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Abstract

It is of great significance to utilize a landing mechanism to explore an asteroid. A landing mechanism named ALISE (Asteroid 

Landing and In Situ Exploring) for asteroid with soft surface is presented. The landing dynamic in the first turning stage, which 

represents the landing performance of the landing mechanism, is built by a Lagrange equation. Three key parameters can 

be found influencing the landing performance: the retro-rocket thrust T, damping element damping c1, and cardan element 

damping c2. In this paper, the retro-rocket thrust T is solved with considering that the landing mechanism has no overturning 

in extreme landing conditions. The damping element damping c1 is solved by a simplified dynamic model. After solving the 

parameters T and c1, the cardan element damping c2 is calculated using the landing dynamic model, which is built by Lagrange 

equation. The validities of these three key parameters are tested by simulation. The results show a stable landing, when 

landing with the three estimated parameters T, c1, and c2. Therefore, the landing dynamic model and methods to estimate key 

parameters are reasonable, and are useful for guiding the design of the landing mechanism.
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1. Introduction

There are enormous asteroids formed at the beginning of 

the solar system. Most of them are rich in minerals, and some 

of them are dangerous to the Earth [1, 2]. Thus, exploring the 

asteroids is of great significance, with the purpose of obtaining 

great economic effectiveness, and protecting the Earth. 

Landing on an asteroid is a great step towards exploring these 

asteroids, and its merits include: 1) learning about asteroids in 

situ; 2) changing dangerous asteroid orbits; 3) using asteroids 

as platforms to observe other celestial bodies; 4) using 

asteroids as carrying devices; 5) establishing communication 

stations on asteroids, and 6) capturing asteroids with minerals 

and bringing them back to earth [3, 4]. However, these merits 

can only be carried out after a lander is able to land safely 

on an asteroid. Landing safely or not is represented by the 

landing performance, and the landing performance is usually 

evaluated by both the overloading acceleration and stability 

time, which are included in the landing dynamic model. Thus, 

it is of great significance to estimate the key parameters that 

will induce a good landing performance, by building a landing 

dynamic model. Besides, the values of these key parameters 

can guide the design of the landing mechanism. 

Presently, most of the landing dynamic models are 

designed for lunar landing mechanisms, but are not suited 

to small body landing mechanisms, because of different 

landing environments, with different landing strategies [5-

11]. The Europe Space Agency (ESA), National Aeronautics 

and Space Administration (NASA), and Japan Aerospace 

Exploration Agency (JAXA) have developed small body 

landing mechanisms, but the landing dynamic model is rarely 

used to evaluate the landing performance, and to guide the 

design of the landing mechanism [12-16]. They just evaluate 

the landing performance by simulation with the given value of 

the parameters, but don’t show how these values are educed 

[17]. 

In this paper, an Asteroid Landing and In Situ Exploring 

(“ALISE”) landing mechanism for asteroid with soft surface 
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is presented. The landing dynamic model in the first turning 

stage is built by Lagrange equation. It can be found that there 

are three key parameters (retro-rocket thrust T, damping 

element damping c1 and cardan element damping c2) that will 

influence the landing performance. Thus, the values of these 

three parameters must be estimated, to achieve excellent 

landing performance. The paper firstly estimates the value 

of T, by considering that the retro-rocket will prevent the 

landing mechanism from overturning, by counteracting 

the turning energy. Secondly, the value of c2 is estimated 

by a simplified dynamic model. Thirdly, after defining the 

values of T and c1, the value of c2 is calculated by the landing 

dynamic model, with the objective function of having the 

shortest stability time, and the constraint condition that 

the overloading acceleration is less than 10g. Lastly, the 

validities of these three values are tested, by simulating the 

landing performance in Adams software.

2. The ALISE landing mechanism

The ALISE landing mechanism aims at asteroids with soft 

surface(especially C type asteroid), which are softer than 

other asteroids, because of containing organic materials and 

amino acids [18, 19], and the design is inspired by the Rosetta 

lander and the ST4/Champollion lander [20-22]. The ALISE 

landing mechanism includes a three-leg landing gear, and 

an anchoring system that is designed to avoid the flying away 

of the lander under low gravity. The landing gear contains 

landing foot, landing legs, cardan element, damping element, 

and equipment base. The damping element is realized by 

electromagnetic damping, which is a new technology in deep 

space exploration. This damping mode has the merits of high 

efficiency, easy control, adjustable damping, and so on, and 

has been used in the Rosetta landing mechanism [20]. The 

anchoring system contains anchoring element, propulsion 

element, rewinding element, and cushion element. The 

schematics and the performance parameters are shown 

separately in Fig. 1 and Table 1. Besides, the retro-rocket is 

fixed on the upper surface of the equipment base, to supply 

thrust towards the landing slope, to prevent the rebound of 

the landing mechanism, when landing. There is no sign of 

the retro-rocket in the schematics, because it is a part of the 

control system, but not a part of the mechanical structure.

There are awls beneath the landing feet to preventing 

sliding, and contact switches inside the landing feet, to 

generate landing signals. The cardan element has the 

functions of both absorbing the horizontal impact when 

landing, and adjusting the attitude of the equipment base 

after landing, while the damping element is just used to 

absorb the vertical impact. The anchoring element, which 

connects to the rewinding element via a thread, will be 

pushed rapidly into the asteroid by the propulsion element. 

At the time of penetration of the anchoring element, the 

rewinding element will quickly rewind the thread. When 

the thread is instantaneously tense, the cushion element, 

which is composed of a compression spring, will absorb the 

impact, to protect the rewinding motor. The retro-rocket will 

be activated at the time of landing, and supply a constant 

force lasting about 5 seconds toward the equipment base, to 

prevent the landing mechanism from rebounding.

3. Landing dynamic model

The surface of the asteroid with soft surface is soft. When 

landing, the awls will penetrate the asteroid some depth, to 

prevent sliding of the landing mechanism, and the retro-

rocket would be activated, to counteract the rebound of the 
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Fig. 1. Schematic of the landing mechanism 

Fig. 1. �Schematic of the landing mechanism

Table 1. Mechanical and landing performance parameters
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Table 1 Mechanical and landing performance parameters 

Items Values 

Landing gear mass 45 kg 

Payload mass  55 kg 

Anchoring system mass 1 kg 

Horizontal velocity  0.5m/s 

Vertical velocity  1.5m/s 

Landing slope  30° 

Medium tensile strength 0.5 MPa    5 MPa 

Anchoring time  5 s 

Anchoring force  100 N 

Penetration velocity 50m/s~100m/s 

Rewinding force About 20 N 

Thread length 2 m 
 

There are awls beneath the landing feet to preventing sliding, and contact switches inside the 

landing feet, to generate landing signals. The cardan element has the functions of both absorbing the 

horizontal impact when landing, and adjusting the attitude of the equipment base after landing, while 

the damping element is just used to absorb the vertical impact. The anchoring element, which 

connects to the rewinding element via a thread, will be pushed rapidly into the asteroid by the 

propulsion element. At the time of penetration of the anchoring element, the rewinding element will 

quickly rewind the thread. When the thread is instantaneously tense, the cushion element, which is 

composed of a compression spring, will absorb the impact, to protect the rewinding motor. The retro-

rocket will be activated at the time of landing, and supply a constant force lasting about 5 seconds 

toward the equipment base, to prevent the landing mechanism from rebounding. 

 

3. Landing dynamic model 

The surface of a C type asteroid is soft. When landing, the awls will penetrate the asteroid some 

depth, to prevent sliding of the landing mechanism, and the retro-rocket would be activated, to 
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landing mechanism. Then, the landing mechanism will turn 

clockwise or counterclockwise around the feet’s anchoring 

points. The interaction between the awls and the surface is 

three-dimensional and very complicated, and few reasonable 

models can express this interaction accurately. Furthermore, 

the dynamic parameters in the first turning stage are enough 

to express the landing performance. Thus, the paper only 

develops the landing dynamic of the first turning stage. 

There are two-dimensional and three-dimensional landing 

dynamic models. But considering that the two-dimensional 

model is successfully adopted by the lunar lander, and 

that it is simpler than the three-dimensional model, a two-

dimensional landing dynamic is built for the ALISE landing 

mechanism. 

Some hypotheses are made in building the landing 

dynamic model: 1) the gravity on the asteroid is of the 

order of magnitude about 10-4 m/s2, therefore the gravity is 

ignored; 2) the friction between the landing feet and landing 

legs is ignored; 3) The stiffness of the landing gear is far 

greater than that of the damping element vertically, and 

of the cardan element horizontally. So the flexibility of the 

landing gear is ignored; 4) the impulse acting on the landing 

mechanism when shooting the anchoring system is ignored; 

5) the overturning of the landing mechanism is over, before 

the anchoring system tenses the thread. 

As shown in the right part of Fig. 2, the landing mechanism 

will turn around the point O when landing. The whole system 

has three degrees of freedom: rotational DOF of m1; rotational 

DOF of m2; and translational DOF of m2. The Lagrange 

equation is introduced, to build the landing dynamic model. 

The kinetic energy T, potential energy V, and Rayleigh’s 

Dissipation Function 
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As shown in the right part of Fig. 2, the landing mechanism will turn around the point O when 

landing. The whole system has three degrees of freedom: rotational DOF of m1; rotational DOF of m2; 

and translational DOF of m2. The Lagrange equation is introduced, to build the landing dynamic 

model. The kinetic energy T, potential energy V, and Rayleigh’s Dissipation Function q are shown in 

equations (1) and (2) respectively. The meanings and values of the parameters in equations are shown 
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The parameters s, 1, 2, s , 1 , 2 , s, 1  and 2  of landing dynamic characteristics can be 

solved by equations (3), (4) and (5) with the initial values. However, in a complicated landing impact, 

the initial values are difficult, or impossible to solve accurately - they can only be estimated. A 

schematic of the impact is shown in the left part of Fig. 2. Firstly, the impacting force acting on m1 at 

point O is far larger than the other external force, thus the impulse of m2 acting on m1 can be ignored. 

So the angular momentum of m1 around O is conservational. Secondly, ignoring the retro-rocket thrust 

T, the angular momentum of the system composed of m1 and m2 is conservational. Thirdly, there is a 

damping element between the m1 and m2 vertically, therefore the vertical velocity of the m2 changes 

continuously. Therefore the following equation (6) can be deduced. Meanings and values of the 

parameters in equation (6) are shown in Table 2. 

   

       

2
1c 1 1 1 1 1 1

2
1c 1 1 1 2 1 2 2 1 1 2 2 2 1 1 1 2 2

1 21y

0 J m L m b m a

0 J m L J +m b S b m b m a+m b
a+

x y

c x y x

y

V V

V V V
V V



    



    



      
  


             (6) 

where, 1, 2 and V21y can be calculated from equations (6). Thus, the initial values to solve the 

equations (3), (4) and (5) are obtained, as shown in equation (7). 
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solved by equations (3), (4) and (5) with the initial values. However, in a complicated landing impact, 

the initial values are difficult, or impossible to solve accurately - they can only be estimated. A 

schematic of the impact is shown in the left part of Fig. 2. Firstly, the impacting force acting on m1 at 

point O is far larger than the other external force, thus the impulse of m2 acting on m1 can be ignored. 

So the angular momentum of m1 around O is conservational. Secondly, ignoring the retro-rocket thrust 
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the initial values are difficult, or impossible to solve accurately - they can only be estimated. A 

schematic of the impact is shown in the left part of Fig. 2. Firstly, the impacting force acting on m1 at 

point O is far larger than the other external force, thus the impulse of m2 acting on m1 can be ignored. 

So the angular momentum of m1 around O is conservational. Secondly, ignoring the retro-rocket thrust 

T, the angular momentum of the system composed of m1 and m2 is conservational. Thirdly, there is a 

damping element between the m1 and m2 vertically, therefore the vertical velocity of the m2 changes 

continuously. Therefore the following equation (6) can be deduced. Meanings and values of the 

parameters in equation (6) are shown in Table 2. 

   

       

2
1c 1 1 1 1 1 1

2
1c 1 1 1 2 1 2 2 1 1 2 2 2 1 1 1 2 2

1 21y

0 J m L m b m a

0 J m L J +m b S b m b m a+m b
a+

x y

c x y x

y

V V

V V V
V V



    



    



      
  


             (6) 

where, 1, 2 and V21y can be calculated from equations (6). Thus, the initial values to solve the 

equations (3), (4) and (5) are obtained, as shown in equation (7). 

2

1

2

21y

1 1

2 1 2

( 0) S
( 0) 0
( 0) 0

( 0)
( 0)
( 0)

s t
t
t

s t V
t
t




 
  

 
  

 
  
  
   







                                                                (7) 

 and 

6 

     
 

2
2 2 1 1 2 1 2 1 1 2 1 2 1 2 2

2 1 1 2 2 1 1

T m m L sin α m L cos α m

m L cos α

s s

c s

        

   

         

   

    

  
                     (3) 

       
       
       

2
1 2 1 1c 1 2 1 1 2 1 2 1 2 2 1

2 1 2 1 2 1 2 1 2 2 1 2 1 2 2 1

2 1 2 2 1 2 1 2 1 1 2 1 2 1 1 2 2 1

TL sin α = J m +m L +m L sin α

+m L cos α m L cos α +m L cos α

m L sin α m L cos α m L sin α

s c

s s s

s s s

      

         

           

        
       

         

  

    

     

-

             (4) 

     
   

2
2c 2 2 2 2 2 2 1 1 2 1 2 1 1 2 1 2 1

2 1 1 2 2 1 2 2 1

0 J 2m m m L cos α m L sin α

m L sin α

ss s s s

s c

          

     

         

   

      

   -
          (5) 

The parameters s, 1, 2, s , 1 , 2 , s, 1  and 2  of landing dynamic characteristics can be 

solved by equations (3), (4) and (5) with the initial values. However, in a complicated landing impact, 

the initial values are difficult, or impossible to solve accurately - they can only be estimated. A 

schematic of the impact is shown in the left part of Fig. 2. Firstly, the impacting force acting on m1 at 

point O is far larger than the other external force, thus the impulse of m2 acting on m1 can be ignored. 

So the angular momentum of m1 around O is conservational. Secondly, ignoring the retro-rocket thrust 

T, the angular momentum of the system composed of m1 and m2 is conservational. Thirdly, there is a 

damping element between the m1 and m2 vertically, therefore the vertical velocity of the m2 changes 

continuously. Therefore the following equation (6) can be deduced. Meanings and values of the 

parameters in equation (6) are shown in Table 2. 
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where, 1, 2 and V21y can be calculated from equations (6). Thus, the initial values to solve the 

equations (3), (4) and (5) are obtained, as shown in equation (7). 
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continuously. Therefore the following equation (6) can be 

deduced. Meanings and values of the parameters in equation 

(6) are shown in Table 2.
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where, ω1, ω2 and V21y can be calculated from equations (6). 

Thus, the initial values to solve the equations (3), (4) and (5) 

are obtained, as shown in equation (7).
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From the landing dynamic model, as shown in equations (3), (4) and (5), it can be found that the 
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4. ��Estimations of the key parameters T, c1 and 
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From the landing dynamic model, as shown in equations 

(3), (4) and (5), it can be found that the landing performance 
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to have a superior landing performance, it is necessary to determine the proper values of T, c1, and c2.  

4.1 Estimation of retro-rocket thrust T  

The retro-rocket supplies constant force T towards the upper surface of the equipment base, to 

prevent the landing mechanism from rebounding and overturning. In order to find the safe thrust, it is 

assumed that the landing mechanism is a rigid body, and its initial kinetic energy is counteracted 

entirely by the retro-rocket thrust. There are counterclockwise overturning, and clockwise overturning. 

They need different values of thrust, to prevent overturning. Thus, it is necessary to estimate the thrust 

separately for the two types of overturning, and then the largest value is taken as the retro-rocket 

thrust value. 

1) Counterclockwise overturning 

When landing with the initial velocity Vx=-0.5m/s and Vy=0m/s in 2-1 mode, the landing 

mechanism will turn counterclockwise, and have the most possibility to overturn counterclockwise. 

This schematic is shown in the left part of the Fig. 3. The meanings and values of the parameters in 

the schematic are shown in Table 3.  

The landing mechanism turns around the O point counterclockwise after impact, and the initial 

overturn angular velocity L can be estimated from the angular momentum conservation of m around 

O. Thus, the following equation is obtained:  
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The largest allowable turning range of the landing mechanism without overturning is from P1 to P2. 

So the initial kinetic energy of the landing mechanism after impact should be counteracted totally by 

the retro-rocket thrust T1 during the angle P1OP2, which equals /2. Therefore, the following 
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The largest allowable turning range of the landing mechanism without overturning is from P1 to P2. 

So the initial kinetic energy of the landing mechanism after impact should be counteracted totally by 
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4.1 Estimation of retro-rocket thrust T  
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prevent the landing mechanism from rebounding and overturning. In order to find the safe thrust, it is 

assumed that the landing mechanism is a rigid body, and its initial kinetic energy is counteracted 

entirely by the retro-rocket thrust. There are counterclockwise overturning, and clockwise overturning. 

They need different values of thrust, to prevent overturning. Thus, it is necessary to estimate the thrust 

separately for the two types of overturning, and then the largest value is taken as the retro-rocket 

thrust value. 
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mechanism will turn counterclockwise, and have the most possibility to overturn counterclockwise. 

This schematic is shown in the left part of the Fig. 3. The meanings and values of the parameters in 

the schematic are shown in Table 3.  
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The largest allowable turning range of the landing mechanism without overturning is from P1 to P2. 

So the initial kinetic energy of the landing mechanism after impact should be counteracted totally by 

the retro-rocket thrust T1 during the angle P1OP2, which equals /2. Therefore, the following 

equation is obtained:  
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where, T1 is the retro-rocket thrust preventing the landing mechanism from counterclockwise 

overturning.  

2) Clockwise overturning  

When landing with the initial velocity Vx=0.5m/s and Vy=-1.5m/s in 1-2 mode, the landing 

mechanism will turn clockwise, and have the most possibility to overturn clockwise. This schematic is 

shown in the right part of Fig. 3. The meanings and values of the parameters in the schematic are 

shown in Table 2 and Table 3.  

The landing mechanism turns around the O point clockwise after impact, and the initial turning 

angular velocity R1 can be estimated from the angular momentum conservation of m around O. Thus, 
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When the landing mechanism turns to the P2 position with the retro-rocket thrust T2, the angular 

velocity R2 can be calculated by the energy conversion.  
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The tangential velocity of m in the P2 position is:  
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(10)

Obtaining: 

9 

 2 2 2
c 1

1 J m a' +b T a
2 2L

                                                            (10) 

Obtaining:  

 2 2 2
c

1

J m a' +b
T 11.04 N

a
L



   


                                                   (11) 

where, T1 is the retro-rocket thrust preventing the landing mechanism from counterclockwise 

overturning.  

2) Clockwise overturning  

When landing with the initial velocity Vx=0.5m/s and Vy=-1.5m/s in 1-2 mode, the landing 

mechanism will turn clockwise, and have the most possibility to overturn clockwise. This schematic is 

shown in the right part of Fig. 3. The meanings and values of the parameters in the schematic are 

shown in Table 2 and Table 3.  

The landing mechanism turns around the O point clockwise after impact, and the initial turning 

angular velocity R1 can be estimated from the angular momentum conservation of m around O. Thus, 

the following equation is obtained:  

 2 2
c 1m b m a J m a +bx y RV V                                                         (12) 

Obtaining: 

1 2 2
c

m b m a
1.11 rad/s

J m(a +b )
x y

R

V V



 


                                                      (13) 

When the landing mechanism turns to the P2 position with the retro-rocket thrust T2, the angular 

velocity R2 can be calculated by the energy conversion.  

2 2 2
c 1 2

2 2 2
c

J m(a +b ) 2T a

J m(a +b )
R

R

 


   


                                                   (14) 

The tangential velocity of m in the P2 position is:  

2 2
12 2 a bRV                                                                    (15) 

Then the landing mechanism will turn continuously around point B. It is assumed that the recovery 

coefficient e equals 0.6 between the landing mechanism and the landing surface (e equals 0.5 between 

(11)

where, T1 is the retro-rocket thrust preventing the landing 

mechanism from counterclockwise overturning. 

4.1.2 Clockwise overturning 

When landing with the initial velocity Vx=0.5m/s and 

Vy=-1.5m/s in 1-2 mode, the landing mechanism will 

turn clockwise, and have the most possibility to overturn 

clockwise. This schematic is shown in the right part of Fig. 3. 

The meanings and values of the parameters in the schematic 

are shown in Table 2 and Table 3. 

The landing mechanism turns around the O point 

clockwise after impact, and the initial turning angular 

velocity ωR1 can be estimated from the angular momentum 

conservation of m around O. Thus, the following equation is 

obtained: 

9 

 2 2 2
c 1

1 J m a' +b T a
2 2L

                                                            (10) 

Obtaining:  

 2 2 2
c

1

J m a' +b
T 11.04 N

a
L



   


                                                   (11) 

where, T1 is the retro-rocket thrust preventing the landing mechanism from counterclockwise 

overturning.  

2) Clockwise overturning  

When landing with the initial velocity Vx=0.5m/s and Vy=-1.5m/s in 1-2 mode, the landing 

mechanism will turn clockwise, and have the most possibility to overturn clockwise. This schematic is 

shown in the right part of Fig. 3. The meanings and values of the parameters in the schematic are 

shown in Table 2 and Table 3.  

The landing mechanism turns around the O point clockwise after impact, and the initial turning 

angular velocity R1 can be estimated from the angular momentum conservation of m around O. Thus, 

the following equation is obtained:  

 2 2
c 1m b m a J m a +bx y RV V                                                         (12) 

Obtaining: 

1 2 2
c

m b m a
1.11 rad/s

J m(a +b )
x y

R

V V



 


                                                      (13) 

When the landing mechanism turns to the P2 position with the retro-rocket thrust T2, the angular 

velocity R2 can be calculated by the energy conversion.  

2 2 2
c 1 2

2 2 2
c

J m(a +b ) 2T a

J m(a +b )
R

R

 


   


                                                   (14) 

The tangential velocity of m in the P2 position is:  

2 2
12 2 a bRV                                                                    (15) 

Then the landing mechanism will turn continuously around point B. It is assumed that the recovery 

coefficient e equals 0.6 between the landing mechanism and the landing surface (e equals 0.5 between 

(12)

Obtaining:

9 

 2 2 2
c 1

1 J m a' +b T a
2 2L

                                                            (10) 

Obtaining:  

 2 2 2
c

1

J m a' +b
T 11.04 N

a
L



   


                                                   (11) 

where, T1 is the retro-rocket thrust preventing the landing mechanism from counterclockwise 

overturning.  

2) Clockwise overturning  

When landing with the initial velocity Vx=0.5m/s and Vy=-1.5m/s in 1-2 mode, the landing 

mechanism will turn clockwise, and have the most possibility to overturn clockwise. This schematic is 

shown in the right part of Fig. 3. The meanings and values of the parameters in the schematic are 

shown in Table 2 and Table 3.  

The landing mechanism turns around the O point clockwise after impact, and the initial turning 

angular velocity R1 can be estimated from the angular momentum conservation of m around O. Thus, 

the following equation is obtained:  

 2 2
c 1m b m a J m a +bx y RV V                                                         (12) 

Obtaining: 

1 2 2
c

m b m a
1.11 rad/s

J m(a +b )
x y

R

V V



 


                                                      (13) 

When the landing mechanism turns to the P2 position with the retro-rocket thrust T2, the angular 

velocity R2 can be calculated by the energy conversion.  

2 2 2
c 1 2

2 2 2
c

J m(a +b ) 2T a

J m(a +b )
R

R

 


   


                                                   (14) 

The tangential velocity of m in the P2 position is:  

2 2
12 2 a bRV                                                                    (15) 

Then the landing mechanism will turn continuously around point B. It is assumed that the recovery 

coefficient e equals 0.6 between the landing mechanism and the landing surface (e equals 0.5 between 

(13)

When the landing mechanism turns to the P2 position 

with the retro-rocket thrust T2, the angular velocity ωR2 can 

be calculated by the energy conversion. 

9 

 2 2 2
c 1

1 J m a' +b T a
2 2L

                                                            (10) 

Obtaining:  

 2 2 2
c

1

J m a' +b
T 11.04 N

a
L



   


                                                   (11) 

where, T1 is the retro-rocket thrust preventing the landing mechanism from counterclockwise 

overturning.  

2) Clockwise overturning  

When landing with the initial velocity Vx=0.5m/s and Vy=-1.5m/s in 1-2 mode, the landing 

mechanism will turn clockwise, and have the most possibility to overturn clockwise. This schematic is 

shown in the right part of Fig. 3. The meanings and values of the parameters in the schematic are 

shown in Table 2 and Table 3.  

The landing mechanism turns around the O point clockwise after impact, and the initial turning 

angular velocity R1 can be estimated from the angular momentum conservation of m around O. Thus, 

the following equation is obtained:  

 2 2
c 1m b m a J m a +bx y RV V                                                         (12) 

Obtaining: 

1 2 2
c

m b m a
1.11 rad/s

J m(a +b )
x y

R

V V



 


                                                      (13) 

When the landing mechanism turns to the P2 position with the retro-rocket thrust T2, the angular 

velocity R2 can be calculated by the energy conversion.  

2 2 2
c 1 2

2 2 2
c

J m(a +b ) 2T a

J m(a +b )
R

R

 


   


                                                   (14) 

The tangential velocity of m in the P2 position is:  

2 2
12 2 a bRV                                                                    (15) 

Then the landing mechanism will turn continuously around point B. It is assumed that the recovery 

coefficient e equals 0.6 between the landing mechanism and the landing surface (e equals 0.5 between 

(14)

The tangential velocity of m in the P2 position is: 

9 

 2 2 2
c 1

1 J m a' +b T a
2 2L

                                                            (10) 

Obtaining:  

 2 2 2
c

1

J m a' +b
T 11.04 N

a
L



   


                                                   (11) 

where, T1 is the retro-rocket thrust preventing the landing mechanism from counterclockwise 

overturning.  

2) Clockwise overturning  

When landing with the initial velocity Vx=0.5m/s and Vy=-1.5m/s in 1-2 mode, the landing 

mechanism will turn clockwise, and have the most possibility to overturn clockwise. This schematic is 

shown in the right part of Fig. 3. The meanings and values of the parameters in the schematic are 

shown in Table 2 and Table 3.  

The landing mechanism turns around the O point clockwise after impact, and the initial turning 

angular velocity R1 can be estimated from the angular momentum conservation of m around O. Thus, 

the following equation is obtained:  

 2 2
c 1m b m a J m a +bx y RV V                                                         (12) 

Obtaining: 

1 2 2
c

m b m a
1.11 rad/s

J m(a +b )
x y

R

V V



 


                                                      (13) 

When the landing mechanism turns to the P2 position with the retro-rocket thrust T2, the angular 

velocity R2 can be calculated by the energy conversion.  

2 2 2
c 1 2

2 2 2
c

J m(a +b ) 2T a

J m(a +b )
R

R

 


   


                                                   (14) 

The tangential velocity of m in the P2 position is:  

2 2
12 2 a bRV                                                                    (15) 

Then the landing mechanism will turn continuously around point B. It is assumed that the recovery 

coefficient e equals 0.6 between the landing mechanism and the landing surface (e equals 0.5 between 

(15)

Then the landing mechanism will turn continuously 

around point B. It is assumed that the recovery coefficient e 

equals 0.6 between the landing mechanism and the landing 

surface (e equals 0.5 between wood and wood; e equals 0.56 

between steel and steel). Thus, the rebound velocity V23 can 

be expressed as: 

10 

wood and wood; e equals 0.56 between steel and steel). Thus, the rebound velocity V23 can be 

expressed as:  

23 12cosV eV                                                                      (16) 

Then the initial angular velocity R3 around the point B is obtained:  

23 23
3 2 2

2P B a b
R

V V
  

 
                                                            (17) 
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b m ordinate length 0.784m 
 landing slope angle 30 
 mechanical determined 38 

4.2 Estimation of the damping element damping c1  

The dynamic model of the landing mechanism in the vertical direction could be simply expressed 

as Fig. 4 and equation (21), in which k is the stiffness of the landing mechanism.  
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The initial conditions of equation (21) can be written as follows: 
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The overloading accelerations of m2 are different, on account of different c1. When the damping c1 

equals 900Ns/m, the numerical solution of the equation (21) is shown in Fig. 5. It can be found that 

the overloading acceleration of m2 is 30m/s2, and the stroke of the damping is 0.13m. These 

overloading acceleration and stroke are feasible for the landing mechanism. Thus, the parameters of 

the damping element are set to c1=900 Ns/m and S=0.13m, respectively. 

 
Fig. 4. Dynamic model in the vertical direction 
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Fig. 5. Numerical solutions of the dynamic model 
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the overloading acceleration of m2 is 30m/s2, and the stroke of the damping is 0.13m. These 

overloading acceleration and stroke are feasible for the landing mechanism. Thus, the parameters of 

the damping element are set to c1=900 Ns/m and S=0.13m, respectively. 
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4.3 Calculation of cardan element damping c2 

The c2 is a rotational damping produced by two motors in the cardan element, and it is used to 

absorb the horizontal impact when landing. Therefore, the value of c2 can be changed, by controlling 

the motors. The landing performance in changing c2 that is varied depending on different initial 

landing velocities, will be better compared with that in constant c2.  

The value of c2 can be calculated through the landing dynamic model shown in equations (3), (4), 

(5) with proper objective function and constraint conditions, after determining the values of T and c1.  

In the landing dynamic model, it can be found that during the turning, c2 will influence the angular 

momentum of m1. The smaller the angular momentum of m1, the harder the landing mechanism is to 

overturn. Thus, the smaller angular momentum of m1 is set to be the objective function to solve c2. 

The constraint conditions to solve c2 are: 1) the horizontal overloading acceleration of m2 is less than 

10g; 2) the turning angle of m2 relative to m1 is less than 10. The flow chart to calculate c2 is shown 

in Fig. 6.  

The values of c2 solved with different landing velocities are shown in Fig. 7. The data in Fig. 7 can 

be expressed as counter in Fig. 8. The landing mechanism will have a more stable landing when c2 

varies with Vx and Vy according to the relationship shown in Fig. 7 or Fig. 8. The varying range of c2 is 

between 17 Nms/rad and 111 Nms/rad.  

 

Fig. 6. �Flow chart of calculating the parameter c2
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relationship shown in Fig. 7 or Fig. 8. The varying range of c2is 

between 17 Nm.s/rad and 111 Nm.s/rad. 

5. Landing simulation

The validities of the landing dynamic model and the 

parameters T, c1, c2 need to be verified, by testing the landing 

performance. In the paper, the famous Adams software 

is used to simulate the landing performance. The landing 

mechanism has three classic landing modes, called 1-2 

mode, 2-1 mode and 1-1-1 mode, respectively. Thus, the 

landing performances are tested in these three landing 

modes. The simulation parameters are shown in Table 4. 

5.1 Verification of the key parameters 

The landing performances in extreme landing conditions 

(Vx=-0.5 m/s, Vy=-1.5 m/s) are tested with the estimated 

parameters T, c1 and c2. The overloading acceleration of the 

equipment base reflects the damping performance, and the 

angular velocity of the landing legs reflects the stability time. 

Their values in the three classic landing modes are shown 

in Fig. 9. The left graph shows that the largest overloading 

accelerations of the equipment base are: about 80 m/s2 in 

1-2 mode; about 30 m/s2 in 2-1 mode, and about 90 m/s2 in 

1-1-1 mode. The right graph shows that the stability times 

are: about 3.6 second in 1-2 mode; about 1.5 second in 2-1 

mode and about 3.7 second in 1-1-1 mode. It can be found 

that the overloading accelerations are all less than 10g, and 

the landing stability times are all less than 4 second. Thus, 

the estimations of the parameters T, c1 and c2 are valid.

5.2 Influence of c2 on the landing performance 

There are two modes of c2 to select when landing: one is 

constant c2 (c2 remains constant at about 111 Nms/rad in all 
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Landing slope stiffness 500000 N/m 
Asteroid gravity  0 g 
Landing mode  1-2, 2-1, 1-1-1 

Landing slope angle 30° 
 

5.1 Verification of the key parameters  

The landing performances in extreme landing conditions (Vx=-0.5 m/s, Vy=-1.5 m/s) are tested with 

the estimated parameters T, c1 and c2. The overloading acceleration of the equipment base reflects the 

damping performance, and the angular velocity of the landing legs reflects the stability time. Their 

values in the three classic landing modes are shown in Fig. 9. The left graph shows that the largest 

overloading accelerations of the equipment base are: about 80 m/s2 in 1-2 mode; about 30 m/s2 in 2-1 

mode, and about 90 m/s2 in 1-1-1 mode. The right graph shows that the stability times are: about 3.6 

second in 1-2 mode; about 1.5 second in 2-1 mode and about 3.7 second in 1-1-1 mode. It can be 

found that the overloading accelerations are all less than 10g, and the landing stability times are all 

less than 4 second. Thus, the estimations of the parameters T, c1 and c2 are valid. 

 
Fig. 9. Landing performance in the three classic landing modes 

Notes: Lines “mag_acc” represent the respective overloading accelerations of the equipment base. 
Lines “mag_ang_vel” represent the respective angular velocities of the landing legs.  
 
5.2 Influence of c2 on the landing performance  

There are two modes of c2 to select when landing: one is constant c2 (c2 remains constant at about 

111 Nms/rad in all landing velocities), the other is optimal c2 (c2 varies according to different initial 

landing velocities, as the rules shown in Fig. 7 or Fig. 8). Constant c2 has the merits of easy control, 

whereas optimal c2 can induce a better landing performance. The landing performances between the 

two modes of c2 are compared in three classic landing modes, in the conditions that Vx=0.1 m/s and Vy 
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landing velocities), the other is optimal c2 (c2 varies according 

to different initial landing velocities, as the rules shown in 

Fig. 7 or Fig. 8). Constant c2 has the merits of easy control, 

whereas optimal c2 can induce a better landing performance. 

The landing performances between the two modes of c2 are 

compared in three classic landing modes, in the conditions 

that Vx=0.1 m/s and Vy =-0.5 m/s, respectively. The optimal 

c2 in relation to Vx=0.1 m/s and Vy =-0.5 m/s is 55 Nms/rad, 

which is shown in Fig. 7 and Fig. 8. The landing performance 

simulation results are shown in Fig. 10, Fig. 11 and Fig. 12, 

respectively, and the maximum overloading accelerations 

and stability times shown in these figures are summarized in 

Table 5. It can be found that both the maximum overloading 

accelerations and stability times with constant c2 are all 

larger, than that with optimal c2. Thus, optimal c2 would lead 

to better landing performance. 
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6. Conclusions 

A landing mechanism for asteroid with soft surface is 

presented. Reasonable values of the three key parameters 

(retro-rocket thrust T, damping element damping c1 and 

cardan element c2) that influence the landing performance 

of the landing mechanism presented in the paper are: 

T=65N; c1=900Ns/m; and c2 changes between 17 Nms/rad 

and 111Nms/rad, in relation to the initial landing velocities. 

The overloading accelerations of the equipment base are 

less than 10g, and the stability times are less than 5s, when 

landing with the estimated values of T, c1, and c2. Furthermore, 

optimal c2 in relation to the landing velocities will lead to a 

good landing performance, with comparison to constant c2. 

The simulation results show that the landing dynamic model, 

and the methods to estimate key parameters, are reasonable. 

The estimations of key parameters can be used to guide the 

design of the landing mechanism.

In future, the landing mechanism will be manufactured, 

and then the validities of the landing mechanism and its 

parameters will be tested physically, under microgravity. 
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