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Abstract

In this paper, a redundancy management system for aircraft is studied, and fault
detection and isolation algorithms of inertial sensor system are proposed. Contrary to
the conventional aircraft systems, UAV system cannot allow triple or quadruple hardware
redundancy due to the limitations on space and weight. In the UAV system with dual
sensors, it is very difficult to identify the faulty sensor. Also, conventional fault detection
and isolation (FDI) method cannot isolate multiple faults in a triple redundancy system.
In this paper, two FDI techniques are proposed. First, hardware based FDI technique
is proposed, which combines a parity equation approach with a wavelet based technique.
Second, analytic FDI technique based on the Kalman filter is proposed, which is a
model-based FDI method utilizing the threshold value and the confirmation time. To
provide the reference value for detecting the fault, residuals are calculated using the extended
Kalman filter. To verify the effectiveness of the proposed FDI methods, numerical
simulations are performed.
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Introduction

Many FDI (Fault Detection and Isolation) techniques, the key process of redundancy management
system, have been studied since 1960. Generally, FDI techniques are classified into two categories:
hardware redundancy management and analytic redundancy management. In the hardware redundancy
management system, multiple sensors are used for cross monitoring, and therefore, it is usually
complicated and very expensive. Analytic redundancy management system uses the mathematical
model of the system. Recently, analytic redundancy methods have been developed using the observer
approach, parity space approach, and robust parameter estimation approach. Note that the analytic
redundancy based FDI techniques cannot sometimes diagnose the sensor fault properly due to modeling
uncertainties[1-3].

FDI techniques can also be divided into two classes according to the system levels: system
level FDI and local sub-system level FDI. The system level FDI, usually depending on the outputs
of different sensors, has several drawbacks. This technique may not guarantee safety and robustness
because different sensors have their own distinct characteristics. Recently, local sub-system level
FDI techniques, for example signal based ILM (In-Line Monitoring) techniques, have been studied
for FDI. These techniques use the direct sensor outputs without any preprocessing or external
support[4-9].
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This paper proposes two hybrid FDI techniques: 1.) the first method is a model-free FDI technique
that combines Parity Equation Approach (PEA) and the ILM technique utilizing Discrete Wavelet
Transform (DWT). The PEA uses geometrical relationship of skewed sensors, and the DWT technique
is based on sensor signal processing. Because the proposed method does not use aircraft mathematical
model, it can be applied to a UAV system or low cost aircraft, which have dual sensor redundancy.
2.) the second method hybridizes Cross Channel Monitoring (CCM) and observer based analytic
redundancy technique. Because the analytic redundancy is usually dependent on the accuracy of model,
a nonlinear aircraft model is used to construct analytic redundancy. The proposed method can detect
and isolate multiple sensor faults by utilizing the analytic model. Numerical simulations using high
performance aircraft system are performed to show the performance of the proposed FDI techniques.

Model-Free Hybrid Method for Skewed Redundant Sensors

Parity Equation Approach

Parity equations used in FDI techniques should be independent of sensor inputs. In this paper,
geometrical arrangements are used to construct the parity equations. The measurement equation of
inertial sensors including fault signal and measurement noise can be represented as follows.

m(t) = Hx(t)+e+ f (1)

where m(t), x(t), e f and H denote the measurement of ” sensors, signal with respect to the

body fixed axis, noise signal, fault signal vector, and direction cosine matrix from the body fixed
axis to the sensor axis, respectively.
If three or more sensors are not installed on the same plane, that is, they are mutually independent,

then

vector of four columns’ partial matrix of H constitutes the coefficients of the parity equations. For
example, if four redundant sensors are set up with tilted angles with respect to a body axis as shown
in Fig. 1, only one parity equation can be obtained. One parity equation can only detect the fault,
but cannot isolate the faulty sensor. If a fault occurs at a certain sensor, the parity equations related
to the faulty sensor will have a nonzero value.

C, parity equations can be composed by a linear combination of four sensors. The null space

n

Sensor 3 T Sensor 4

Sensor 1

Fig. 1. Geometric configuration of tilted redundant sensors

Basic Concept of Discrete Wavelet Transform

Wavelet transform can be used for analyzing the non-stationary signal, and therefore, it can
be used for fault detection.[10-12] Wavelet transform provides similar time-frequency localization
with important differences. The Continuous Wavelet Transform (CWT) formula is represented as
follows.

(T f)a,b) = [ £ (@)t )

where the continuous mother wavelet is denoted as



Hybrid Fault Detection and Isolation Techniques for Aircraft Inertial Measurement Sensors 75

T t-b
v @) =|a"" w(—) (3)

a
In Eq. (3), @ and b vary continuously on the set of real number, R, under the constraint a#0.
w"’(t) has a time-width adapted to the frequency. As @ in Eq. (3) changes, different frequency

contents can be considered. As b in Eq. (3) changes, the time localization center is moved. As a

result, wavelet transform has better performance to ‘zoom in’ on the short lived high frequency or
to ‘zoom out’ to detect slow oscillations.[1, 13]

Similarly, the mother wavelet can be dilated and translated discretely by selecting a =a0”'

and b =nbya," where a; and b, are constants with ay >1 and &, >0, m,neZ_ The discrete wavelet

transform (DWT) is defined as follows.[13-18]

T f)mym) = [ £ @)t @
where the discretized mother wavelet is
. w2 t-nba
y () =a, " y(——— ®)
aO

The simple choice of a,=2 and &, =1 provides a dyadic-orthonormal wavelet transform.
Orthonormal properties enable the multi-resolution signal decomposition technique to decompose a
signal into scales with different time and frequency resolution.[14-17]

Multi-resolution Signal Decomposition using DWT

Let us discuss the ILM technique based on discrete wavelet transform. Given a signal § of
length N, the DWT requires log, N computation steps, whereas the FFT requires Nlog, N steps.

It implies that the DWT is much faster and has smaller computation loads than the FFT. Therefore,
the DWT is suitable for real-time fault detection based on the ILM.

s €l
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Fig. 2. Multiresolution Signal Decomposition Step

Starting from a signal §, the first step produces two sets of coefficients: approximation
coefficients ¢,(n), and detail coefficients d,(#). These vectors are obtained by convolving § with

the low—pass filter /(1) for ‘the approximations’, and with the high pass filter g(n) for ‘the details’.

The general higher scale decompositions are performed in the same way as described above.[17-19]
The sequence of the MSD (Multi-resolution Signal Decomposition) technique is represented by Fig.
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2. By using this MSD technique, the sensor signal is decomposed into two other signals; one is
the approximated or smoothed version of the sensor signal, and the other is the detailed version
of the sensor signal that contains the noise and fault components containing sharp edges, transitions,
and jumps at the bias, drift, spike faults, and so on. In this paper, the key idea of the MSD theory
is briefly presented. A precise treatment of the MSD theory can be found in Ref. 18. In brief, the
MSD technique localizes and discriminates a disturbance signal from the original signal. Thus, the
MSD technique using the DWT can be applied to the fault detection of the sensor.

The choice of wavelets plays an important role in detecting various types of faults. If our
interest lies in detecting short and fast transient faults, Daubechies’ 4 wavelet(‘'Db4’) is one of the
possible consideration. On the other hand, for slow transient faults such as the drift, Db8 or Dbl10
is comparably suitable.[17] Here Db4 wavelet is used, and to detect the slow transient faults, the
higher scale decomposition signal of MSD is used for compensation. As the wavelet goes to the
higher scales, the analyzing wavelets become less localized due to the dilation nature of the wavelet.

If the sensor noise #(#) is a Gaussian white noise with variance 4°, then the discrete wavelet

transform of #(t), T”"n(t), also has the Gaussian process with a variance E[| T”'”n(t)"z]. E[X]

denotes the expected value of a random variable X, and ||||2 represents a 2-norm in L’ (R). If the

sensor has relatively accurate noise characteristics, the threshold of the fault alarm can be set to
be three times as much as the standard deviation as follows.

Th,, =3 E[|T™ n@)| ] 6)

Model-free Hybrid Fault Detection and Isolation

It has been said that FDI technique based on hardware redundancy is a traditional, simple,
and reliable. It has also been applied to real aircraft safety systems, though high-level redundancies
make the system complicated and expensive. Especially, contrary to the conventional aircraft systems,
FDI using the triple or quadruple hardware redundancy cannot be suitable for UAV due to many
constraints such as space and cost. Using PEA technique based on hardware redundancy, the fault
can be clearly detected even for the limited multiple sensor system; however, the fault isolation is
not easy due to the lack of parity equations. On the other hand, the ILM technique using the DWT
has the capability of detecting each sensor fault due to the local sharp variation property of the
wavelet transform. Nevertheless, wavelet transform based FDI has some drawbacks. Aircraft is a
high-level dynamic system and may perform various abrupt maneuvers. If an aircraft is maneuvering
abruptly, the wavelet transformed signals of sensor outputs vary sharply. Such variations may generate
false alarms. In addition, DWT is a fast algorithm, but deals with the finite length of signals. Thus,
it has difficulties in processing the real-time sensor signals of the aircraft.

Since hardware redundancy based FDI techniques and wavelet transform based ILM methods
have their own weak points, a more efficient FDI algorithm can be made by combining these two
methods. When the number of redundant sensors is limited, the lack of parity equations can be
compensated by DWT based ILM technique. Similarly, the false alarm of DWT due to aircraft maneuvers
can be prevented by PEA. Note that other parity methods such as Parity Space Approach (PSA),
Least Square Residual Approach (LSRA), and Generalized Likelihood Ratio Test (GLT) can be used
as a hardware redundancy based FDI technique. Also, other signal processing techniques such as
Windowed Fourier Transform, Autoregressive Time Series Model, and Power Spectral Analysis can
be used instead of DWT technique.[1-3]

In this study, the hybrid FDI technique is proposed for the limited redundant sensor system
of an aircraft. The limited redundant sensor system mounted with tilted angles is apt for low cost,
small size, or disposable UAV. It is mentioned why the concept of hybridizing PEA and DWT can
be effective for FDI. However, two things should be carefully considered in the implementation
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[ [Supervisor Task 1] |
Fault Alarm (Fault Detection) l
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Fig. 3. The implementation concept of Model-free Hybrid FDI scheme

of the model-free hybrid FDI scheme. The first consideration is the priority of the fault detection
and alarm. DWT has false alarm problems with abrupt maneuvers, while PEA is independent of
signal conditions. Therefore, PEA should have the priority to judge the fault situation. The second
consideration is the computation load of DWT. PEA has a low computation load, but DWT intrinsically
has a higher computation load due to the ‘convolution sequences with a finite length of sensor data
in store. In addition, DWT computation is worthless in the normal situations. Consequently, PEA
has to be computed real-time and DWT should be performed by the on-demand computation.

Figure 3 shows the implementation concept of the proposed model-free hybrid FDI scheme.
Real-time subprocessor computes the value of the parity equation with sensor data. Supervisor processor
keeps an eye on the threshold excess of parity equation value. Meanwhile, the stack buffer of each
on-demand subprocessor accumulates a specific length of time series of the sensor data in flight.
Once the fault situations occur, the parity equation value exceeds the threshold. In the same time,
the supervisor processor declares the emergent sensor fault situation (Fault Detection) and sends
the fault alarm to each on-demand subprocessor. Within a specific short period, each on-demand
subprocessor operates DWT calculation with the stored sensor signal and the supervisor processor
judges which sensor is faulty (Fault Isolation). A critical design parameter is the stack size of the
on-demand subprocessor, i.e. the sensor data length of DWT. As a stack size is shorter, DWT is
computed faster. The computation time is also dependent on the performance of the embedded processor.
Therefore, the sensor data length of DWT should be decided considering the hardware computation
capacity and the safety margin of the aircraft control scheme.

Model-based Hybrid Method for Parallel Redundant Sensors

Hardware Redundancy Management

Hardware redundancy methodologies require multiple sensors and therefore, are inefficient with
respect to space and cost. Using a mathematical model, the number of redundant components can
be reduced. CCM is widely used in hardware redundancy management, and threshold and confirmation
times are used in the fault detection process. In CCM, the voting method is used to determine the
reference value by comparing several signals. A triple system chooses the mean value of the sensor
outputs in case all sensors are healthy. Once one sensor fails, the mean value of the remaining two
sensors becomes the reference value[20].

The threshold value is determined by considering a range of standard signals[21-22]. Sensor
output signal usually consists of a true value and error. Error consists of noise and fault. Due to
the noise, sensor signal is dispersed from the true value. There are many ways to obtain the threshold
value. In this paper, we assume the sensor signal has a normal distribution expressed as

l _ 2
1 == exp[— (xz;f) } )
o
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where * is discrete data, # is the mean of *, and ¢ is the standard deviation of X.
A Fault signal is distinguished by the normal distribution of the healthy signal. Generally,

a fault tolerant system requires 99 percent reliability, and its corresponding reliability range is |x| < 2.5750 .
Therefore, the threshold value of the system can be taken as C, =2.5750. Generally, the threshold

value of a gyroscope is 10 deg/s, and that of an accelerometer is 0.3 g. Confirmation time is the
time to alarm the fault whose signal data exceeds the pre-selected threshold value. Confirmation
time prevents the misjudgment of a transient noise signal in a short period being considered as a
fault. Repetitive experiments are one way to decide the confirmation time. Assuming that the
representative standard deviation is 1.5 , the confirmation time of a gyroscope is 0.35 second, and
that of an accelerometer is 0.2 second. Figure 4 shows the schematic diagram of the hardware redundancy
management system.

Signal Value Fault  Fault Alarm Disturbance MF';':jIpB'e
} } l l
+— Fauited signal
t . x [w
E | Threshold L4 Sensors
(|
Y e Signal :- '
|
§ H I
:____: Time : Mu!m;l:d Fault
Confirmation Time -.__'L'93"'9."‘L ________
Fig. 4. Fault Detection in Hardware Fig. 5. Sensor Multiple Fault Detection
Redundancy Management Block Diagram

Multiple Fault Detection Method

An airliner and high-performance aircraft should have high reliability against every possible
fault. However, when multiple faults occur in a triple redundancy system, the conventional FDI methods
cannot detect these multiple faults. In this paper, we propose a multiple fault detection method that
can detect the multiple sensor faults by using the observer-based analytic method[23-24]. Figure
5 shows the block diagram of a multiple fault detection method.

The process of multiple fault detection method is as follows. Assume that the multiple faults

of two sensors occur at time ¢,, as shown in Fig. 6. Sensor fault is detected at ¢, + kKF by the conventional

CCM algorithm. Note that T is the sampling time, and kT is the confirmation time. After a fault
is detected, the multiple fault detection method is activated to find which sensors are faulty. State
estimation values after the fault cannot be used because they are contaminated by the faulty sensor
signal. The fault detection method proposed in this paper only uses the estimated state values before

the fault as well as the input signal after the fault to estimate the state values at the time of ¢, +(k+1)T .

These values can be used as reference values for the fault diagnosis. In this paper, a nonlinear aircraft
model is used.

Consider a discrete nonlinear state-space equation of sampling time T .
x(t+T) = g(x(t),u(®)) +w() + £ () 8
y(+T)=h(x(@+T))+v(t)

where xeR", ueR’, yeR" are state, input, and output, respectively. And w(*), f(t), v(t) are

disturbance noise, fault, and measurement noise, respectively.
An observer for fault detection can be represented as follows.
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X(t+T) = g(x(1), u(®) 9)
Pt +T) = h(G(t +T))

Assuming that a fault occurs at time ?,. The state estimation at time # +27T can be described as

x(t, +2T) = g(x(t, +T),u(t, +T)) = glgl(x(,), u(t))],u(t, +T)] 10
(@t +2T) = h(x(t, +2T))
Similarly, a state estimation value at f, +(k+1)T can be represented as follows.
x(t, +(k+DT) = glgl--[g(x(,), u(t), u(t, + T)),---u(t, + (k= DT}, u(t, + £T)] an
y(t, + (k+1DT) = h(x(t, + (k+1)T))
Let Y, Yiurrs Yua be the signals of faulty sensors 1, 2, and non-faulty sensor. Residuals at time
t, +(k+DT are defined as
r=y@ +k+DT) -y . +(k+1)T)
r =3t +&+DT) -y, +(k+DT) (12)
=@t +(k+DT) =¥, (¢ + (k+1DT)

The residuals are used to judge which sensors are failed. Residuals of faulty sensors will exceed
the threshold value, and the residual of healthy sensor will remain within the threshold.

Time ty 44T e e e t+KT ty+H(k+1)T

¢¢$ :

: c?b PDOD o’z) op
| ‘ | }Residual

I
Est Calcuiatlon
Not Used
Fig. 6. Principle of Sensor Multiple Fault Detection Method

Numerical Simulations

Model-free method for skewed redundant sensors

Figure 1 shows the geometric configuration of the four skewed sensors considered in this study.
Three sensors are coincident with three orthogonal axes and the other one is skewed. This configuration
has the minimum number of sensors for fault detection. Since three or more sensors are not on
the same plane, one parity equation can be obtained.

In case 1, it is assumed that the angular velocity of aircraft is perturbed and oscillating, and
a sudden bias fault occurs in sensor 3 at 53 seconds. Figure 7 shows that the parity equation detects
the fault at 53 seconds but cannot isolate the faulty sensor. Figure 8 shows that DWT of each sensor
can isolate the faulty sensors; sensor 3. The first level detail decomposition (D1) of sensor 3 shows
the best detection of the fast change or discontinuity at 53 seconds.
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In case 2, it is assumed that the aircraft maneuvers abruptly and a fault does not occur in
any sensor. Figure 9 shows that the parity equation does not show any fault. Figure 10 shows that
DWT of each sensor seems to indicate faults; sensor 1 and 4, even though all sensors are healthy.
This results propose that the parity equation should have the priority over DWT to detect the fault

and generate the fault alarm.
In conclusion, Cases 1-2 verified the effectiveness of the model-free hybrid FDI technique to

show that PEA compensates the weakness of DWT technique.

Model-based method for parallel redundant sensors

An F-16 nonlinear aircraft model with speed of 300 ft/sec at the altitude of 30,000 ft is used,
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and the measurement noise is considered.[25] The magnitude of the measurement noise is about
the same level as that of the real sensor noise. The standard deviation is set up to 0.01. The sensor
noise can affect the FDI scheme seriously. Because the fault signal and the sensor noise have similar
property, it is not easy to distinguish those signals.[26] Therefore, the sensor noise should be removed
before the fault detection process. In this paper, the extended Kalman filter is used.[27-28]

Table 1. Fault Scenarios

Scenario Fault Component Remark
1 12 deg/s bias (Roll, pitch, yaw gyro, IMU Il )
12 deg/s bias (Roll, pitch, yaw gyro, IMU 1)

> 30 deg/s bias (Roll rate gyro, IMU II) 5 deg aileron input before fault
- 30 degls bias (Yaw rate gyro, IMU [I) - 10 deg elevator input after fault
3 30 deg/s bias (pitch rate gyro, IMU II) Side wind effect considered

- 30 deg/s bias (pitch rate gyro, IMU I1I)

Several scenarios were considered to verify the performance of the multiple fault detection
algorithm. Two gyroscopes in three IMU (Inertial Measurement Unit) system fail at 10 seconds.
The threshold value was taken as 10 deg/s, and the confirmation time was 0.34 second. Considered
scenarios are summarized in Table 1. The results of numerical simulation are shown in Figs. 11-13.

Figure 11 shows the residuals of Scenario 1. The residual of the faulty sensor exceeds the
threshold after the confirmation time, but the residual of healthy sensor stays within the threshold.
As shown in Fig. 12 (Scenario 2), the effects of the input can be negligible. Figure 13 shows the

Fig. 11. Residual of the First Sensor Fig. 12. Residual of the Second Sensor
Multiple Fault Scenario Multiple Fault Scenario

Fig. 13. Residual of the Third Sensor Multiple Fault Scenario
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result of Scenario 3. Even though the residual of the healthy sensor is larger than those of other
scenarios due to external disturbance, fault detection can be correctly performed. Simulation results
show that the proposed multiple fault detection method can detect and isolate the multiple faults
correctly in the environment of aircraft maneuver and external disturbance.

Conclusion

In this paper, two hybrid fault detection and isolation techniques are proposed. First, model-free
hybrid FDI scheme is proposed to compensate the drawbacks of the hardware redundancy based
FDI method and the signal processing based ILM method. Simulation results showed that multiple
faults of the limited redundancy system can be detected and isolated. Model-free hybrid FDI can
be applied to the case where an accurate mathematical model of aircraft is unavailable. Second, the
model-based hybrid fault detection method is proposed to enhance the conventional CCM methods
that cannot detect the multiple faults. Residuals were calculated using the observer of the nonlinear
aircraft mathematical model. Model-based hybrid FDI scheme combined the analytic redundancy
management technique to the hardware redundancy management technique. Nonlinear aircraft model
and the extended Kalman filter were used to verify the performance of proposed FDI method.
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