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Abstract

In order to overcome the influence of system stability and accuracy caused by uncertainty, estimation errors and external 

disturbances in Eight-Rotor MAV, L2 gain control method was proposed based on  interval type II fuzzy neural network 

identification here. In this control strategy, interval type II fuzzy neural network is used to estimate the uncertainty and non-

linearity factor of the dynamic system, the adaptive variable structure controller is applied to compensate the estimation 

errors of interval type II fuzzy neural network, and at last, L2 gain control method is employed to suppress the effect produced 

by external disturbance on system, which is expected to possess robustness for the uncertainty and non-linearity. Finally, the 

validity of the L2 gain control method based on interval type II fuzzy neural network identifier applied to the Eight-Rotor MAV 

attitude system has been verified by three prototy experiments.
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1. Introduction

Numerous applications of UAVs have been steadily 

increasing such as traffic surveillance, air pollution 

monitoring, area mapping, agricultural applications as well 

as remote inspection required high maneuverability. The 

merit of UAVs is maximized for the practical uses where it is 

dangerous and difficult to approach. For these reasons, quad-

rotor UAVs [1-5] have evoked a great interest in the research 

and academic circles in recent years.

The coaxial Eight-Rotor[6,7] is designed with eight rotors 

that are arranged as four counter-rotating offset pairs 

mounted at the ends of four carbon fiber arms in a cruciform 

cofiguration.

As a result, the coaxial eight-rotor has twice overall 

thrust than a quad-rotor without increasing double weight. 

Obviously, the higher coefficient proportion between thrust 

and gravity and the greater payload capacity than a quad-

rotor are provided by the eight-rotor. The frame of the coaxial 

eight-rotor is built from high quality military grade carbon 

fibre making it one of the most durable electric helicopters on 

the market today. During flight with carbon fibre. In addition, 

the eight-rotor could remain stable flight when some of 

rotors broken. If one rotor is broken, another in pairs will 

compensate the thrust reduced caused by the broken rotor, 

which is not provided in a quad-rotor.

Eight-Rotor MAV is nonlinear plant so that it is difficult 

to obtain stable control due to uncertainties. The purpose 

of this paper is to propose one robust, stable attitude 

control strategy for Eight-Rotor MAV to accommodate 

system uncertainties, variations, and external disturbances. 

The control strategy is based on Neuro-Fuzzy adaptive 

controller, Neuro-Fuzzy has been used in a lot of successful 

applications [8-11], But which is based on type-I fuzzy sets. 

With the higher control accuracy requirements, type-II fuzzy 

neural network [12,13] is developed recently which has 
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better performances than type-I fuzzy neural network. This 

paper is to apply type-II fuzzy neural networks to control 

the attitude of the Eight-Rotor MAV. More recently, there 

are many papers discussing how to improve the stability 

of fuzzy-neural controllers. It is well known that sliding 

mode control provides a robust means for controlling a 

nonlinear dynamic system with uncertainties, one gain 

adaptive sliding mode controller based on interval type-II 

fuzzy neural network [14-16] identification and Lyapunov 

synthesis approach for Eight-Rotor MAV which is MIMO 

nonlinear system. By introducing interval type-II fuzzy 

neural network to approximate the unknown nonlinear 

functions of the dynamic systems through tuning by the 

desired adaptive law. 

H infinity control has stronger inhibition to the unknown 

interference, and L2 gain design method is the most 

common method in the H infinity control of nonlinear 

system. Combining the characteristics of the adaptive 

control, variable structure control and H infinity control 

applied in the nonlinear system, this paper proposed L2 

gain control method based on interval type II fuzzy neural 

network identifier.

This paper is organized as follows: The attitude dynamic 

model of EightRotor MAV are given in Section 2. A brief 

illustration of interval type-II fuzzy neural network is 

presented in Section 3. L2 gain control method based on 

interval type II fuzzy neural network identifier is constructed 

in Section 4. which is also devoted to the stability analysis 

of the control scheme. Platform description and some 

experiences are given in Section 5 and Section 6 contains 

concluding remarks.

2. ��Dynamic modeling of attitude for Eight-Rotor 
MAV

The EightRotor is very well modeled with eight rotors 

in a cross configuration. This cross structure is quite 

thin and light, however it shows robustness by linking 

mechanically the motors. Each propeller is connected to 

the motor through the reduction gears. All the propellers 

axes of rotation are fixed and parallel. These considerations 

point out that the structure is quite rigid and the only 

things that can vary are the propeller speeds. Neither the 

motors nor the reduction gears are fundamental because 

the movements are directly related just to the propellers 

velocities can be seen in Fig. 1.

Attitude angular velocity dynamic equation under torque 

U for Micro Aircraft Vehicle has been achieved in the body 

fixed frame according to the reference [1-3], which is given 

as following:
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Where   is air density,  R denotes rotor radius, 
2A R is rotor disk area, and 

,T DC C express thrust coefficient and torque coefficient respectively.  l represents the 

distance between the rotor and centre of the eight-rotor. 

Organizing above equations, we obtain: 

(1)

Where 

5 

 

Fig. 1. Flight theory of Eight-Rotor MAV 

Attitude angular velocity dynamic equation under torque U for Micro Aircraft Vehicle has been 

achieved in the body fixed frame according to the reference [1-3], which is given as following: 

dUJwwJ                                                                     （1）

Where 33 RJ denotes the rotational inertia matrix of Micro Aircraft Vehicle; 

Trqpw ],,[ denotes the angular velocity of Micro Aircraft Vehicle; [ , , ]T
x y zU U U U denotes the 

control torque in the body fixed frame; Tdddd ],,[ 321 denotes the external disturbance torque, 

matrixes , ,J U are defined respectively as: 







































0
0

0
,

00
00
00

pq
pr
qr

I
I

I
J

z

y

x

 

2 2 2 2 2
1 2 5 6

2 2 2 2 2
3 4 7 8

2 2 2 2 2 2 2 2 2
1 2 5 6 3 4 7 8

( )
( )

( )

x T

y T

z T

U AC R
U U AC R

U AC R






     
         

                                   （2） 

Where   is air density,  R denotes rotor radius, 
2A R is rotor disk area, and 

,T DC C express thrust coefficient and torque coefficient respectively.  l represents the 

distance between the rotor and centre of the eight-rotor. 

Organizing above equations, we obtain: 

 denotes the rotational inertia matrix of 

Micro Aircraft Vehicle;

w=[p,q,r]T denotes the angular velocity of Micro Aircraft 

Vehicle; U=[Ux,Uy,Uz]T denotes the control torque in the body 

fixed frame; d=[d1,d2,d3]T denotes the external disturbance 

torque, matrixes 
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Where ρ is air density, R denotes rotor radius, A=πR2 is 

rotor disk area, and CT, CD express thrust coefficient and 

torque coefficient respectively. l represents the distance 

between the rotor and centre of the eight-rotor.

Organizing above equations, we obtain:
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where  ， ， represent the roll, pitch and yaw angels in the inertial reference frame. 
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where ϕ, θ, ψ represent the roll, pitch and yaw angels in the 

inertial reference frame.

Making the outputs track the attitude of Eight-Rotor 

MAV by designing the control torque U. Arranging the 

above dynamic equations for designing the control scheme 

conveniently, the attitude control model of Micro Aircraft 

Vehicle obtained can be expressed as:
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Aerodynamic characteristics parameters will get perturbations  

resulting from flying conditions or flying attitude changed. At the same time, external gust of win

d and flow could not be ignored. Thus, control system of Micro Aircraft Vehicle is one MIMO nonli

near system with uncertainty and perturbations. 

3. Introduce of Interval Type-II Fuzzy Neural Network 

The structure of ITIIFNN [16-17] is depicted in Fig. 2; each rule in ITIIFNN is the first Takagi-

Sugeno-Kang (TSK) type. The detailed mathematical functions of each layer are introduced as 
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Layer 5 (Output layer): Each output node corresponds to one output variable and act as a 
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Remark : Initially, there are no fuzzy rules in ITIIFNN. All 

of the rules are generated online by the structure learning 

that not only helps automate rule generation, but also 

locates good initial rule positions for subsequent parameter 

learning. Furthermore, the structure and parameter 

adjustment are performed simultaneously.

4. L2-ITIIFNN

To begin with, ITIIFNN as shown in Fig. 2 is used to 

estimate the uncertainty factors, and also evaluate the 

bounds of the modeling error in order to determine 

the gain of variable structure control and achieve the 

real variable structure control vector, which make sure 
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theorem.
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In the meantime, the selection of k=[kn, kn-1, ..., k1]T should 

make sure that sn+k1sn-1+...+kn is Hurwitz polynomial.

Taking x=[ϕ, θ, ψ]T as the input of the ITIIFNN to 

approximate the uncertainty function f and nonlinear 

function b on-line. We replace f and b by ITIIFNN as:
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Replacing the )( xf with )(xb ,
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Replacing the )( xf with )(xb ,
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Replacing the )( xf with )(xb ,
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can be achieved. Hence, we obtain: 

, 

12 

weight ],[ j
r

j
l WW , # means )( xf and )( xb . Then, expand )|(ˆ *

 fxf  and )|(ˆ *
 bxb  in the 

Taylor series expression near  bf  , : 

)(
)|(ˆ

)|(ˆ)|(ˆ

)(
)|(ˆ

)|(ˆ)|(ˆ

2*

2*

















































b
b

bT
bbb

f
f

fT
fff

O
xb

xbxb

O
xf

xfxf











                                    (18) 

W here *
  fff  , *

  bbb  ,   bb  and )|(|),|(| 22
  bf OO are  

representative to the higher-order item. Each item of 









f

fxf



 )|(ˆ
is expressed as: 

 

 

 

 

 

 3

2

11

2
11

2
11

1

1

11
2
1

1

11
2
1

1

11
2
1

)(

)()(*
ˆ

|
ˆ

)(

)()(*
ˆ

|
ˆ

)(

)()(*
ˆ

|
ˆ

ˆ
|

ˆ


























































































































k

fkkx
f

yw

f

fy

f

k

fkkx
f

yw

f

fy

f

k

fkkx
f

yw

f

fy

f

f
f

fy

w
f

j
i

j
lrN

j
j

lr

lr
j
lr

N
j

j
lr

j
f

kj
f

j
i

jj
iN

j
j

lr

lr
j
lr

N
j

j
lr

j
f

kj
i

j
i

jj
iN

j
j

lr

lr
j
lr

N
j

j
lr

j
f

kj
i

j
lrN

j
j

lr

j
f

k
lr



















                                  (19) 
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)()(
)(ˆ)(

0

0

xbxb
uEkyxfxf

u L
T

d
c








                                             (22) 

rPEBu T
L                                                                    (23) 

Where r means the robust control gain. Meanwhile, variable structure control vector is drown

ed in the system, in order to compensate the estimation errors based on ITIIFNN, and enhan

ce the robustness of the system, variable structure control： 

 )sgn(ˆ PBEKu TT
vcs                                                          (24) 

Then, the total control is shown as follow 

sc uuu                                                                         (25) 

(20)

Then,

13 

























bb
b

T
b

ff
f

T
f

EObbbbbbb

EOfffffff

)|(|)
ˆ

(ˆˆ

)|(|)
ˆ

(ˆˆ

2**

2**




                                     (20) 

Then, 

























bb
b

T
b

ff
f

T
f

EObbb

EOfff

)|(|)
ˆ

(ˆ

)|(|)
ˆ

(ˆ

2

2




                                       (21) 

If the estimation error is zero, the control vector is: 

)()(
)(ˆ)(

0

0

xbxb
uEkyxfxf

u L
T

d
c








                                             (22) 

rPEBu T
L                                                                    (23) 

Where r means the robust control gain. Meanwhile, variable structure control vector is drown

ed in the system, in order to compensate the estimation errors based on ITIIFNN, and enhan

ce the robustness of the system, variable structure control： 

 )sgn(ˆ PBEKu TT
vcs                                                          (24) 

Then, the total control is shown as follow 

sc uuu                                                                         (25) 

(21)

If the estimation error is zero, the control vector is:

13 

























bb
b

T
b

ff
f

T
f

EObbbbbbb

EOfffffff

)|(|)
ˆ

(ˆˆ

)|(|)
ˆ

(ˆˆ

2**

2**




                                     (20) 

Then, 

























bb
b

T
b

ff
f

T
f

EObbb

EOfff

)|(|)
ˆ

(ˆ

)|(|)
ˆ

(ˆ

2

2




                                       (21) 

If the estimation error is zero, the control vector is: 

)()(
)(ˆ)(

0

0

xbxb
uEkyxfxf

u L
T

d
c








                                             (22) 

rPEBu T
L                                                                    (23) 

Where r means the robust control gain. Meanwhile, variable structure control vector is drown

ed in the system, in order to compensate the estimation errors based on ITIIFNN, and enhan

ce the robustness of the system, variable structure control： 

 )sgn(ˆ PBEKu TT
vcs                                                          (24) 

Then, the total control is shown as follow 

sc uuu                                                                         (25) 

(22)

13 

























bb
b

T
b

ff
f

T
f

EObbbbbbb

EOfffffff

)|(|)
ˆ

(ˆˆ

)|(|)
ˆ

(ˆˆ

2**

2**




                                     (20) 

Then, 

























bb
b

T
b

ff
f

T
f

EObbb

EOfff

)|(|)
ˆ

(ˆ

)|(|)
ˆ

(ˆ

2

2




                                       (21) 

If the estimation error is zero, the control vector is: 

)()(
)(ˆ)(

0

0

xbxb
uEkyxfxf

u L
T

d
c








                                             (22) 

rPEBu T
L                                                                    (23) 

Where r means the robust control gain. Meanwhile, variable structure control vector is drown

ed in the system, in order to compensate the estimation errors based on ITIIFNN, and enhan

ce the robustness of the system, variable structure control： 

 )sgn(ˆ PBEKu TT
vcs                                                          (24) 

Then, the total control is shown as follow 

sc uuu                                                                         (25) 

(23)

Where r means the robust control gain. Meanwhile, 

variable structure control vector is drowned in the system, 

in order to compensate the estimation errors based on 

ITIIFNN, and enhance the robustness of the system, variable 

structure control :

13 

























bb
b

T
b

ff
f

T
f

EObbbbbbb

EOfffffff

)|(|)
ˆ

(ˆˆ

)|(|)
ˆ

(ˆˆ

2**

2**




                                     (20) 

Then, 

























bb
b

T
b

ff
f

T
f

EObbb

EOfff

)|(|)
ˆ

(ˆ

)|(|)
ˆ

(ˆ

2

2




                                       (21) 

If the estimation error is zero, the control vector is: 

)()(
)(ˆ)(

0

0

xbxb
uEkyxfxf

u L
T

d
c








                                             (22) 

rPEBu T
L                                                                    (23) 

Where r means the robust control gain. Meanwhile, variable structure control vector is drown

ed in the system, in order to compensate the estimation errors based on ITIIFNN, and enhan

ce the robustness of the system, variable structure control： 

 )sgn(ˆ PBEKu TT
vcs                                                          (24) 

Then, the total control is shown as follow 

sc uuu                                                                         (25) 

(24)

Then, the total control is shown as follow

13 

























bb
b

T
b

ff
f

T
f

EObbbbbbb

EOfffffff

)|(|)
ˆ

(ˆˆ

)|(|)
ˆ

(ˆˆ

2**

2**




                                     (20) 

Then, 

























bb
b

T
b

ff
f

T
f

EObbb

EOfff

)|(|)
ˆ

(ˆ

)|(|)
ˆ

(ˆ

2

2




                                       (21) 

If the estimation error is zero, the control vector is: 

)()(
)(ˆ)(

0

0

xbxb
uEkyxfxf

u L
T

d
c








                                             (22) 

rPEBu T
L                                                                    (23) 

Where r means the robust control gain. Meanwhile, variable structure control vector is drown

ed in the system, in order to compensate the estimation errors based on ITIIFNN, and enhan

ce the robustness of the system, variable structure control： 

 )sgn(ˆ PBEKu TT
vcs                                                          (24) 

Then, the total control is shown as follow 

sc uuu                                                                         (25) (25)

4.2 stability analysis

Theorem 1. Consider the dynamic system Eq. (23), ρ>0 

is given, hypothesizing b(x)≥β>0, and existing the positive 

definite symmetric matrix P, which satisfied the Riccati 

equation as shown:
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4.2 stability analysis 

Theorem 1. Consider the dynamic system Eq. (23), 0  is given, hypothesizing 0)(  xb , a

nd existing the positive definite symmetric matrix P , which satisfied the Riccati equation as s

hown: 
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In the above equation: 0 TQQ ,which serves as weight matrix, 0 ,which serves as spe

cified against standard, r, has to be satisfy the following inequality, to ensure that the Ricc

ati equation with semi positive definite solution: 

r22  

The adjustable parameters adaptive laws of ITIIFNN and gain adaptive laws of variable structure 
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4.2 stability analysis 

Theorem 1. Consider the dynamic system Eq. (23), 0  is given, hypothesizing 0)(  xb , a
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The adjustable parameters adaptive laws of ITIIFNN and gain adaptive laws of variable structure 
The adjustable parameters adaptive laws of ITIIFNN and 
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4.2 stability analysis 
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5. Experimental setup

The Eight-Rotor MAV prototype is designed with high 

quality military grade carbon fibre in a cruciform cofiguration. 

It has four pairs of blades driven by eight Brushless Direct 

Current (BLDC) motors mounted at each end of the body 

frame, as shown in Fig. 4. Its empty weight 1.6kg with payload 

capacity about 0.5kg can permit 30min flight duration.

Figure 5 presents the schematic view of aerial control 

platform. It uses TMS320F2812(DSP) which runs at 

29.4MHz, with 512k flash memory, including eight serial 

ports, eight channels with programmable gains, 24-bit 

analog input, eight programmable pulse width modulation 

(PWM) outputs, and supports floating point calculations 

as the on-board flight control computer. A low-cost IMU 

which includes accelerometers, gyroscopes as well as 
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magnetometers in 3D and a distance laser sensor are 

installed on the prototype to measure the flight states. IMU 

transmits raw data at sampling frequency of 100Hz and the 

distance laser sensor at sampling frequency of 7Hz with the 

accuracy of ±1.5mm. These sensor dates are transmitted to 

the on-board flight control computer through an RS-232 

serial port. And the on-board computer can export these 

dates through wireless transfer module to the host computer 

which will arrange the dates and generate the corresponding 

schematic diagrams.

For avoiding signal interference between sensor signals 

and the motors PWM, two independent power supplies were 

supplied. One battery is used to feed the eight electric motors 

which are controlled using PWM, the other battery is used 

to feed microcontroller and the sensors, and by adequate 

grounding, the interference is reduced largely.

6. Experimental results

The Eight-rotor prototype MAV can successfully 

accomplish remote control flight task. For the purpose of 

comparison, several different kinds of control scheme are 

conducted to demonstrate the effectiveness of the proposed 

approach. We will apply type-I fuzzy neural network based 

sliding mode controller and interval type-II fuzzy neural 

network identification based gain adaptive sliding mode 

controller and L2 gain method based on interval type II fuzzy 
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network identifier to let the Eight-rotor prototype MAV system to track the reference attitude 

trajectory. Then, the comparison was preceded in the following cases: 
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Case 1 no wind disturbance indoors 

Three attitude angles of trajectory tracking simulations have been made as follows: Fig.6 shows 

the trajectory tracking response curve of three angles and the trajectory tracking error curves of 

yaw angle under the circumstance without external disturbance and uncertainty. 

Subscript Numbers under attitude Angles corresponding to three kinds of controller: “1” is a 

representative of type-I fuzzy neural network based sliding mode controller; “2” is a representative 

of interval type-II fuzzy neural network identification based gain adaptive sliding mode controller; 

“3” is a representative of L2 gain method based on interval type II fuzzy neural network identifier. 

 

Fig. 4-a Response curves of pitch angle   

 

Fig. 4-b Response curves of yaw angle   

(a) Response curves of pitch angle θ 
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(b) Response curves of yaw angle ψ 
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Fig. 4-b Response curves of roll angle   

Fig.4  Response curves of attitude angles 

The above experimental results indicate that tracking performances can be guaranteed under 

three different control scheme without uncertainty and external disturbances. Type-1 fuzzy neural 

network based sliding mode control scheme which responses fast, but its overshoot is somewhat 

of big; interval type-II fuzzy neural network identification based gain adaptive sliding mode 

control scheme which has smaller steady-state error, but with longer regulation time; L2 gain 

method based on interval type II fuzzy neural network identifier control scheme which has better 

control accuracy and smaller overshoot.  

Case 2 horizontal wind disturbance with average speed of 5m/s provided by the electric fan 

indoors 

Figure 8 shows the trajectory tracking response curve of three attitude angles and the trajectory 

tracking error curves of yaw angle under the circumstance with external disturbance and 

uncertainty. 

Subscript Numbers under attitude Angles corresponding to three kinds of controller: “1” is a 

(c) Response curves of roll angle ϕ 

Fig. 6. Response curves of attitude angles
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neural network identifier to let the Eight-rotor prototype 

MAV system to track the reference attitude trajectory. Then, 

the comparison was preceded in the following cases:

Case 1 no wind disturbance indoors
Three attitude angles of trajectory tracking simulations 

have been made as follows: Fig.6 shows the trajectory 

tracking response curve of three angles and the trajectory 

tracking error curves of yaw angle under the circumstance 

without external disturbance and uncertainty.

Subscript Numbers under attitude Angles corresponding 

to three kinds of controller: “1” is a representative of type-I 

fuzzy neural network based sliding mode controller; “2” is 

a representative of interval type-II fuzzy neural network 

identification based gain adaptive sliding mode controller; 

“3” is a representative of L2 gain method based on interval 

type II fuzzy neural network identifier.

The above experimental results indicate that tracking 

performances can be guaranteed under three different 

control scheme without uncertainty and external 

disturbances. Type-1 fuzzy neural network based sliding 

mode control scheme which responses fast, but its overshoot 

is somewhat of big; interval type-II fuzzy neural network 

identification based gain adaptive sliding mode control 

scheme which has smaller steady-state error, but with longer 

regulation time; L2 gain method based on interval type II 

fuzzy neural network identifier control scheme which has 

better control accuracy and smaller overshoot. 

Case 2 horizontal wind disturbance with average speed 
of 5m/s provided by the electric fan indoors

Figure 8 shows the trajectory tracking response curve 

of three attitude angles and the trajectory tracking error 

curves of yaw angle under the circumstance with external 

disturbance and uncertainty.

Subscript Numbers under attitude Angles corresponding 

to three kinds of controller: “1” is a representative of type-I 

fuzzy neural network based sliding mode controller; “2” is 

a representative of interval type-II fuzzy neural network 

identification based gain adaptive sliding mode controller; 

“3” is a representative of L2 gain method based on interval 

type II fuzzy neural network identifier.

From the above simulation results from Fig. 6 - Fig. 9. we 

can see that the control accuracy decreased under uncertainty 
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Fig. 5 Tracking error curves of attitude angles 

(a) Tracking error curves of Pitch angle θ 
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(b) Tracking error curves of Yaw angle ψ 
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Fig. 5 Tracking error curves of attitude angles 

(c) Tracking error curves of Roll angle ϕ 

Fig. 7. Tracking error curves of attitude angles
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factors and external disturbances for all of the three control 

schemes, but which could satisfy the performance standard 

of control system, furthermore, the L2 gain method based on 

interval type II fuzzy neural network identifier control scheme 

gives better performances compared with the other ones.

7. Conclusion

This paper develops a novel coaxial eight-rotor UAV to 

address the issue of weak movement capacity of a quad-

rotor UAV. Owing to its structural characteristics, the eight-

rotor offers remarkable advantages with respect to increased 

yaw movement ability, greater payload capacity and damage 

tolerance over a quad-rotor. Finally, numerical eight-rotor 

prototype comparison experiments indoors between L2 

gain method based on interval type II fuzzy neural network 

identifier control scheme, type-I fuzzy neural network based 

sliding mode control scheme and interval type-II fuzzy 

neural network identification based gain adaptive sliding 

mode control scheme have been conducted. The results 

show  three strategies adopted to the eight-rotor as the 

yaw controller have the good performance in the absence 

of the external disturbance and uncertainty. While in the 

case of external disturbances and uncertainty, it is evident 

that L2 gain method based on interval type II fuzzy neural 

network identifier control method is better suited in the yaw 

movement of the eight-rotor with more accurate control 

performance and stronger robustness.
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