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Abstract

In this study, a surrogate model is applied to multi-objective aerodynamic
optimization design. For the balanced exploration and exploitation, each objective
function is converted into the Expected Improvement (EI) and this value is used as
fitness value in the multi-objective optimization instead of the objective function itself.
Among the non-dominated solutions about Els, additional sample points for the update
of the Kriging model are selected. The present method was applied to a transonic
airfoil design. Design results showed the validity of the present method. In order to
obtain the information about design space, two data mining techniques are applied to
design results: Analysis of Variance (ANOVA) and the Self-Organizing Map (SOM).
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Introduction

Recently, surrogate models[1] are widely used in the field of engineering design to ease
the computational burden of optimization. However, most of surrogate models have a problem
of its fidelity because the function value predicted by surrogate models contains an uncertainty
in it. Especially, in the aerodynamic design field[2,3] where the response functions are often
nonlinear and multimodal, surrogate models cannot provide the sufficient fidelity for the
optimization design.

In order to make up for the low fidelity of surrogate model, Jones et al. suggested the
efficient global optimization (EGO) algorithm[4]. It makes use of the Kriging model, which is
developed in the field of spatial statistics and geostatics, as a surrogate model. The Kriging
model predicts not the function value itself but the distribution of the function value. Using the
distribution of the function value, one can predict not only the function value but also its
uncertainty. The uncertainty information plays a key role in EGO. In EGO, the exploration is
based on the potential of being superior to the current optimum instead of the objective
function value. According to the concept of EGO, the solution that has a high predicted
function value with a large error may be a more promising than the solution that has a low
predicted function value with a small error in the minimization problem. EGO makes it possible
to realize the balanced exploitation and exploration. EGO was successfully applied to the single
objective aerodynamic optimization design[5].

In this study, EGO is extended to multi-objective aerodynamic design problem. For the
multi-objective problem, Knowles et al. suggested ParEGO (Pareto EGO) which converts multiple
objective functions into a single objective function by using a parameterized weighting vector[6].
Although ParEGO showed a good performance on several test functions, its ability to find the
Pareto front largely depends on the selection of the weighting vector. Thus, in this study, each
objective function is converted into the EI of objective function and this value is used as the
fitness value in the multi-objective optimization. This makes it possible to obtain the
non-dominated solutions about Els without using the weight vectors. From these non-dominated
solutions, designer can select the additional sample points for the update of the Kriging model.
This method prevents from an incorrect exploration of Pareto front, which may be caused by the
weighting vector.

In the multi-objective optimization, a correct non-dominated solutions exploration is very
important. However, in the field of engineering design, it is also important to determine the
final design from nominated solutions, such as non-dominated solutions of multi-objective
problem. Thus, it is preferable for a designer to supply the non-dominated solutions with some
useful information for the final design decision. Information about the design space, such as
trade-off relations between objective functions and the relations between design variables and
objective functions, will be one of the useful information for the decision of final design.
Furthermore, this information makes it possible to simplify the design problem by eliminating
the design variables that do not have a significant influence on the objective functions.

The process to find the information from the design results is called ‘data mining’. In
this study, advanced data mining techniques, Analysis of Variance (ANOVA) and
Self-Organizing Map (SOM), are introduced. The former uses the variance of the objective
function due to design variables on surrogate models. ANOVA can identify not only the effect
of each design variable but also the effect of interactions between design variables on objective
functions. ANOVA expresses the information in a quantitative way. On the other hand, SOM
employs a nonlinear projection algorithm from high to low dimension and a clustering
technique. This method can visualize not only the relation between design variables and
objective functions but also the trade-off between objective functions. The method expressed
the information in a qualitative way.
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EGO for Multi-Objective Problem: EGOMOP
Kriging Model

The present Kriging model is composed of a constant global model B and the Gaussian
stochastic process Z(x) representing a deviation from the global model:

y(x) =B+Z(x) (1

where x is an m-dimensional vector (m design variables). The correlation between Z(x') and

Z(x') is strongly related to the distance between the two corresponding points, X' and x. In the
Kriging model, a specially weighted distance is used instead of the Euclidean distance because the
latter weighs all design variables equally. The distance function between the point at X' and X is
expressed as:

m

d(x', j)=§9k|z;.—zii 2)
where ©x(0<Ox< ) is the kw element of the correlation vector parameter ©. The correlation
between the points, x' and X/, is defined as:

Corr [ 2(x*),Z(x7) | = exp[— d(x* x9) ] (3)
The Kriging predictor [7] is
y(x) =B+rR Y y—15) (4)

where B is the estimated value of B and can be calculated using the following equation:

A I:R_ly
1R™1

(5)

R denotes the nxn matrix whose (i, j) entry is Corr{Z(x), Z(x)] and 1 denotes an n-dimensional
unit vector. r is the vector whose i element is

r,(x) = Corr[ Z(x),Z(x") ] (6)

and y:[y(xl)‘ ....... ’y(xn)]‘
The unknown parameter, ©, for the Kriging model can be estimated by maximizing the
following likelihood function:

In(B.o"0) == 4-in(o") - %znum) %)

where ¢® can be calculated as follows:

(y—13) R(y—1p)

n

o’= )
Maximizing the likelihood function is an m-dimensional unconstrained non-linear optimization
problem. In this paper, a simple genetic algorithm is adopted to solve this problem. This
problem requires several thousands of matrix inversion which consumes a lot of computational
time. However, compared with computational time of high-fidelity evaluation of the objective
function, its computational time is negligible.

The accuracy of the predicted value depends largely on the distance from the sample
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points. Intuitively, the closer point X is to the sample points, the more accurate the prediction,
y(x), becomes. This is expressed in the following equation:

1-1Rr

2 ): B y P ’R—l +
s°(x) =0 T T TRH

9)

where s°(x) is the mean square error at point X, indicating the uncertainty of the estimated
value.

Expected Improvement

Expected Improvement (EI) means the potential of being superior to than current optimum.
EI considers the predicted function value and its uncertainty at the same time. Thus, in the
minimization problem, the solution with large objective function value and large uncertainty may
be smaller than the solution with small objective function and small uncertainty. This feature
makes it possible to explore the design space globally. EI [8] in the minimization problem is
expressed as following:

ElIx)]= E[max (f,;, — :0)] (10)
flnin_z; fmin_;l;)
S

S

= (fmin~;&)¢( +S¢(
where ® and ¢ are the standard distribution and normal density, respectively.

In this studv. EI of objective function is directly used as fitness values in the
multi-objective optimization. Multi-objective genetic algorithm (MOGA) maximizes Els of
objective functions to finds the non-dominated solutions about Els and several points are

selected from the non-dominated solutions to update the Kriging model. Overall procedure of
EGOMOP is shown in Fig. 1.

MOGA operations for selecting
the additional sample points

Construction
of Kriging —

Generation of Initial population
And Evaluate the fitness of

Is wi | _each individual
N h:::‘;lsev;:il:“s | using the Kriging models
1 yes T Ne 71,,f
N=N+M: i~
M: additional I NGEN)IQ,O/ Selection of Parents

sample points

| L

[————{Operation in Kriging [ Evaluate the fitness Crossover
fhode! of new individuals and
| Using the | Mutation
| Kriging models

L

Fig. 1. Overall procedure of EGOMOP used in this study
Data Mining

Analysis of Variance (ANOVA)

ANOVA is one of the data mining techniques showing the effect of each design variable on
the objective functions in a quantitative way. ANOVA uses the variance of the functions due to



Multi-Objective Optimization Using Kriging Model and Data Mining 5

the design variables on surrogate models. By decomposing the total variance of the function into
the variance component due to each design variable, the influence of each design variable on the
objective function can be calculated. Decomposition is accomplished by integrating variables out of

the function y. The total mean (f,,,) and the variance (c2,,) of the functiony are as follows:

‘;‘mla]:/'”fi/('rl.'"”"Irrr)dxl’”'7d1'7n (11)

‘;i»tnlzf"'f[?:’(Iv"”""vm)—'[L""'“‘]?d‘rl""»dmm (12)
The main effect of variable x; is
I’;z:f /"‘L}('Tl’.“’zm)dxl"“’d‘rl—]dziﬂ"“’dmm—ﬁfnlul (13)

The variance due to the design variable x; is given as:
Af’:‘/[ﬂ,;(z,-)]zdl, (14)

The proportion of the variance due to design variable x; to total variance of the function can be
expressed by dividing Eq. (14) by Eq. (12).

o? f ()| de,
Sl R (15)
total / [:’/(xl"""'@m)—l‘mml] d.’l'ly"',d(l'm

This value indicates the effect of design variable x; on the objective function y.
Self-Organizing Map (SOM)

SOM is one of the unsupervised neural networks techniques that classify, organize, and
visualize large data sets. SOM is a nonlinear projection algorithm[9] from high- to
low-dimensional space. This projection is based on self-organization of a low-dimensional array
of neurons. In the projection algorithm, the weights between the input vector and the array of
neurons are adjusted to represent features of the high-dimensional data on the low-dimensional
map. The closer two patterns are in the original space, the closer the response of two neighboring
neurons in the low-dimensional space. Thus, SOM reduces the dimension of input data while
preserving their features. While ANOVA shows the relation between the design variables and the
objective function quantitatively, SOM shows it qualitatively.

A neuron used in SOM is associated with weight vector wi= [wi, wa, - wiml (i=1,+, N),
where m is the dimension of the input vector x and N is the number of neurons. Each neuron is
connected to its adjacent neurons by a neighborhood relation. In this study, the Batch-SOM
algorithm is used for the training of SOM. The algorithm consists of two steps that are iterated
until no more significant changes occur: search of the best-matching unit (BMU) ¢ for all input
data {x;} and update of weight vector {w;} near the best-matching unit. The Batch-SOM
algorithm can be formulated as follows:

¢; —_argmin|x;—wl (16)
* 21] hJGXi
w =

’ Zhﬁ{

an

where w; is the updated weight vector. The neighborhood relationship between neuron j and
the best-matching unit ¢ is defined by the following Gaussian-like function:
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d}?
h, = exP[%] (18)
; .

where djq denotes the Euclidean distance between the neuron k and the best-matching unit

¢i on the map, and r: denotes the neighborhood radius, which is decreased with the iteration steps
t. Compared with the standard SOM, which updates the weight vector when each record is read
and matched, the Batch-SOM takes a ‘batch’ of data (typically all records), and performs a
‘collected’ update of the weight vectors after all records have been matched. This is much like
‘epoch’ learning in supervised neural networks. The Batch-SOM is a more robust approach, since
it mediates over a large number of learning steps. The uniqueness of the map is ensured by
adoption of Batch-SOM and the linear initialization for input data.

In this study, commercial software Viscovery® SOMine[10] produced by Eudaptics GmbH is
used. Much like other SOM, SOMine creates a map in a two-dimensional hexagonal grid. Starting
from numerical, multivariate data, the neurons on the grid gradually adapt to the intrinsic shape
of the data distribution. As the position on the grid reflects the neighborhood within the data,
features of the data distribution can be read from the emerging map on the grid. The trained
SOM is systematically converted into visual information. Once the high-dimensional data is
projected onto the two-dimensional regular grid, the map can be used for visualization and data
mining. It is efficient to group all neurons by the similarity to facilitate SOM for qualitative
analysis, because number of neurons on the SOM is large as a whole. This process of grouping
is called ‘clustering’. Hierarchical agglomerative algorithm is used for the clustering here. First,
each node itself forms a single cluster, and two clusters, which are adjacent in the map, are
merged in each step. The distance between two clusters is calculated by using the SOM-ward
distance [10]. The number of clusters is determined by the hierarchical sequence of clustering. A
relatively small number of clusters are used for visualization, while a large number of clusters are
used for the generation of weight vectors for respective design variables.

Application to Aerodynamic Design

Definition of Optimization Problem

The present method is applied to a transonic airfoil design. In the transonic region, the flowfield
is drastically changed even with a small fluctuation. For the robust transonic airfoil design, the objective
functions are defined as follows:

Minimize objl: Drag at fixed lift of 0.75 (Mach=0.70)
obj2: Drag at fixed lift of 0.67 (Mach=0.74)
subject to t/c > 11%

(Av6.,dv7)
(dv8,dv9)

(dv4.dvs)
(Av10.dvil)

(dv2,dv3)
dv12,dvi3)

(dv25,dv26)

(0.dv1)

(0.,0)
(dv23.dv24)

(0, dv14)
(dv15,dv16)

\ (dvZ1l,dv22)
(v 7,avis) (3v19,3v20)

Fig. 2. Airfoil geometry definition using NURBS
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First objective function is for the design condition (at low speed) and the other is for the
off-design condition (at high speed). The design constraint is the maximum thickness of the
airfoil.

The geometry of the airfoil is defined using Non-Uniform Rational B-Spline (NURBS)
[11] to represent free-form shape. A total of 26 design variables are used to represent shape of
the airfoil exactly as shown in Fig. 2. The search region of each design variable is determined
to avoid unrealistic airfoil geometry such as a fish—tailed airfoil.

Construction of Kriging Model

Initial sample points of the Kriging model are selected using Latin Hypercube Sampling
(LHS)[12] with the constraint evaluation. Once LHS selects a point (airfoil), the point is
checked whether it satisfies the design constraint or not. If the point satisfies the constraint,
the point is selected as sample point, if not, the point is rejected. A total of 26 sample points
are selected with 50 divisions in LHS. Design variable distribution of 26 sample points are
shown in Fig. 3. Sample points are uniformly spread in the search region of all design
variables except dv7. This means that the airfoil with a small value of dv7 cannot satisfy

design constraint.
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Fig. 3. Distribution of initial sample points in search region

In case of LHS without the constraint evaluation, only 13 points satisfy the design
constraint with the same number of divisions. It means that 37 sample points are located in
the infeasible design space. By using LHS coupled with the constraint evaluation, it is possible
to select the sample points only from the feasible design space.

Drag performances of 26 sample airfoils are evaluated using a Navier-Stokes calculation.
With the data obtained from the Navier-Stokes analysis, the Kriging parameter © is
determined by solving maximization problem of Eq. (7).

Design Results

In the Kriging models, Els of two objective functions are maximized by using MOGA to
find the non-dominated solutions about Els. In the present MOGA, number of populations and
generations are 512 and 100, respectively. Fig. 4 shows the non-dominated solutions about Els
after the first EGOMOP loop. Els of objective functions are in the trade-off relation.

Among these non-dominated solutions, three points are selected for the update of the Kriging
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models: i) the point whose EI of objl is the largest, ii) the point whose EI of o0bj2 is the
largest, iii) mid point in the non-dominated solutions.

Fig. 5 shows the non-dominated solutions about Els obtained after the several EGOMOP
loops. The values of EI are gradually decreased as EGOMOP loop iterated. It means that the
accuracy near the Pareto front is improved by adding the additional sample points.

Fig. 6 shows the initial sample points and the additional points selected by using EGOMOP.
Total 89 points are selected in this design. The additional points selected by EGOMOP show
better performances than the initial sample points. It means that EGOMOP algorithm correctly
selected the additional points for update of the Kriging models.

0.0023 — —

0.0025
a
0.0022 | ]
0.0021 0.002
|
[
~ 0.002 |
‘.g ‘ - :\ 0.0015
S 0.0019 S
& s
S 00018 3 0001
0.0017 |
Non-dominated solutions 0.0005
0.0016 ‘ B Sample point for update \
[
0.0015 L - — Tyt
0.0055 0.006 0.0065 0.007 0.0075 0.008 0.0085 0.009 0
0 0.002 0.004 0.006 0.008 0.01
El of 0bj1
EI of Objl
Fig. 4. Non—-dominated solutions about El Fig. 5. Non—dominated solutions of Els
0.028 Initial Sample Points
® Additional Points by EGO
0.026 !
0.024
0.022
o~
= 0.02
S
0.018 .
Q o
0.016 .
o
0.014 r" o®
0.012

0.01 0015 002 0025 003 0035
0bjl

Fig. 6. Initial sample points and additional points selected by EGO

The geometry and the pressure distributions of designed airfoil, which shows the best
performances about both objective functions among 89 sample points, are compared with those of
RAE2822 airfoil. The designed airfoil maintains shock-free condition at both flow cases, while
RAE2822 represents strong shocks on upper surface. Drag performance of both airfoils are also
compared in Table 1.
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Table 1. Comparison of drag performances between RAE2822 and designed airfoil

Objt Obj2
RAE2822 0.0135 0.01582
Design 0.0132 0.0127
Geometry
0.08 T T |—RAE2$22
ce s ® Design
0.96 > °e } -
0.04 =
0.02
; &
0
002 ——RAF2822-0bj1
RAF2822-0bj2
-0.04 ®* Design-objl
o Design-obj2
-0.06 15 | | I
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Xc

b4 4

Fig. 7. Comparison of geometry and pressure distributions between RAE2822 and designed airfoil

Result of Data Mining

ANOVA
Total variances of objective functions were decomposed into the variance due to each

design variable. The variance of design variables and the interactions in which the proportion to
the total variable is larger than 1.0% are shown in Fig. 8 According to Fig. 8, dv3 gives the
largest effect on objl and dv9 gives the largest effect on obj2. dv7 and dv3-dv7, dv3-dv9 and

dv7-dv9 give much effect on objective functions.

other: 6.3%
Av16: 1.71% dv2-dv3: 1.33% dvii: 1.08%
| 0: 2.63% <\ other: 7.1%
dv9: 2.95% | iz d3: 111%
dv7-dv9: 3.55% ]
/
| Av3-dvT: 8.7%
| dv3-dv9: 2.12%
|
! dv3-dvil: 2.39%
dv3: 51.8% ) o S AvS: 1L05%
7 249% )' dv9: 32.8% T
Av7: 24.9% f
/ dv6: 5.81%
|
,’ Ave-dv7: 1.71%
/ ‘ avTe 14% dv6-dv9: 2.89%
/
/ Av7-dv22: 1.67%
Av3-dv7: 5.85% / [
! dVT-d9: 3.81% | .
dv3-dv5: 1.6% dv7-dv8: 1.09%
(a) obj1 (b) obj2

Fig. 8. Proportion to the total variance of model
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However, it is difficult to understand the relation between aerodynamic performance and
airfoil geometry intuitively because design variables defined by NURBS are not for the data
mining but for the detailed expression of airfoil geometry. Thus, design variables defined by
NURBS are transformed into the design variables which are more familiar to aerodynamic
engineers such as the leading edge radius and the maximum thickness position. The transformed
design variables are shown in Fig. 9.

uso
USOF USOR
AY
XmaxU maxU angTEU
7 XmaxTC a
] XU
xL maxL angTEL

Fig. 9. Transformed design variables

With these design variables, ANOVA is performed again. The results are shown in Fig. 10.
According to Fig. 10, AY gives the largest effect on objl and XmaxU gives the largest effect on
obj2. These findings correspond to general aerodynamic knowledge that the leading-edge radius
(AY) and the maximum thickness position (XmaxU) are strongly related to low and high speed
performance, respectively.

Other:4.6% Other :4 4%

Xma maxti:5.6%
: ax1C:2.0%
maxU- e R-1.81%
= XmaxTC-US0R:6
max KMt S N < A x < A3%

XmaxU-U30R>5-28

X maqunaxTC :2.8%
XmaxU-USOF :1.91%

AY-Xmaxl : 77833

(a) obj1 (b) obj2

Fig. 10. Proportion to the total variance of model

SOM

With 89 sample data, SOM based on two objective functions is generated. Figures 11(a) and
11(b) show SOM colored by objl and obj2, respectively. In Fig. 11(a), the clusters with good objl
performance are situated in the right-hand side and the cluster with poor objl performance are
located in the upper left side. In Fig. 11(b), the clusters with good obj2 performance are located
in the right-hand side and the cluster with poor obj2 performance are in the upper and the lower
corner of left-hand side. Figures 12 (a) and 12 (b) show SOM colored by dv3 and dv9 which
gives the largest effect on the objl and the obj2, respectively, according to the ANOVA. In Fig.
12 (a), the clusters with large dv3 values are located in the upper left corner. In Fig. 11(a), these
clusters also have poor objl performance. This means that large dv3 values are associated with
poor objl performance. In Fig. 12 (b), the clusters with small dv9 values are located in left-hand
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side and the clusters with large dv9 values are in the right-hand side. Its color patterns are
opposite to those of Fig. 11 (b). This means that small dvQ values are related to poor obj2
performance vice versa. The visualization results of SOM agree with the results of ANOVA.

SOM is also colored by the transformed design variables. Figures 13 (a) and 13 (b) show
SOM colored by AY and XmaxU. In Fig. 13 (a), the clusters with large AY values are located in
the upper left side. The distribution of color is similar to that of SOM colored by objl. This
means that large AY values are related to poor objl performance. In Fig. 13 (b), the clusters with
small XmaxU values are situated in the upper and the lower corner of left hand side. Its color
patterns are opposite to those of Fig. 11 (b). This means that small XmaxU values are associated
with poor obj2 performance vice versa. These results also coincide with those of ANOVA.

o

[ == |
0013 0015 0017 0020 002 0024 0026 0028 0030 0032 0013 0014 006 0018 0019 0021 002 0024 0025 0027

(a) SOM colored by obj1 (b) SOM colored by obj2
Fig. 11. SOM colored by objective functions

(a) SOM colored by dv3 (b) SOM colored by dv9
Fig. 12. SOM colored by selected design variables

19 22 24 27 29 32 34 37 39 42 28 3 34 36 39 42 45 47 50 53
(@) SOM colored by AY (b) SOM colored by XmaxU
Fig. 13. SOM colored by selected design variables

Conclusion

In this study, a surrogate model was applied to multi-objective aerodynamic optimization
design. For the balanced exploration and exploitation, each objective function was converted to the
expected improvements (EI) and this value was directly used as fitness values in the
multi-objective optimization. As an optimizer, multi-objective genetic algorithm (MOGA) was
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used here. From the non-dominated solutions about Els, additional points for the update of the
Kriging model were selected. The present method was applied to a transonic airfoil design. Design
results showed the validity of the present method.

In order to obtain the information about design space, two data mining techniques were
applied to design results: Analysis of Variance (ANOVA) and Self-Organizing Map (SOM).
ANOVA shows the relation between objective functions and design variable quantitatively and
SOM shows it qualitatively. For the intuitive understand of aerodynamic performance and the
airfoil geometry, the design variables defined by NURBS was transformed into the geometry
parameters which are more familiar to aerodynamic engineers. The results of data mining are
consistent with the general aerodynamic knowledge. These indicate that ANOVA and SOM used
in this study are valid for data mining of aerodynamic design space.
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