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Abstract

A variable structure controller with an optimized sliding surface is proposed for
slew maneuver of a rigid spacecraft. Rodrigues parameters are chosen to represent the
spacecraft attitude. The quadratic type of performance index is used to design the sling
surface. For optimization of the sliding surface, a Hamilton-Jacobi-Bellman equation is
formulated and it is solved through the numerical algorithm using Galerkin
approximation. The solution denotes a nonlinear sliding surface, on which the trajectory
of the system satisfies the optimality condition approximately. Simulation result
demonstrates that the proposed controller is effectively applied to the slew maneuver of
a rigid spacecraft.
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Introduction

The variable structure control theory has been applied successfully to the spacecraft slew
maneuver problem.[1-4] The variable structure controller is composed of two control phases; the
reaching phase to the sliding surface and the maintaining phase on the sliding surface. The design
process of the variable structure controller is straight forward if the sliding surface is chosen.
However, the variable structure control theory itself does not give guidelines to the design of the
sliding surface, which is an essential factor to the performance of the controller. Therefore, the
sliding surface in the variable structure control theory should be carefully selected such that it
guarantees the good performance as well as the system stability.

The first introduction of the optimized sliding surface into the slew maneuver problem was
carried out by Vadali.[1] In his study, the performance index was chosen as a quadratic function of
the attitude vector and the angular rate vector, and a linear sliding surface was proposed as a
special case under simplifying assumptions. Terui proposed the variable structure controller whose
sliding surface was represented as a linear combination of the error vector.[2] MaDffie and Shtessel
studied the decoupled sliding mode controller and observer using a linear sliding surface.[3] The
attitude tracking problem was solved by the variable structure controller.[4] For general linear
systems, it was proved that the LQR-based cost function adopted in the optimization of sliding
surfaces gave the linear control law.[5]

In this paper, the slew maneuver problem is dealt with through the optimization of the sliding
surface. Rodrigues parameters are used to represent the spacecraft attitude. Contrast to the existing
approaches, the sliding surface is modeled as a general nonlinear function. The introduction of a
general nonlinear function gives flexibility and generosity to the design of sliding surface. Hence,
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more effective sliding surface can be designed. To solve a Hamilton-Jacobi-Bellman equation for
optimization, the general nonlinear sliding surface is expanded by a series of polynomial functions,
and then, the Galerkin's approximation is applied.[6] To verify the effectiveness of the proposed
method, numerical simulations are performed using the data in Ref. [1].

Spacecraft Dynamics and Kinematics

Consider the rotational motion of a rigid spacecraft described by the following equations of
motion:
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where ®;, ®,, and ®j are the spacecraft angular velocities; 4, 4, and 4 are the principal
moments of inertia of the rigid spacecraft; 7;, 7,, and 7; are the external control torques,
respectively. The attitude kinematics are expressed in Rodrigues (or Gibbs) parameters as Eq. (4)
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Rodrigues parameters are chosen to represent the attitude of the spacecraft since they do not
have the constraint equation as in quaternions and the expression is much simpler compared to the
Euler parameters. The Rodrigues parameters can be expressed in quaternions as
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The above equations can be rewritten in vector form for simplicity:
w=F(w) +u (6)
9= G(g)w )

T i
whereu=[u;, u, u,]” and u;, =—.

L
Mathematical Formulation for Optimization

The idea of sliding mode control is to reduce the number of variables by assuming that the
trajectory moves along the sliding. The design process of a variable structure controller is done in
three steps.

1. Sliding surface that can possibly meet optimality conditions is selected.

2. The controllers of the maintaining phase on the sliding surface are designed.

3. It is ensured that the state trajectory from any initial condition is forced toward the sliding
surface.



Variable Structure Control with Optimized Sliding Surface for Spacecraft Slewing Maneuver 67

In most previous literatures on variable structure control, the sliding surfaces have been
chosen in arbitrary ways or as a simple linear function. If a systematic method can be found for
selecting the sliding surface, a better closed-loop performance of the controller would be obtained.

Since the rigid spacecraft model is a cascade system, the angular velocity ® can be thought
of as the pseudo-control input for the attitude kinematics Eq. (4). Consider the following sliding
surface defined as

S=w—w‘(g) (8)

If states are initially on the sliding surface, the trajectory of the spacecraft attitude motion
exactly follows the sliding surface; i.e.,

o=0"(g) 9

The optimal problem considered in this paper can be summarized as follows.
Find a feedback control law a)=a)*(g) which minimizes the performance index
J= f [Q(g) +wTRw)dt (10
0
subject to the constraint g}= G(g)w. If an optimal control exists, it is given by
sy 14 oV
w(g) == R 'G"g) - (9) (11)

where V is the solution of the Hamilton-Jacobi-Bellman (HJB) equation

T *
G’R“G’(%)=O (12)
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In general, the HJB equation is difficult to solve, especially for nonlinear systems. In the
following section, a numerical algorithm to solve the above HJB equation will be presented.

Numerical Algorithm for Solving HJB Equation

The numerical algorithm for solving the HJB equation is based on the Galerkin's spectral
method.[6] The proposed algorithm is composed of two steps. The first step is to use successive
approximation for changing the HJB equation into a sequence of linear partial differential equations.
The second step is to approximate the resulting equations via Galerkin's spectral method. The
following Generalized Hamilton-Jacobi-Bellman (GHJB) equation is introduced to develop the
proposed algorithm.

avT

GHJB(Viw) =
ag

Gu+ Q+w’Rw=0, V(0)=0 (13)

Note that if we plug the optimal solution V" and w into the GHJB equation, it gives the H]B
equation
av'

HIB(V') = GHIB(V';— L p1GT.

5 > )=0 (14)

The proposed numerical algorithm requires the following initialization and iterative process described
as follows:
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Initialization

Select an initial function w” (g) such that

@ »”(g) is continuous

P w(n)( g) =0

@ The system g= Glg)w” (g)is Lyapunov stable,
@ The cost function J(g,w'”) is finite for all g.

Iterative process

For i 2 0, find the performance index for w"’

V(i)(g;w(il) =/m[Q(g)+w(i]T}ﬁu(iJ]dT (15)
0

and update ® ““*P(g) function by solving the equation, GHJB( Vi +1) =0,

, QR 7L
(i+1) 1 T
w 5 R G —_Bg (16)
The condition V'(g) <= V™ (g) < V(g) holds for each i = 0 and the solution does not get

stuck in local minima. Therefore, if the unique optimal control ' (g) exists, w"'(g) converges to the
optimal control uniformly[6].

To apply this method numerically, the Galerkin approximation to V% is used.

N
Vilg) = Elcy)aij(g) an
=
where {¢;: Q—>R};.’°=1 spans the set {f€C': £(0) =0}. If we solve the GHJB equation, we obtain
i)
(i+1) __l -1 T aV}V
wy' V(g) = SRG (g)—ag (9) (18)

It can be proven that the approximate control is guaranteed to stabilize the system if the
algorithm is truncated as a finite, but large enough ¢ and N.

Sliding Mode Control using Optimized Sliding Surface

Comparison with existing methods

The concept of the sliding surface in the variable structure control theory is similar to that of
the tracking function in the back stepping theory[7]. This similarity comes from the facts that both
the sliding surface and the tracking function describe the desired relationship of state variables and
the system structures are same each other. However, the sliding surface is a more restrictive and
harder constraint than the tracking function. In Ref. [8], an application of the nonlinear tracking
function to the back-stepping controller was demonstrated. The tracking function in Ref. [8] was
designed after considering physical properties such as peak torque and settling time in time-domain.
Thus, the performance of the controller has been improved through the time-response observation
and the proper shaping of the tracking function. In contrast to this kind of the time-domain
approach, the technique of this paper defines formally the controller performance index and then
applies the optimization process.

Control law design

The optimal sliding surfaces is described by
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Si:wi_w:(g), 1=1,2,3 (19)
where the expression of the w;(g)is given in Eq. (21). The sliding surface vector § is defined
as follows:

S=ls, s, 8] (20

Time derivative of the above equation yields
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To satisfy S=0 on the sliding surface, the equivalent control is given by
Bwi
iy :[E} Glg)w— Flw) (22)

Once the state trajectory reaches the sliding surface S(g,w) =0, the equivalent control
guarantees that the trajectory remains in the sliding surface under ideal condition. Since w=w*(g) is
a stabilizing control, the state trajectory eventually goes to zero.

The resulting variable structure control law is expressed as the sum of the equivalent control
and the sign function of the sliding surface vector.

u=u,,+u, (23)
where u, is expressed as
k,sign(s,)
u, = [kysign(sy) |, k; <0 (24)
kysign(s,)

However, the use of the sign function generates the chattering phenomenon. The widely-used
method to reduce the chattering phenomenon is to replace the sign function by the saturation function
as followings:

ksat(s,)
u, = | kysat(s,) (25)
kysat(s,)

where the saturation function defined as

1 if s> €
sat(s) ={—1 if S<—€ (26)
sle if—e<s<e

Numerical Simulation

To illustrate the performance of the proposed control scheme, a numerical simulation is performed.
The control objective is to stabilize the spacecraft, and it is assumed that the maximum torque about
each axis is limited to 2.5V +m. The initial conditions are set as

9:(0)] [0.6881 w (0)]  [0.001rad/s
9,(0)|=10.6881|, |w,(0)|=0.005rad/s
g;(0)| 106881 wy(0)| [0.001rad/s

The nominal values of 7,4 and I, are 86, 85 and 113kg/m?, respectively. To show the robustness
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of the proposed control law with respect to variations in moments of inertia, 109, -5% and 15% variations
of 4,1, and L are considered. The disturbance torques are assumed to be

up= —0.005sin(t) N-m
uyp=0.005sin(t) VN-m
uyp= —0.005sin(t) N-m

For comparison, the following conventional sliding mode controller is adopted[1]
U :_Lkwi|%|/2—a1isi - az:'Sg"(Si)
S, =w,t+kg;, where i=1,2,3

where k=0.25 and the coefficients a,;,a;,, and @3 are chosen as 104, 104, and 21, respectively,
to compensate for the nonlinearities. The coefficients a,; are chosen as 0.005 based on the disturbance

torque magnitudes.
The threshold value € in (24) is selected as 0.001, and the gain k;’s in Eq. (24) are selected

as k; =—2. To design the optimal sliding surfaces, we choose a quadratic performance index as
1 [ee)
J=+ [T+ +d+ i+ i) @
0

To apply the numerical algorithm for solving the HJB equations, even symmetric polynomials
up to 4th degree are taken as basis functions.

{oy= {4} 95 95 9192 9295 9391 91 93 9> 193 9591> G393 931> 959 (28)
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The initial sliding surface is assumed as

— 9
w(o) =|-g,
— 93

After a few iterations, we obtain the following optimal solution.

[ 0.0514g] +(~0.1191+0.0781g2 +0.0781g2)g; +(0.0514g} —0.1315g7 —0.1705 |
—0.1315g2 +0.0514g; +0.0781g2g7)g, —0.0124g,g7 +0.0124g2g,

0.0514g'g, ~0.0124g’g, +(~-0.1315g, +0.0781g3 +0.0781g2g,) g’ +0.0124g,2;
-0.1705g, —0.1191g; —0.1315g2g, +0.0514g] +0.0514g; g, +0.0781g>g;

0.0514g/'g, +0.0124g/g, +(-0.1315g, +0.0781g2g, +0.0781g3)g; —0.0124g,g3 (29)

+0.0514g5 —0.1315g%g, —0.1705g, —0.1191g> +0.0514g3 g, +0.0781g3g? |

o'(g)=

Figure 1 shows the trajectory of the value of Rodrigues parameters. The required final
condition of the slew maneuver is achieved asymptotically. Figure 2 shows the time history of
angular velocity vector. The abrupt changes at about ten seconds are caused by the switching form
the reaching phase to the maintaining phase. Figures 3 and 4 shows g,-w, plots of the conventional
sliding mode controller and proposed sliding mode control law, respectively, Figures 3 and 4 clearly
show the switching effect of each control law. Figures 5 and 6 show the control input histories of
each control law. There are jumps at the switching time, and then the control torques converge to
zero. Figure 5, the result of the conventional sliding mode controller[1], shows that the control input
is saturate. However, as shown in Fig. 6, the proposed sliding mode controller regulates the states
without exceeding the control saturation limit. By optimizing the sliding surface, the less control
torques are required, and the smaller settling time is achieved.
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Conclusion

A slew maneuver controller based on the variable structure controller is proposed. To obtain
an effective sliding surface, the optimal problem and the Hamilton-Jacobi-Bellman equation are
investigated. The Hamilton-Jacobi-Bellman equation is solved through the numerical method using
Galerkin's spectral approximation. The polynomial functions are selected as basis functions and it is
shown the numerical solution of the HJB equation converges to the true solution under large indices.
The concept of the proposed method is compared with that of existing methods. Numerical
simulation results demonstrate that the proposed variable structure controller effectively achieve the
slew maneuver of a rigid spacecraft.
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