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Improvement of aeroelastic stability of hingeless helicopter
rotor blade by passive piezoelectric damping
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Abstract

To augment weakly damped lag mode stability of a hingeless helicopter rotor
blade in hover, piezoelectric shunt with a resistor and an inductor circuits for passive
damping has been studied. A shunted piezoceramics bonded to a flexure of rotor blade
converts mechanical strain energy to electrical charge energy which is dissipated
through the resistor in the R-L series shunt circuit. Because the fundamental lag
mode frequency of a soft-in-plane hingeless helicopter rotor blade is generally about
0.7/rev, the design frequency of the blade system with flexure sets to be so.
Experimentally, the measured lag mode frequency is 0.7227/rev under the short circuit
condition. Therefore the suppression mode of this passive damping vibration absorber
is adjusted to 0.7227/rev. As a result of damping enhancement using passive control,
the passive damper which consists of a piezoelectric material and shunt circuits has a
stabilizing effect on inherently weakly damped lag mode of the rotor blades, at the
optimum tuning and resistor condition.

Key Word : Piezoceramics, Shunt circuit, Passive damping, In hover, Hingeless helicopter,
Lead-lag

Introduction

During the decade of the 1960's, by exploiting structural properties of advanced metallic and
composite materials, the hingeless helicopter rotor systems replacing the flap and lead-lag hinges
with flexures have been developed. By eliminating the flap and lag hinges, the hingeless rotor
systems are mechanically simpler than the articulated rotor systems. The simplification reduces
the weight and cost of the rotor system and increases its reliability and maintainability. But
aeroelastic and areomechanical instabilities are still present and the auxiliary lead-lag damper in
the rotor systems is needed to prevent their instabilities. Hingeless rotor systems can be divided
into soft-in-plane rotor and stiff-in-plane rotor. For soft-in-plane blades, the fundamental lag
bending mode frequency is less than the rotational frequency. For stiff-in—-plane blades, lag
frequency is greater than rotating speed. The advantage of the stiff-in—plane configuration is that
it is not subjected to aeromechanical instabilities, such as ground and air resonance, and therefore
it is not necessary to consider lag dampers in its design. However, stiff-in-plane rotor systems
have the complex aeroelastic instabilities. Therefore the hingeless helicopter rotor systems are
shifted toward soft-in-plane blades with lag damper, except very few helicopters, in spite of the
its aeromechanical instabilities[1].

Much research has been made to make the soft-in—plane hingeless helicopter rotor stable from
ground resonance and air resonance. Bousman[2,3] investigated aeroelastic and aeromechanical
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stability of soft-in-plane hingeless rotor with kinematic coupling. He introduced pitch-lag
coupling by using geometrically skewed flexure, and also introduced flap-lag coupling by
changing pitch angle inboard of the flexures. And he showed that both flap-lag and pitch-lag
coupling affect aeroelastic and aeromechanical stability of the hingeless helicopter rotor strongly.
Han et al.[4] studied the ground resonance of the soft-in-plane hingeless helicopter rotor with
composite flexures. They introduced the flap-lag coupling by changing flexure inclination angle
and pitch-lag coupling by using bending-torsion coupling of the symmetric composite layers. And
to represent the motion and structural stiffness of helicopter fuselage and landing gears, the
gimbal was used. They showed that the combination of positive flap-lag coupling and negative
pitch-lag coupling has a stabilizing effect on the ground resonance. Jung and Kim[5,6]
investigated the effects of transverse shear and structural damping on the aeroelastic response of
stiff-in-plane composite helicopter blade. They introduced the shear correction factor (SCF) to
account for the sectional distribution of shear and improved the prediction of transverse shear
behavior of composite. Those approaches are based on the aeroelastic coupling. Though the use of
aeroelastic coupling is effective, the difficulties are the fact that aeroelastic couplings that may be
effective for isolated blade stability may be ineffective in the presence of rotor body dynamic
coupling. Another important factor is the number of different flight conditions and vehicle
configurations that must be stable[7]. These difficulties come from the inherent weakly damped
lag mode. If we can have the high structurally damped flexure, the instabilities of the blades may
be less severe. And several researchers pursued the techniques to increase the structural damping.
The methods are to incorporate high damping materials such as viscoelastic materials into the
blade to increase the structural damping[7].

In this paper, to increase the structural damping of the flexures, the passive damping control
using the piezoelectric materials is applied to rotor blades. In recent, piezoelectric passive control
together with active control has been studied for the purpose of the vibration suppression. The
characteristics of the piezoelectric are to transform mechanical vibration energy to electrical
energy. In other words, the piezoelectric can be used as energy transformer. The transformed
electrical energy can be dissipated into the heat energy by shunt circuits. Thus the vibrations
could be suppressed. Hagood and von Flotow[8] have presented the passive control using the
piezoelectric in detail. They introduced the simple shunting circuit consisting of a resistor and an
inductance, which make an electrical resonance. As it is tuned optimally to vibration mode desired
to damp, the structure vibration decreased effectively. In the paper, the analysis has been done by
deriving the effective mechanical impedance for the piezoelectric element shunted by an arbitrary
circuit. Hollkamp[9] expanded the theory so that a single piezoelectric element can be used to
suppress multiple modes. Since that, several researchers[10,11] have studied the effects of the
shunt circuit which is critical in passive damping using the piezoelectric devices.

The objective of this paper is to investigate stability characteristics of the hingeless rotor
system by the increase of structural damping of the rotor blade using passive piezoelectric
damping. First, the equations of motion of the piezoelectric with R-L elements in series shunt
circuit will be derived on the basis of Hamilton’s principle. The piezoelectric can be modeled as
the voltage source in series to the inherent capacitance. And the governing equations of rotor
blade will be presented and finite element method is used to solve the nonlinear equation. Finally,
experiment of aeroelastic stability of rotor blade with the shunted piezoceramics in hover will be
carried out.

Piezoelectric material

Equations of piezoelectric materials

The constitutive equations of piezoelectric materials in linear range for one-dimensional
transverse loads are
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Here, the standard IEEE notation is used. The equation (1) represents electrical charge quantity
per unit area and strain on the piezoelectric materials when electrical fields and stresses are applied.
And at equation (1), the first row is applied when the piezoelectric materials are used as sensors
and the second is applied when they are used as actuators. Therefore equation (1) is usually used
for the active control with the piezoelectric. For the passive control with them, mechanical displacement
or strain S and electrical displacement or electrical charge density D are considered as the independent
variables. Therefore when strain and electrical charge density are applied, electrical field and stress
on the materials can be expressed as follows

1
{E}z £_q "hsi {D} (2)
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Where Az known as piezoelectric stress coefficient means that it is the electrical field appearing
across the piezoelectric when unit strain is applied at constant charge. And c” is young’s modulus

when the materials are in the open shunted condition. The piezoelectric stress constant hz can be
expressed in terms of electromechanical coupling coefficient k3 as follows:

D

hy, = C_k 3)

gs 31
The electromechanical coupling coefficient k3 is expressed as ks =d; /s 557. In the
single-degree-of-freedom setting, the constitutive equations of the piezoelectric material can be
rewritten:

1
15
-H KP

Q and X are charge and displacement of the piezoelectric, respectively. And V and F are voltage
appearing across the material and internal elastic force of the material, respectively. C°p is the capacitance
of the material under constant strain, and K%p is the stiffness in the open circuit condition and H
is the electro-mechanical coupling. The electro-mechanical coupling H can be expressed in terms
of stiffness, capacitance and electromechanical coupling coefficient k3 of the piezoelectric.

KD
H = Fj’;—k“ (5)

The equation of the motion of the piezoelectric connected to shunt circuit consisting of R-L
elements in series can be derived from the Hamilton's principle. That is

r[J(T—V+W)]dt:0 (6)

For shunt circuit, the kinetic energy T and the potential energy V include not only the effect
of the mechanical displacement and velocity, but also the magnetic and electromagnetic effect. So
the Kinetic energy and the potential energy are

T:lM,\'ﬂ +—I—LQ2 (7a)
2 2
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Where total kinetic energy T consists of the mechanical kinetic energy and the electrical kinetic
energy, and total potential energy V consists of the mechanical potential energy, the electrical potential
energy, and the potential energy coupled electric fields and mechanical fields.

The virtual work consists of the heat dissipation through the resistor and externally applied
force.

W = -ROS0 + f6X 8)

If the equation (7a), (7b) and (8) are substituted into the equation (6) and integration by part
are carried out, the equation of motion of the shunted piezoelectric can be expressed as follows:

MX +KPX-HQ =f (9a)

LO+RO+CS'Q-HX =0 (9b)

The equation (9a) represents the mechanical behavior of the piezoelectric materials whose
actuating force is HQ. The mechanical vibration of the piezoelectric causes the electrical charges
on the both electrodes of the material and this charge induces the actuating force that reacts to
the structure to suppress the vibration. The equation (9b) shows that it is the electric circuit which
consists of L-R-C elements in series with the voltage source as HX. Because of mechanical deformation
the voltage difference appears across the electrodes of the piezoelectric and it plays a role in the
voltage source. Therefore shunted piezoelectric device can be considered as the electric circuit, as
shown in the figure 1, which consists of the voltage source, the capacitance that are inherent
characteristics of piezoelectric material, the resistance, and the inductance that are shunted. From
the Kirchhoff’s Voltage Law, the voltage of the source HX drops through the capacitor, the resistor
and the inductor, respectively. In the equation (9b), the first term is the voltage in the inductance,
the second is the voltage in the resistor and the third is the voltage in the inherent capacitor. In
the electric circuit, the inductor makes the circuit have electrical resonance with the capacitor of
piezoelectric materials itself and the resistor takes a role in heat dissipation. In other words, the
mechanical vibration energy is transformed into the electric energy by the piezoelectric material and
this is dissipated through resistor into heat energy. Therefore the vibration can be damped out.

In the short circuit without a resistor and an inductor, the electrical equation (9b) becomes

CS'0-HX =0 (10)

If this equation is used, the mechanical equation (9.a) can be expressed in terms of the mechanical
displacement X and then the stiffness of the shunted piezoelectric becomes

K;=»1-ki)K; 11)

This is the stiffness of the short circuit piezoelectric. An open circuit piezoelectric is stiffer
than a short circuit since it stores energy as electrical energy and returns it back to the structure
as mechanical energy.

The modeling of structures bonded to piezoelectric materials

The structures bonded to patch-like piezoelectric materials can be considered as the mass—spring
model by simply considering modal quantities of single degree of freedom in the case that modes
are well separated. The whole systems which are structures with piezoelectric materials are that
the modal stiffness of the piezoelectric material is parallel to that of the structure and the modal
mass of the rotor blade plus that of the piezoelectric materials is total modal mass as shown in
figure 3. Then the equations of the systems can be written like below:

MX +(K; +KP)YX -HQ = f (12a)

LO+RO+CS —HX =0 (12b)
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Where Ks and Mare the modal stiffness of host structures and the total modal mass, respectively.
This is the governing equation of structures bonded to piezoelectric materials with R-L in series
shunt circuit. In the equation (12.a), the modal stiffness is expressed in terms of the stiffness of
open shunted piezoelectric materials. However, the equation can be rewritten in terms of the stiffness
of short shunted piezoelectric materials. Using the relation (11), the relation of the total modal stiffness
between open circuit system and short circuit system is

KS+K,?= . K} k2 (13)
K, +KE Ki+KF1-k}

From the second term in right hand side, the generalized electromechanical coupling coefficient
K3y, is defined as

. __ Ki  k
S P ) (14)

It is the fraction of the system modal strain energy which is converted into electrical energy
by the open circuit piezoelectric.

Optimum resistance and inductance

To find characteristics of the system that are natural frequency and damping, natural vibration
analysis is needed. Assuming the displacement and the charge harmonic motion €”, the characteristic
equation of the governing differential equations (12) is as follows:

A(s)={Ms2+(KS+K,’,’)}{Ls2+Rs+C1—S}-—H2=0 (15)

P

For simplification, non-dimensional parameters are introduced like below

1 -
W, = K, +K} _%. = O
Jics o =T 0T wr r=kciol T 1o

Where @,” is the natural frequency of a short circuit piezoelectric system, @, is electric resonant
frequency, is the tuning parameter and r is damping parameter. Using the non-dimensional parameters
and the relation (11), the equation (15) can be rewritten as follows:

(A2 +1+K2)YA* +rd%A+8%)-6%K]

=A PSP A+ (I+ KL +3DA +(I+ K2 )rd?A+6% =0 (%

The natural frequency and damping should be determined by solving the fourth-order polynomial
equation (17).

Now, optimum resistance and inductance must be determined in order to suppress the vibration
effectively. In a shunt circuit, inductance increases current in alternating voltage source by making
resonant frequency tuned to the natural frequency of the system and a resistance dissipates the electric
energy.

In this paper, pole placement method[8] to determine optimum resistance and tuning inductance
is used. In the equation (17), at a given K3, as the damping parameter is increased the distinct
poles can coalesce only if a special value of the tuning parameter is chosen. This point of coalescence
is the optimized r and 6. Since the poles are double conjugate pairs, letting the two poles of coalescence
A1, Ag, the characteristic equation can be expressed below:

(A-4)*(A-4,)"=0 (18)

Comparing the equation (17) with the equation (18) term by term, optimum tuning parameter
and optimum damping parameter are as follows:
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S, =1+K} (19)

opt

K 2
= 2 31
Fopt 1 (1 + K_;2| )3 (20)

Using the definitions of the tuning parameter and the damping parameter, the optimal inductance
and the optimal resistance are

L,6A=——F—7—
" CH@f 5,) 1)
r
_ opt
Rapl - Cng (22)
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Fig. 1. Shunted piezoelectric electrical model Fig. 2. Single degree of freedom model of system

Rotor blade

Though the motion of piezoelectric system is known, the equations of the rotor blade must
be derived to know the characteristics of rotor blades with the piezoelectric device. Helicopter rotor
blade can be considered as one dimensional straight cantilever beam rotating at constant speed
since it is very long in a spanwise direction comparing to in a chordwise direction. And in deriving
a nonlinear system of equations, ordering scheme is applied to avoid overcomplicating the equation
of motion.

Governing equations of rotor blade

The equations of motion of rotor blade are developed by Hamilton's principle. Hamilton's principle
may be expressed as

m:f’[5U—5T-5W]dt=o (23)

Where U is the strain energy, T is the kinetic energy, and W is the virtual work of the external
forces. The first variation of the strain energy and the first kinetic energy are derived in Hodges
and Dowell’s report[12]. The virtual work W of the nonconservative forces may be expressed as

oW = [[(L,6u+L,6v+L,ow+M,5p)dx (24)

Where L, Ly, Lu, and M are the distributed loads that act in the span, lead-lag, and flap directions
and the aerodynamic pitching moment about the undeformed elastic axis, respectively. Two-dimensional
quasi-steady aerodynamic theory is used to evaluate aerodynamic forces. Non-circulatory-origin
aerodynamic components due to apparent mass effect are also considered.
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The equations of the blade based on the Hamilton's principle can be solved by the finite element
method. The blade is discretized into a number of beam elements. Each beam element consists of
fifteen degrees of freedom. These degrees of freedom are distributed over element nodes (2 boundary
nodes and 3 interior nodes). There are six degrees of freedom at each element boundary node. These

six degrees of freedom correspond to u, v, v/, w , w' , and #. There are two internal nodes

for axial deflection u , and one internal node for elastic twist # [Fig. 3]. Between elements there
is continuity of displacement and slope for flap and lag bending deflection, and continuity of displacement
for elastic twist and axial deflections. This element insures physically consistent linear variations
of bending moments and torsional moment, and quadratic variation of axial force within each element.
Those are summarized about k-th element as follows:

4 .3 _
u:i:H,"u, vziHivi W=ZH,W,. ¢=2Hf¢, (25)
il , il , i=1 , i=1

Where subscript i denotes i-th node of k-th element and H" H; are the third order polynomial functions
and H/"is the quadratic polynomial function.
Because the virtual displacement in the virtual energy expression is independent of time, the
virtual energy expression in equation (24) is written in the discretized form such that
N,
Z((SUk =0T, —-6W,)=0 (26)
k=1
Where Ne is total number of beam elements. Substituting equation (25) into the discretized Hamilton's
principle form equation (26), and generalized coordinate q; taken below

; i ) . , -
q; =l u,usu,viviv,v,wow w,w, ¢ 6,6l

Finally, the equations of blade are as follows:

M) g +C(q q+K(q =F (27)

4 U
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Fig. 3. Finite element model

Method solving the governing equation

The perturbation method which assumes a small disturbance from the equilibrium operating
conditions may be used to analyze blade stability from the finite element equation (27). Generalized
coordinate q can be expressed in terms of steady equilibrium quantity go and small unsteady perturbation
quantity q. Substituting the generalized coordinate into equation (27) and ignoring the terms with
time, the static equilibrium equation can be found such that

K(q,)q, =F (28)

This nonlinear equilibrium equation which includes the variable desired to solve in the stiffness
matrix is solved by the Newton-Raphson method. The static solution defines the equilibrium deflections.
The second equation is obtained by substituting the generalized coordinate into the modal equation
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(27), subtracting the equilibrium equation, and discarding all nonlinear products of perturbation
quantities. The coefficients of these linearized perturbation equations are functions of the equilibrium
solution. The perturbation equations define the unsteady blade motion near the equilibrium operating
condition. The perturbation equations are linear, homogeneous, constant-coefficient ordinary differential
equations of the form

M(q ,)5q + C(q,)5q + K(q,)éq = 0 (29)

From this equation, the aeroelastic instabilities can be determined. Since we are primarily concerned
with lower frequency instabilities, modal reduction transformation may be found by considering free
vibration of the blade about the equilibrium operating condition. With the modal matrix of eigenvectors
for the free vibration of the motion, transformation of the generalized coordinate q into the modal
coordinate x is q=x and the equation (29) is transformed and thus modal flutter equation can be
obtained such that

Mi+6ﬁ+ﬁx=0 (30)

Changing the equation (30) into state form of the first order differential equation, it is

{i}z{—ﬁo*'k‘ _m'~'a]{§}="{§} (3D

The characteristics of rotor blade can be determined by carrying out the eigenvalue analysis
of the modal matrix P.

Experiment of rotor blade
Blade

The experimental system, ERASA(Experimental Rotor Aeroelastic Stability Apparatus) shown
in figure 5 is composed of the 4-bladed small scale hingeless rotor of 2 meter diameter. The properties
of the blades are that the cross section type is NACA 0012, chord/radius is 0.0722, lock number
is 2.436, solidity ratio is 0.0615, and nominal rotating speed is 600 RPM. Individual hingeless rotor
consists of the blade which is made of composite material and the flexure which is between the
blade and the hub. The fundamental lag mode frequency of a soft-in—plane hingeless helicopter rotor
blade is generally about 0.7/rev. Thus the flexures are designed such that rotating lag frequency
at 600 RPM is about 7 Hz. To investigate improvement of stability of the rotor blades using the
piezoelectric with shunt circuit experimentally, the piezoceramics are bonded to surfaces of the flexures
as shown in figure 4. The flexures of which dimensions are 14 mm width, 120 mm length, and 4
mm thickness are made of the aluminum alloy 7075 and the piezoceramics plates with the dimensions
of 14 mm width, 50 mm length, and 0.5 mm thickness are manufactured by FUJI CERAMICS Co..
The material properties of the flexure and piezoceramics are presented in Table 1. Two pieces of
the piezoceramics are bonded to each surface of the flexure and thus 4 pieces of the piezoceramics

Table 1. The material properties of flexures and
piezoceramics

Flexure Young's modulus E=723 G ,

Density p=2906 kg/m
Young's modulus (short) |[E=59 G
Dielectric constant £'=3400 ¢°

Piezoceramics Coupling coefficient k31=0.36
Transverse d constant |d3=260e-12 m/V
Capacitance Ce® = 426 nF
Density p=7400 kg/m®

Fig. 4. Piezoceramics bounded to flexure
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are bonded to each flexure. Total 16 pieces of the piezoceramics are used in all rotor blades. One
side of the each piezoceramics is grounded to the flexure and the other side is connected to shunt
circuit. The ground of shunt circuit is connected to the flexure. Shunt circuit consists of R-L in
series. For experiment, very large value of inductance L is needed. It would not be practical to realize
by classical means. However, a tunable active inductor that is synthetic can be realized electronically
to use op-amp, capacitors, and resistors[13].

Data acquisition and procedure

In experiment on aeroelastic stability of hingeless rotor blade in hover, it is important to excite
the lag mode since this mode instabilities are critical. Excitation is applied with cyclic pitch system
and the exciting frequency is regressing lag mode. After sufficient amplitude of blade motion is achieved,
at which point the excitation is cut off and the motion is allowed to decay. Strain gages are used
to sense the blade lag motion. The strain gages attached on the piezoceramics form quarterbridges
to sense the lag mode which is inherent weakly damped. The signals from the strain gages are transmitted
to the 36-pole slip-ring, and then those signals are passed to strain conditioning amplifier where amplified
1000 times and filtered. And it is necessary to filter those signals for eliminating high frequency noise
from AC servo motors(main motor and the motor for changing collective pitch of the blade) and step
motor(for exciting cyclic pitch of the blade). The moving block method[14,15] is used to compute
frequency and damping from the strain gages signals. The only one critical mode is considered in
most test situations. In this method, the response amplitude corresponding to the desired frequency
is analyzed on block sizes of the digital data using a Fast Fouries Transform. Each response amplitudes
are calculated by moving the data block (generally half sizes of sample datum) by one sample at
a time. From the natural log plot of response amplitude with time, the damping is estimated using
a linear least square fit to the resultant curve. Using this damping estimating technique, in experiments,
1,024 signals are sampled at 100 Hz sampling rate by using 16 channel data acquisition system. Moving
block analysis is done with the Labview VIs (Virtual Instruments). The procedure for the experiment
in hover is shown in Figure 6. And at least ten transient records were obtained.

e ¢

VIEW V1

I

2

Rop:

Mo
Analyea
oL

Trans:ent Tim
HVIEW Vie Signal

Ui,

=
(= L=
s

Rotating Lag frequency and Regressing Log Mode :)omoh'f!

Fig. 5. Experimental Rotor Aeroelastic
Stability Apparatus (ERASA) Fig. 6. Experimental procedure

Results of experiment

Experiment to improve aeroelastic stability of the rotor blades in hover using the piezoelectric
with shunt circuit has been carried out. The frequencies of rotating rotor blades increase because
of stiffening effect due to centrifugal forces. Thus helicopter has many possibilities of the instabilities
from the resonance, such as ground resonance, air resonance, and resonance with rotating speed
and so on. Design of helicopter rotor blades must be avoided from such instabilities. Figure 7 shows
fanplot which plots the fundamental mode frequencies with rotating speed. The nonrotating lag frequency
is 3.750 Hz under short circuit condition and as rotating speed increases, the lag mode frequency
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is also increased by centrifugal force and thus the frequency reaches 7.227 Hz at the operating speed
600 RPM. About 300 RPM the fundamental lag mode coalesces into the rotating speed, at which
lag mode was excited by itself without cyclic excitation.

In passive control with shunted piezoelectric, it is important to find the generalized
electromechanical coupling coefficient Ksi. Experimentally, it can be found from the following equation

D 2
K;] = (w_z) -1 (32)
a’"

At 600 RPM, when shunt circuit is open and short, the lag mode frequency is 7.324 Hz and 7.227
Hz, respectively. Using the equation (32), Ka is 0.164. From the frequencies at open and short circuits
and the capacitance, optimum inductance Lop is 5400 H and optimum resistance Rop is 82 k. Figure
8 shows time domain signals during about 10 seconds of the blade with open shunted piezoceramics.
From the time history, we obtain the value of damping coefficient, 0.3 %, using moving block analysis.
Figure 9 is the time history of the blades with optimum shunted piezoceramics. At this case, damping
coefficient is about 0.65 %. There is more than 2 times damping enhancement in optimum shunting.

Figure 10 shows that the lag mode damping increases as the collective pitch increases. If the
pitch increases, then aerodynamic drag is increased and thus damping increases. And structural damping
due to passive shunted piezoelectric shifts upward the plot of lag mode damping with collective pitch.
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Conclusions

To augment weakly damped lag mode stability of soft-in—plane hingeless helicopter rotor blade,
piezoelectric shunt with a resistor and an inductor for passive damping has been studied. The equations
of the motion of the shunted piezoelectric are derived on the basis of Hamilton's principle. From this
equations, the shunted piezoelectric which actuates the structures in proportional to generating charge
leads the vibration to be suppressed. And the mechanical vibration makes the piezoelectric be alternating
voltage source in the circuit which consists of the piezoelectric and R-L series connection. The frequency
of the voltage source which is equal to the frequency of a vibration mode becomes close to electrical
resonance and then current in the circuit increases so that electrical energy is more dissipated.

Helicopter rotor blades experience many different flight conditions so that it must be stable
from all the conditions. The use of the shunted piezoelectric to increase the structural damping will
make the blades stable in most flight conditions simply tuning the shunt circuit to the conditions.
To investigate the efficiency, experiment to improve aeroelastic stability of the rotor blades in hover
using the piezoelectric with shunt circuit was carried out. The results of experiment are that there
is 217% increment of damping value. The passive damping using the shunted piezoelectric is sensitive
to the value of the inductance. Especially, for lower mode suppression of vibration, it must be careful
to tune the electrical resonance to the mode. Then higher damping could be achieved through better
optimized tuning of shunt circuit.
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