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Effect of Stagnation Temperature on the Supersonic
Flow Parameters with Application for Air in Nozzles
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Abstract

When the stagnation temperature of a perfect gas increases, the specific
heat for constant pressure and ratio of the specefic heats do not remain constant
any more and start to vary with this temperature. The gas remains perfect; its
state equation remains always valid, with exception that it will be named by
calorically imperfect gas. The aim of this research is to develop the relations of
the necessary thermodynamics and geometrical ratios, and to study the
supersonic flow at high temperature, lower than the threshold of dissociation. The
results are found by the resolution of nonlinear algebraic equations and
integration of complex analytical functions where the exact calculation is
impossible. The dichotomy method is used to solve the nonlinear equation, and
the Simpson algorithm for the numerical integration of the found integrals. A
condensation of the nodes is used. Since, the functions to be integrated have a
high gradient at the extremity of the interval of integration. The comparison is
made with the calorifcally perfect gas to determine the error made by this last.
The application is made for the air in a supersonic nozzle.

Key Words : Supersonic Flow, High Temperature, Supersonic Nozzle, Thermodynamics
ratios, Stretching Function, Numerical Integration, Interpolation

Nomenclature

Section area.

temperature.

specific heat for constante pressure.
static pressure.

density.

speed of sound.

thermodynamic constant for the air.
speed of the flow.

enthalpy.

Mach number.

interval subdivision number.

number of the points for the quadrature
function given the density ratio.
function given the critical sections ratio.
interpolation coefficients of the polynomial Cs(7).
coefficients of the polynomial H(T7).
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abreviation of High Temperature.
abreviation of Perfect Gas.

specific heats ratio.

relative error given by the computation (%).
control parametrers of condensation.
indice for the stagnation condition.

indice for the critical condition.

indice for the supersonic section.

indice for the points.

the critical mass of the gas.
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Introduction

The obtained results of a supersonic perfect gas flow! % are valid under some
assumptions. Among the assumptions, the gas is regarded as calorically perfect, i. e., the
specific heat Cpis constant and does not depend on the temperature, which is not valid in the
real case when the temperature increases” '”. The aim of this research is to develop a
mathematical model by adding the variation effect of Cpand y to the temperature. In this case
the gas is defined as calorically imperfect gas or gas at high temperature. In reference 2), a
table contains the values of Cpand y versus the temperature for air in interval 55 K°to 3550
K° was found. An interpolation polynomial for these values was made in order to find an
analytical form for Cp(7). The presented mathematical relations are valid in the general case
independently of the interpolation form and the substance, but the results are illustrated by
the choice of an interpolation by a polynomial of gth degree. The proposed mathematical
relations are in the form of nonlinear algebraic equation, and of an integral of complex
functions where the analytical procedure is impossible. Then, our interest is directed
towards the determination of approximate numericals solutions. The dichotomy method is
used for the resolution of the found nonlinear algebraic equations, and the Simpson algorithm
is used for numerical integration of the found functions®. The integrated functions have high
gradients at the extremity of the interval, from where the Simpson quadrature to constant
step requires a very high discretizatrion to have a suitable precision. The solution of this
problem is made by introduction of a condensation procedure in order to refine the points at
the place where there is high gradient. The chosen condensation formula is that of Robert
and Eiseman®. The application is made for the air in the supersonic field lower than the
threshold of dissociation of molecules. The comparison is made with the calorically PG model

The problem encountered in the aeronautical experiments and applications is that the
use of the nozzle dimensioned on the basis of perfect gas assumption degrades the
performances desired by this nozzle. Measurements from an experiment differ in general
from those determined by calculation, especially if the stagnation temperature is high.
Severals reasons are responsible for this change. Our flow is regarded as perfect, permanent
and irrotational. The gas is regarded as calorically imperfect and thermally perfect. It is
noted here that the PG theory does not take account of this temperature.

For goal to determine the limit of application of the perfect gas model, a study on the
error given by this model compared to our model at high temperature is presented.

Mathematical Formulation

The development is based on the use of the conservation equations in differential form.
The state equation of perfect gas (P=pr7) remains always valid, with r=287.102 J/(Kg K°).
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The temperature and the density are connected for an adiabatic flow of a perfect gas by the
following differential form®" ®:

Ce ar-T gp—o (1)
y p

The values of Cp and y of table of reference 2) satisfy the relation [Cp=pr/(y—1)].
Then, Eq. (1) becomes:

dp___ dr 2
p T[ly(D-1]

The integration of Eq. (2) gives the adiabatic equation of a perfect gas at high temperature
The speed of sound, by definition", is given by

a? =(d—P) (3)
dp entropy=constanf

The differential of the state equation of a perfect gas gives:

szRd—T+RT (4)
dp dp

Let use substitute Eq. (2) into Eq. (4), to obtain, after transformation:

a*(M=y(T) rT (5)

Equation (5) proves that the relation of speed of sound of perfect gas remains always
valid for the model at high temperature, except here it is necessary to add the variation of
the ratio y (7).

The conservation of energy equation in differential form is written":

CpdT+VdV=0 6)

The integration between the stagnation state (Vy= 0, Ty and supersonic state (V, 7)
gives:

V2 =2H(T) @)
where
H(T) = j;’O Cp(T) dT )
Let us divide the Eq. (6) by V* and replacing the Eq. (7) to obtain:
av _ __CL(T)_dT (9
14 2 H(T)

The division of the Eq. (7) by the speed of sound, the expression for the Mach number
can be obtained:

MT) = ——“2‘11(;(” (10)

Eq. (10) shows the variation of the Mach number to the temperature for calorically
imperfect gas.

The conservation of the momentum equation, in differential form® ¥

, 1s written:

vav+9E _g (11)
P
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Replacing the expression (3) by Eq. (10), it follows that:

% _p1 dr 12)
where
F, (T)—CP(T) (13)
a'(n

The density ratio corresponding to temperature 7pcan be obtained by integrating the
function (13) between the stagnation state (ps 7, and the concerned supersonic state (p,
T), resulting:

L_ Exp(— f* F,(r) dT) (14)
po
The pressure ratio is obtained by using the relation of a perfect gas state, to give:
P__ P T
£ L)L) (15)
B p T

The conservation of the mass'” is written
pV A=constant (16)

The logarithmic expression of Eq. (16), differential calculation of it, and the
substitution of the relations (9) and (12) in the obtained result, leads to:

d7{4=FA(T) dT (17)

where

F, C (18)
(D)= P(T)|: 27) 2H(T)}

The integration of Eq. (17) between the critical state (A., 7.) and the supersonic state
(A, T) gives the sections ratio as:

ﬁ: Exp( [ Falr) de (19)

The determination of the parameters p and A requires the calculation of integrals for
functions F,(7) and F4(7) where the analytical procedure is impossible considering the
complexity of these functions. Therefore, our interest is directed toward the numerical
calculation. A/l parameters M, p and A are connected to the temperature.

The critical mass'? crossing a section can be evaluating, in non—dimensional form, by
the following relation:

_m dd
Y j( )( )Mcos(e) (20)

As the critical mass is throughout constant, its calculation can be made at the throat. In
this section, the parameters are p=p., a=a., M=1, §=0 and A=A.. Therefore, the Eq. (20) is
reduced to:

A’h =(ﬂ) (ﬁ) (21)
* Po Ao Po ao
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The determination of the speed of sound ratio is done by the use of relation (5).

Then:
o 12 12
a _| 2D } L] (22)
a, Ty) T,
The PG relations giving the parameters 7, P, p and A are connected explicitly to the
Mach number which is the basic variable for this model. For our model, the basic variable is

the temperature because of the implicit Eq. (10) connecting M and 7, where the analytical
expression of its reverse is not existing.

Procedure Calculation

For a perfect gasﬂ, the y and Cp values are equal to y=1.402 and Cp=1001.28932
J/(kgK°). The interpolation of the Cp values according to the temperature is presented by
relation (23) in the form of Horner scheme to minimize the mathematical operations number
of calculation Then:

Cp(T)=a,+T(ay+T(az+T(as+T(as+T(ac+T(a; +T(ag+T(ag +T(ay ) (23)

The constants (a; /=1, 2, ..., 10) of interpolation are illustrated in table 1.

Table 1. Coefficients of the polynomial Cs(7)

l a; i a;

1 1001.1058 6 3.069773 1072
2 0.04066128 7 -1.350935 107"
3 -0.000633769 8 3.472262 107"
4 2.747475 10° 9 -4.846753 107
5 -4.033845107° 10 2.841187 107

A small problem arises during the interpolation of the formula (23). After a pictorial
display of the Cp(7) polynomial and a comparison with the values of the table of reference 7),
an undulated variation was noticed at low temperature until approximately 240 K°, instead of
having a constant function in this portion. To this end, a correction is made with this function

to bring closer the values interpolated with the values of the table; Then, if T=;=240 K°, the
relation (23) gives the following value:
Cp=C,(T)=100115868 J/(KgK°)
Thus:
If T<T,then Cp(T)=Cp

If T>T , the relation (23) is used

The selected interpolation yields an error better than e=10 " between the table and
interpolated values.
Once the interpolation is made, the function A (7) can be obtained by integrating the function
Cp(T) in the interval /T, Ty/. Then, H(T) is a function with a parameter T, and it is defined
when T<T).

Let us replace the relation (23) into (8), and write the obtained integration results in
the form of Horner scheme. Then:

H(T)=H - [c\+T(c,+T(c3+T(c4+T(c5s+T(cc +T(c7 +T(cg +T(co +T(cyo ) (24)
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Where
H=Ty(c,+To(cy+To(c3+To(cs+To(cs+To(ce+To(cy +To(cg+To(co +To(cr0))))))))) (25)

and =2 (i=1,2,3,..,10)
i
Considering the correction made to the function Cp (7), the function H(7) will have the
following form:

e Si Ty<T then: H(T)=Cp (T,-T)

_ For T>T then H(T) = relation(24)
e Si Ty>T two cases are obtained: _ _ _
For T<T then H(T)=Cp(T-T)+H(T)

The determination of the ratios (14) and (19) needs the numerical integration of £, (7)
and F4(T) respectively in the intervals /7, T,/ and /7, T./. The tracing of these two

functions is preresented respectively by figures 1 and 2, for goal to see their variations
before making the choice of the integration quadrature.
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Fig. 1. Variation of the function £,(7)in the  Fig. 2. Variation of the function F4(7) in the
interval [T, T,/ versus temperature interval [T, 7./ versus temperature

The integrations quadratures to constant step require a very high discretization to
having a good precision, considering the high gradient at the left extremity of the interval.
The tracing of the functions is selected for 7p=500 K° (low temperature) and Ms=6.00
(extreme supersonic) for a good representation in these ends. In this case, 7.=418.347 K°
and 75=61.072 K°. The two functions present a very large derivative at temperature 7.

A condensation of nodes is then necessary in the vicinity of 7sfor the two functions.
The goal of this condensation is to calculate the value of integral with a high precision in a
reduced time by minimizing the quadrature nodes number. The selected integration
quadrature is of Simpsons). The condensation function chosen'? is given by:

s=by z;+(1-by) [lﬂmﬁ(gﬂ} 26)
where
7= 1<i<N 27)
N-1

After having obtained s;, the value of 7;in nodes /can be determinate by the following
relation:
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];=Si(TD—TG)+TG (28)

The temperature 7p is equal to 7p for F,(7T ), and equal to 7. for F,(7). The
temperature 7;is equal to 7.for the critical parameter, and equal to 75 for the supersonic
parameter. If the value of b; is taken near zero (b;=0.1) and b»,=2.0, the nodes can be
condensed towards the left end 7 of the interval.

Critical Parameters

The stagnation state is given by M=0. Then, the critical parameters correspondent to
M=1.00, for example at the throat of a supersonic nozzle, summarize by:
Let us replacing the critical conditions (M=1, T=T.) into relation (10), The following
equation is obtained:

2 H(T+)-a?(T+)=0 (29)

The resolution of Eq. (29) is made by the use of the dichotomy algorithmg), with
T.<T,. The beginning interval /7;, T»/ containing 7. can by chosen by 7,=0K° and 7»=T7}.
The value 7.can be obtained with a precision ¢ if the number of subdivision K checked the
following condition:

K =1.4426 Log(T, / ¢ )+1 (30)

If e=10%is taken, the number A cannot exceed 39. The temperature ratio 7./7} can
be calculated consequently.

Let us replace 7=7.and p=p.in the relation (14) and integrate the function %, (7) by
using the Simpson formula with condensation of nodes towards the left end, the critical
density ratio can be obtained. The critical ratios of the pressures and the speed of sound can
be calculated by using the relations (15) and (22) respectively, by replacing 7=T7., p=p.,

=P, and a=a,,

Parameters for a supersonic Mach number

For a given supersonic section, the parameters p=ps, P=Ps, A=As, and T=Ts can be
determined according to the Mach number M=Ms. Let us replace 7=7s and M=Ms in relation
(10), the following equation is obtained:

2 H(Ts )- M2 a?*(Ts)=0 (31)

The determination of 7 of Eq.(31) is always done by the dichotomy algorithm. The
interval /7T, T2/ containing Ts, can be chosen by 7;,=0 K° and T>=T.

Let us replace 7=7s and p=ps in relation (14) and integrate the function F,(7) by
using the Simpson quadrature with condensation of nodes towards the left end, the density
ratio can be determined.

The ratios of pressures, speed of sound and the sections corresponding to M=Ms can
be calculated respectively by using the relations (15), (22) and (19) by replacing 7=Tg,
p=ps, P=Ps, a=asand A=As.

The integration results of the ratios (14) and (19) primarily depend on the values of N
b; and b

Error of perfect gas model
The mathematical perfect gas model is developed on the basis to regarding the specific

heat Cp and ratio y as constants, which gives acceptable results for low temperature.
According to this study, A difference on the given results between the PG model and our
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developed model was noticed. The error given by the PG model compared to our A7 model
can be calculated for each parameter. Then, for each value (7, M), the ¢ error can be
evaluating by the following relation:

yra(To, M‘
; =|1-——""""=x100 (32)
ey(To. M) ‘ yur(To, M) *

The letter y in the relation (32) can represent all mentioned parameters. In the
aerodynamic applications, generally the authors choose an error lower than 5%.

Application

The studied problem can be encountered, for example when designing a supersonic
propulsion nozzle. The use of the obtained dimensioned nozzle shape on the basis of the PG
gas model giving a supersonic uniform Mach number Ms at the exit section for the
applications of rocket motors or blowers degrades the desired performances, especially if
the 7, is higher. The form of the nozzle structure does not change, except the
thermodynamic behavior of the air, which changes with 7. The value of Ty increases, other
results can be obtained than those determined for a PG model.

If the same variation of the Mach number through the nozzle and consequently, the
same exit Mach number M5 of the PG model was preserved, it is necessary to determine for
our model, the ray of each section and in particular the ray of the exit section, which will
give the same variation of the Mach number, and consequently another shape of the nozzle
will be obtained. The relation (33) indicates that the Mach number of the PG model is
preserved. Since the temperature at this section, which presents the solution of Eq. (34)
must be determined. To obtain the ratio of the sections, the relation (35) is used. The ratio
of the sections obtained by our model is higher than that obtained by the PG model. Then,
the shape of the nozzle obtained by PG gas model is included in the nozzle obtained by our
model. In this case, the thermodynamic ratios are the same for the two models.

Ms (HT) = Ms(PG) (33)
Ms(PG) _ V2 H[Ts@m] (34)
a [Tsur)]

As pyr) =Exp(j;’ Fa(7) dT)
Ax S (HT)
. (35)
45 pg
>4 (pG)

The second situation consists of preserving the shape of the nozzle dimensioned on the
basis of PG model for the aeronautical applications, as present the relation (36). In this case,
the nozzle will deliver a Mach number lower than desired, as shown in the relation (37). The
correction of the Mach number for the A7 model is initially made by the determination of
temperature 7 as solution of Eq. (35), then determine the exit Mach number as solution of
relation (34). The thermodynamic ratios change and influence on the other design
parameters. The resolution of Eq. (35) is done by the combination of the method of
dichotomy with Simpson quadrature.

s ) _ As
LLHT) = £3(PG) (36)

Ms (HT) < Ms(PG) (37)
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Results and Comments

The results concern the PG model when y=1.402 can be found in references 1), 5) and
7), that for the HT model are the aim of reference 11).

Figures 3 and 4 respectively represent the variation of specific heat Cp(7) and the
ratio y (7) of the air versus the temperature up to 3550 K° for HT and PG models. The
graphs at high temperature are presented by using the interpolation polynomial (23). At low
temperature until approximately 240 K° the gas can be regarded as calorically perfect,
because of the invariance of specific heat Cp(7) and the ratio y (7). But if 7} increases, the
difference between these values can be seen, witch giving influences on the thermodynamic
behavior of the flow.

1350 .
1300 Cp(T) i 1.44}J AT perfoer G
1 = | erfect Gas
1250 J/ (Kg K*°) " High Temperature 1.40 1~ * * o
1200 s LN
1150 / |
i / I N
1100 | / 1.32 S
i J | ~_ High Temperature
1050 | | —Z
! Perfect Gas 1.28 —
1000 ——— - )
950 Frrrrrr e e 7 !
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Stagnation Temperature (K°) Stagnation Temperature (K°)
Fig. 3. Variation of the specific Fig. 4. Variation of y(7) versus T,

heat Cp(T) versus Ty

Results for the critical parameters

Figure 5 represents the variation of the critical parameters versus 7, When 7,
increases, the critical values at high temperature vary, and this variation becomes
considerable when the value of 7p is high, which is not the case for the PG model, where
they do not depend on 7p,. The value given by the A7 model for the temperature ratio, for
exemple, is always higher than the value given by the PG model, wich gives, that this model
cooled the gas compared to the real case at high temperature. The ratios are determined by
the choice of N=300000, b;=0.1 and b>=2.0to have a precision better than e=10 ~°.

On figure 6, the critical mass of the gas given by the perfect gas thoery is inferior to
the real case given by A7 model, especially if T is higher.

0.89 T 0640, o
£ M 3 %k
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0.84 ,/’ Perfect Gas 5 6244} .
08{ ’ |
I
082 e - 0.620 -
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Figure 7 presents the variation of the speed of sound ratio versus 7. The influence of
the temperature 7y on this parameter was always deduced.

Results for the supersonic parameters

Figure 8 represents the variation of the supersonic flow parameters in a cross—section
versus Mach number for 7, =1000 K°, 2000 K° and 3000 K®, including the case of perfect
gas for y=1.402.

When M=1, the values of the critical ratios can be determined. If the variation of
Cp(T) is taken into account, the temperature 7} influences the sizes of the thermodynamic
and geometrical flow parameters which is not the case for the PG model.

The curve 4 of figure 8a indicates that the perfect gas cooled the flow compared to the
real thermodynamic behavior of the gas, and consequently, it influences the determining
nozzle parameters. With an accepted error and at low temperature and Mach number, the
theory of perfect gas gives acceptable results.

Figure 9 represents the variation at high temperature of the critical sections ratio
versus Mach number. For low values of Mach number and 7p, the four curves are confused
and begins to differ when A>2.00. The curves 3 and 4 are confused for any value of 7. This
property gives that the PG model can used if 7p</000 K°.

Figure 10 presents the variation at high temperature of the speed of sound ratio
versus Mach number. Always 7} value influences this parameter.
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Results for the error given by the perfect gas model

Figure 11 presents the variation of the relative error given by the thermodynamic and
geometrical parametrs of a PG model compared to A7 model for some 7y values. It is clearly
noticed that the error depends on the values of 7p and M, and it increases if the stagnation
temperature increases.

For example, if 7p=2000 K° and M=3.00, the use of the PG model will give a relative
error equal to e=174.27 % for the temperatures ratio, e=27.30 % for the density ratio and an
error e=15.48 % for the critical sections ratio.
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Fig. 11. Variation of the error given by the supersonic parameters of the PG versus Mach number
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For low values of M and 7, the error ¢ is weak. On this figure, curve 4 is lower than
the line of error 5%. This position is interpreted by the use of PG model for the aeronautical
applications until 7,=1000 K° but if the value of 7, is higher, the error increases
progressively and in this case, the PG model can be used independently of 7p, if the Mach
number does not exceed M=2.00 for an error of approximately 10%.

Results for the supersonic nozzle application

Figure 12 presents the variation of the Mach number through the nozzle for 7,=1000
K°, 2000 K° and 3000 K°, including the case of perfect gas presented by curve 4. The
example is selected for Ms=3.00 for the PG model. If T, is taken into account, a fall in Mach
number size of the dimensioned nozzle on the basis of the PG model can be seen. The more
the temperature 7, is high, the more the fall becomes large. Consequently, the
thermodynamics parameters will be forcing different sizes to those from the PG model. It is
noticed that the difference becomes considerable if the value 7, starts to exceed 1000K".
Figure 13 presents the correction of the Mach number of nozzle giving exit Mach number Mg,
dimensioned on the basis of the PG model for various values of 7). It is noticed that the
curves confound until Mach number Ms=2.0 independently of 7, From this value, the
difference between the three curves 1, 2 and 3, start to increase. It is still noticed that
curves 3 and 4 are almost confused whatever the Mach number, which is interpreted by the
use of the PG model for the applications if the the value of 7} is lower than 1000 K°. For
example, if the nozzle delivers a Mach number Ms=3.00 at the exit section, on the
assumption of PG model, it will deliver on the consideration of the A7 model, a Mach number
Ms=2.93, 2.84 and 2.81 respectively if Tp,=1000 K°, 2000 K° and 3000 K°.
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(a) : Shape determined on the basis of a PG model given Ms=3.00.
(b) : Variation of the Mach number through the nozzle of the case (a).

Fig. 12. Effect of stagnation temperature on the variation of the Mach number through the nozzle
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Fig. 14. Shapes of nozzles at High Temperature giving even variation of Mach number

Figure 14 presents the supersonic nozzles shapes delivering the same exit Mach
number Ms. The exemple is taken for Ms=3.00. The variation of the Mach number through
these 4 nozzles is illustrated on curve 4 of figure 12. The three other curves 1, 2, and, 3 of
figure 14 are given on the use of the A7 model for T,=3000 K°, 2000 K° and 1000 K°
respectively. The curve 4 of figure 14 is still presented in the figure 12a, determined on the
assumption of a perfect gas. The nozzle of PG model is less bulky compared to A7 model.
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Conclusion

From this study, the following points can be quoted:

If an error lower than 5% is accepted, a supersonic flow using a perfect gas relations
can be studied, if the stagnation temperature 7jis lower than 1000 K° for any value of Mach
number, or when the Mach number is lower than 2.0 for any value of 7, up to approximately
3000 K°.

The PG model is represented by an explicit and simple relations, and does not require
a large time to make calculation, which is not the case for our model, where it is represented
by the resolution of a nonlinear algebraic equations, and integration of two complex analytical
functions requiring large time of calculation and data processing programming.

The basic variable for our model is the temperature and for the PG model is the Mach
number because of a nonlinear implicit equation connecting the parameters 7 and M.

The relations presented in this study are valid for any interpolation chosen for the function
Cp(T). The essential one is that the selected interpolation gives an acceptable small error.

Another substance instead of the air can be choosen. In this case, the relations remain
valid, except that it is necessary to have the table of variation of Cp and y according to the
temperature and to make a suitable interpolation.

The critical sections ratio can be used as a source of comparison for validating the
numerical results of various supersonic nozzles dimensioned, giving a uniform and parallel
flow at the exit section by the method of characteristics and the Prandtl Meyer function, for
example the Minimum Length Nozzle and Plug Nozzle.

The thermodynamic ratios can be used to determine the design parameters of the
various shapes of nozzles under the basis of A7 model.

The relations of a perfect gas model can be obtained starting from the relations of our
model at High Temperature, by annulling all constants of interpolation except the first. In this
case, the PG model becomes a particular case of our model.
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