes in adjacent 

sub-domains. This was achieved in the original FETI 

approach by using a classical Lagrange multiplier technique, 

as  conceptually illustrated in Fig. 2. Let the displacement 

vectors of two nodes belonging to two adjacent sub-domains 

be denoted as 

7 

sub-domains be denoted 1u  and 2u . The continuity of the displacement field across the interface of 

the two sub-domains implies 1 2 0C u u   , where C  is the constraint to be imposed. 

An alternative approach is to define an independent interface node, denoted c , then impose two 

kinematic constraints: the displacement components at the boundary nodes in the two sub-domains 

adjacent to the interface must equal those at the independent interface nodes. For the simple connection 

illustrated in Fig. 2, the two kinematic constraints become [1]
1 0C u c    and [2]

2 0C u c   , and 

the corresponding constraint potential is [1] [1] [2] [2]T T
cV C C   . Notation [ ]( ) j  indicates quantities 

associated with constraint j. 

In this approach, Lagrange multipliers [1]  enforce the constraint between the boundary dofs of sub-

domain 1, denoted 1u , and the interface dofs, c . Similarly, Lagrange multipliers [2]  enforce the 

constraint between the boundary dofs of adjacent sub-domain 2, denoted 2u , and the same interface 

dofs, c . No direct constraint is written between the dofs of the two sub-domains. Consequently, 

Lagrange multipliers [1]  and [1]  become “localized,” i.e., [1]  and [1]  are local variables of 

sub-domains 1 and 2, respectively. The name “localized Lagrange multiplier technique” stems from this 

feature of the approach. Note that constraints are localized as well: constraints [1]C  and [2]C  are 

associated with sub-domains 1 and 2, respectively. When multiple connections occur at a single nodes, 

a single interface node is introduced. In finite element formulations, this approach has been used to 

enforce the continuity of displacement fields between adjacent incompatible elements [24]. The same 

approach, called “localized version of the method of Lagrange multipliers,” has been advocated by Park 

et al. [25, 26]. 

 

2.3 The original FETI method 
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Ku f                                                             (2) 

where K , u  and f  are the global stiffness matrix, displacement vector, and prescribed force 

vector, respectively. Next, the computational domain is divided into Ns non-overlapping regions or sub-

domains and Lagrange multipliers are introduced to enforce the continuity of the displacement problem 

becomes a saddle-point problem. 

Once divided into sub-domains, governing equations, Eq. (2), take the following form 
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where ( )sK , ( )su , and ( )sf  are the stiffness matrix, displacement vector, and prescribed force 

vector, respectively, for sub-domain s. Matrix ( )s
jB  is the Boolean connectivity matrix,   the array 

of Lagrange multipliers and ( )sa  the number of sub-domains connected to sub-domain s. If all sub-

domains are constrained by adequate boundary conditions, stiffness matrices ( )sK  are non-singular 

and the solution of Eq. (3) is 
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The problem is solved in two steps: first, the solution of the interface problem (4b) yields the 

Lagrange multipliers and second, the displacement field in each sub-domain is evaluated using Eq. (4a). 

As illustrated in Fig. 1, typical configurations include floating sub-domains, whose stiffness matrices 

are singular and the kernel of which are the sub-domain rigid-body modes. The solution procedure is 

modified as follows. First, in each sub-domain, a direct factorization scheme is used to compute the 

Moore-Penrose inverse of the stiffness matrix, denoted ( )sK , knowing the sub-domain rigid-body 

modes. Second, the contributions of the rigid-modes are related to the Lagrange multipliers through an 
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where ( )iK  denotes the stiffness matrix of sub-domain i and  ( )diag K   the global stiffness 

matrix of the system. If the structure is constrained by suitable boundary conditions, the global stiffness 

matrix will not be singular, although the stiffness matrices of floating sub-domains are singular. 

The total work done by the externally applied loads is ( ) ( ) ( )
1 1
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i i

u Q u Q
   , where 

( )iQ  is the load vector for a sub-domain, and global load array of system is defined as 

 ( )(1) (2), , , sN TT T TQ Q Q Q . 

The kinematic continuity conditions across sub-domain interfaces is enforced via the localized 

Lagrange multiplier technique. Let [ ]j
bu  and [ ]jc  denote the arrays of dofs at a boundary node and at 

an interface node, respectively. Kinematic constraint j is written as [ ][ ] [ ] 0jj j
bC u c   and the 

associated potential is 

[ ] [ ] [ ] [ ] [ ]
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j j T j j T j

c
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where [ ]j  is the array of Lagrange multipliers used to enforce the constraint, and s the scaling 

factor for those multipliers. The first term on the right-hand side of Eq. (8) provides the enforcement of 

the constraint via the Lagrange multiplier technique. Note the presence of the scaling factor, s. The 

second term on the right-hand side of Eq. (8) can be interpreted as the enforcement of the constraint via 

the penalty method; the combination of the two approaches, known as the Augmented Lagrangian 

Formulation [27, 28] is a general solution technique for boundary value problems and is particularly 

useful when dealing with constrained dynamical system [29, 30, 31]. Bottasso et al. [32] and augmented 

Lagrangian formulations in the solution of differential-algebraic equations. These aspects of the 

formulation will become indispensable when the present work is extended to deal with structural and 

multibody dynamics problems. 

Variation of the constraint potential, Eq. (8), leads to 
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where the partitions are indicated by horizontal and vertical lines in Eqs. (10) and (11). Subscripts 

 b  and  c  denote dofs associated with the boundary and interface nodes, respectively. In summary, 

each kinematic constraint generates an array of constraint forces and a constraint stiffness matrix. 

Clearly, each kinematic constraint can be viewed as finite element and in the sequel, the terms 

“kinematic constraint” and “constraint element” will be used interchangeably. The physical 

interpretation of the ALF formulation has been discussed by Kwak et al. [23]. 

To connect the Ns sub-domains, a total of Nc interface nodes will be defined and the following array 
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Taking the derivative of these forces for the constraint with 

respect to the dofs yields the stiffness matrix of the constraint,
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that if an adequate number of coarse mesh nodes is used in 

each sub-domain, the corresponding stiffness matrices are 

no longer singular, simplifying the solution process. For the 

proposed approach, the localized Lagrange multipliers and 

the interface nodes are used to impose continuity across 

the sub-domain boundaries. A single interface node is 

defined at the corner nodes, i.e., at the cross-points of the 

sub-domain.

3. ��Solution procedure for the proposed ap-
proach

For domain decomposition approaches, the overall 

computational efficiency is often determined by the 

strategy that is used to solve the interface problem. Indeed, 

the computations associated with each sub-domain are 

independent of each other and will scale as the number 

of processors increases. On the other hand, the solution 

of the interface problem involves interaction among 

the processors that can severely slow down the solution 

process.

3.1 ��Parallel computing algorithm used in the pro-
posed approach

The proposed approach proceeds in the three 

computational steps, as shown in Fig. 4. Message passing 

is implemented in the proposed approach, as shown in Fig. 

5, and Step I sets up a structural interface problem, Step II 

evaluates the solution of the structural interface problem, 

and Step III recovers the solution from each sub-domain. 

LAPACK and ScaLAPACK are standard and portable libraries 

that are used in the present implementation. Table 1 shows 

the specific solvers of the libraries and their numerical 

features within each step.

The purpose of Step I is to set up an interface problem 

that involves (1) the evaluation and assembly of the stiffness 

matrix, (2) the factorization of the stiffness matrix, and (3) 

the assembly of the interface stiffness matrix for each sub-

domain.

Step II computes the solution of the interface problem. In 

this step, the stiffness matrix corresponding to the interface 

nodes existing in the individual sub-domains needs to be 
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distributed to each processor. The MPI_REDUCE routine is 

then used to collect the matrix data to a root process.

The computational load is then distributed to Ns 

processes by a parallel solver for linear equations, such as 

the ScaLAPACK library. ScaLAPACK is a message passing 

version of LAPACK. It assumes that the tasks are to be 

distributed according to the two-dimensional block-cyclic 

data layout scheme. The block cyclic distribution provides 

a general way to distribute a block-partitioned matrix on 

concurrent distributed memory computers. In this process, 

LU decomposition is used with partial pivoting and row 

interchanges.

In Step III, the final solution is obtained for each sub-

domain by the linear solver. From Step II, array 

15 

block cyclic distribution provides a general way of distributing a block-partitioned matrix on distributed 

memory concurrent computers. In this process, the LU decomposition with partial pivoting and row 

interchanges is used. 

In Step III, the final solution for each sub-domain is obtained by the linear solver. From Step II, array 

c , degrees of freedom at the interface nodes, is obtained. Thus, the displacement of each sub-domain 

( )iu  is obtained easily. The MPI_BCAST routine sends the value of array c  to all the other processes 

first, and then, the LU decomposition routine of LAPACK library is used to recover the solution for 

each sub-domain. 

 
4. Numerical Results 

The proposed approach is applied to the solution of a static, two-dimensional plane stress and three-

dimensional shell problems. The present parallel computations were executed in the TACHYON system, 

which is one of the supercomputers operated by Korea Institute of Science and Technology Information. 

The detailed specifications of TACHYON system are listed in Table 2. 

Section 4.1 will discuss the results for the two-dimensional configuration: the computational cost and 

scalability in a parallel environment are examined. To evaluate the computational cost, the proposed 

approach is compared with the FETI-DP. Section 4.2 will examine the corresponding results for the 

three-dimensional structure. 
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4. Numerical Results

The proposed approach is implemented in order to solve 

static, two-dimensional plane stress and three-dimensional 

shell problems. The present parallel computations were 

executed in the TACHYON system, a supercomputer 

operated by Korea Institute of Science and Technology 

Information. The detailed specifications of the TACHYON 

system are listed in Table 2.

Section 4.1 will discuss the results for the two-dimensional 

configuration, and the computational cost and the 

scalability are examined in the parallel environment, and the 
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the computational cost. Section 4.2 will then examine the 

corresponding results for the three-dimensional structure.
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Table 1. LAPACK [33] and ScaLAPACK [34] solvers involved in the proposed approach 
 Step I Step II Step III 

Library Solver LAPACK 
DGETRF 

ScaLAPACK 
PDGESV 

LAPACK 
DGESV 

Feature LU factorization 
LU decomposition 

Parallel computation 
Block-cyclic scheme 

LU decomposition 
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Table 2. Specifications of TACHYON system 
 Value 

Processor AMD Operation, 2.0GHz(Barcelona) 
Number of nodes 188 

Number of CPU core 3008 
Memory DDR2/667MHz 6TB 

OS CentOS 4.6 
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subjected to a uniform load applied along the right edge. The 

equations of the planar elasticity are used [1]. Constitutive 

laws are assumed for a linearly elastic homogeneous and 

isotropic material, i.e., 
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 is the strain interpolation 

matrix, and Ωe is the element domain. For the numerical 

examples shown below, the modulus of elasticity is 73 GPa 

and the Poisson's ratio is 0.3.

The proposed approach adopts the localized Lagrange 

multiplier described in Section 2. A relatively small 

number of dofs was used for the initial runs. The number 

of sub-domains increased from 4 to 225, but the number 

of dofs was kept to a total of 7,442. First, the serial LAPACK 

library was used to solve this problem through the use of 

an undecomposed domain only, and the computational 

time was 99.42 s. Then, the PARDISO package, a direct 

sparse matrix solver, was employed to solve the same 

undecomposed domain problem. The serial version of 

PARDISO, which is included in the Intel Math Kernel 

Library [35], was used, and the computational time was 2.25 

s. Then, the parallel ScaLAPACK library was implemented 

for the same undecomposed domain problem. Finally, 

the proposed approach was executed. Fig. 7 shows the 

performance of the proposed approach, which is also 

summarized in Table 3.
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Fig. 7. Computational time of the proposed approaches, ScaLAPACK and PARDISO 
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Table 3. Comparison of the computational time
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Table 3. Comparison of the computational time 

Sub-
domains 

Proposed 
approach 

[s] 
CPUs 

Parallel 
ScaLAPACK 

[s] 
CPUs 

Serial 
PARDISO 

[s] 

Serial 
LAPACK 

[s] 
4 6.52 4 27.63 

1 2.25 99.42 

9 1.84 9 15.37 
16 0.64 16 10.07 
25 0.45 25 8.17 
36 0.53 36 7.09 

100 1.03 100 5.49 
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The results indicate that the proposed parallel 

implementation achieved a good performance. In addition, 

the computational time consumed by the proposed 

algorithm decreased to 0.45 s when using an optimal number 

of 25 processors. The proposed algorithm based on the 

domain decomposition outperforms not only the parallel 

ScaLAPACK library but also the PARDISO sparse matrix 

solver when it is applied to an undecomposed domain.

The problem size was then increased to 35,378 dofs, and 

the computational efficiency and the memory usage of the 

proposed approach were examined. The number of sub-

domains increased from 4 to 36, and Figs. 8 and 9 depict 

the respective computational time and memory usage 

required by FETI-DP and the proposed approach. The 

proposed approach outperforms FETI-DP in terms of both 

the computational time and the memory usage.

Figure 10 presents the scalability of the proposed 

approach, as estimated by the speed-up defined as the 

ratio between the computational time for the serial 

processing and for parallel processing with Ns processors. 

An ideal speed-up was achieved when the speed-up 

approaches the number of processors, and the results 

indicate that good scalability characteristics for the 

proposed approach.

Finally, Fig 11 illustrates the computational time 

consumed by Step II in the present computation. In Step II, 

a parallel version of the linear solver was used to compute 

the interface problem. As the number of sub-domains 

increased, the number of dofs increases as well for the 

interface problem, and the use of the parallel solver becomes 

increasingly beneficial for the interface problem.
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Fig. 8. Computational performance of three approaches for the two-dimensional problem 

  
Fig. 8. Computational performance of three approaches for the two-dimensional problem
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Fig. 9. Memory usage of the proposed approaches in the two-dimensional problem 

  Fig. 9. Memory usage of the proposed approaches in the two-dimensional problem
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Fig. 10. Speed-up for the two-dimensional problem 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10. ��Speed-up for the two-dimensional problem
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4.2 ��Three-dimensional structural problem using a 
shell element

The shell problem depicted in Fig. 12 is investigated in 

this section. The material and geometrical properties of the 

cylinder and the loading condition are also listed in the figure. 

A small deflection is assumed for this problem. The degenerate 

shell element proposed by Ahmad et al. [36, 37, 38] was used 

in the present effort. A total of 86,544 dofs were used, and the 

number of the sub-domains increased from 10 to 40.

Table 4 provides a summary of the computational time and 

the memory usage required by the proposed approach. As 

the number of processors increases, the computational time 

decreases from 466.63 to 33.88 s, and the maximum memory 

usage increases from 1785 to 179.78 Mb per processor. The 

scalability was also assessed by evaluating the speed-up, and 

Fig. 13 shows the good scalability potential of the proposed 

approach.

5. Conclusions

This paper describes the development of a finite element 

based domain decomposition algorithm that relies only 

on direct solvers. The proposed approach uses the domain 

decomposition concept that characterizes classical FETI 

methods and enforces continuity in the displacement field 

across the sub-domain interfaces by using a combination of 

localized Lagrange multiplier methods and the augmented 

Lagrangian formulation. This approach generates well-

conditioned stiffness matrices and allows the use of direct 

solvers for both sub-domain and interface problems. The 

preliminary stage of the computation was conducted by 

using the proposed approach. The computational cost and 

the scalability of the proposed method were compared 

to those of FETI-DP for two-and three-dimensional 

problems. The results indicate that the proposed approach 

outperformed FETI-DP in those problems. A further 

comparison with the PARDISO sparse matrix solver revealed 

that the proposed approach achieved an outstanding 

performance. The proposed approach was demonstrated to 

have good scalability for realistic, three-dimensional shell 

problems. Furthermore, the proposed approach can be 

improved by employing a sparse matrix solver to handle the 

sparsity within the governing equation.

The proposed approach will thus be extended for a 

dynamic solution of nonlinear multibody systems involving 

nonlinear kinematic constraints and time transient analysis.
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Fig. 12. Configuration of the three-dimensional problem 
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Table 4. Computational time and memory usage in the shell problem
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Table 4. Computational time and memory usage in the shell problem 
Number of 

sub-domains 
Computational time [s] 

Proposed approach 
Memory usage per processor [Mb] 

Proposed approach 
10 466.63 1785.30 
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40 33.88 177.13 
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