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Abstract

There have been developed many structural and fluid rotorcraft analysis models
in rotorcraft community, and also lots of investigations have been conducted to
combine these two models. These investigations turn out to be good at predicting the
airloads precisely, but they have not taken the blade nonlinear deflection into account.
For this reason, the present paper adopts a sophisticated structural model which can
describe three-dimensional nonlinear deflection of the blade. And it is combined with
two types of aerodynamic model. First one is generalized Greenberg type of
finite-time aerodynamic model, which is originally established for a fixed wing, but
later modified to be suitable for coupled flap-lag-torsional aeroelastic analysis of the
rotor blade. Second aerodynamic model is based on the unsteady source-doublet panel
method coupled with a free wake model. The advantages of the present method are
capabilities to consider thickness of the blade and more precise wake effects.
Transient responses of the airloads and structural deflections in time domain are
mainly analyzed in this paper.

Key Word : Rotor blade analysis, Geometrically nonlinear beam, Generalized
Greenberg’s theory, Unsteady source-doublet method, Fluid-structure
interaction

Introduction

In a helicopter system that obtains lift, thrust, and control force by rotating blades, its blade
structure exhibits complicated environment, which requires precise prediction of inertial,
aerodynamic, elastic forces, etc. acting on it. The motion of blades results as a consequence of the
interaction of these forces, and therefore an accurate estimation of such interaction is strongly
required to predict the behavior of the rotor blade. Different from that of fixed-wing airplanes,
rotary-wing aeroelasticity is affected by several unique and specific phenomena such as the
followings. The advancing side experiences very fast airflow causing compressibility, while the
retreating side experiences dynamic stall and reverse flow. Blade vortex interaction (BVI) is
generated by interaction between the rotor blades and the strong tip vortices created by the
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preceding blades and becomes an important factor. All of these phenomena result in excessive
noise and vibration upon the helicopter fuselage. Vibration induces fatigue problem in the
helicopter components. Noise imposes severe limits upon operation in urban areas and restrictions
on the pilot and passengers. To correctly understand and alleviate these problems, it has been
requested an analytical capability for the interaction between structure and aerodynamics since the
advent of helicopters.

There have been developed quite a few computational fluid dynamics (CFD) and
computational structural dynamics (CSD) analyses in the rotorcraft community. Examples of these
are CAMRAD II, UMARC, 2GCHAS, DYMORE and OVERFLOW-D, etc. Also a number of
investigations to combine these two types of analyses have been conducted, such as Potsdam et
al. [1] and Datta et al. [2]. These investigations turned out to be quite useful for improving
accuracy of prediction, however they required considerable computational resources as well as
computation time and model complicacy. They were not capable of taking the nonlinear deflection
of blades into the analysis, either. With all these considerations, the present paper adopts
finite-time and source-double aerodynamic model instead of a complicated CFD analysis and a
sophisticated blade structural dynamics model.

To describe the motion of the rotor blade precisely which exhibits large deflection and
moderate rotation, geometrical nonlinearity should be considered. In this paper, geometrical
exactness i1s completely formulated to include the coupling between bending and torsion
deformation. An exact intrinsic equation is utilized in the present approach, and it also requires
cross-sectional properties. Geometrically nonlinear formulation of three-dimensional elasticity for a
moving beam is separated into a nonlinear one-dimensional problem and a linear two—-dimensional
problem. The two-dimensional cross-sectional analysis adopts a variational asymptotic approach,
taking into account of curvature, twist and warping effects, and 1is consistent with
three-dimensional elasticity theory to obtain the cross-section stiffness constants for an
anisotropic beam. In this paper, an existing analysis result on a certain experimental blade cross
section based on a variational asymptotical approach [3] is used. In the one-dimensional analysis,
mixed variational formulation based on exact intrinsic equations for dynamics of moving beams is
used to compute the global deformation or response of the blade.

Two different aerodynamic models are adopted to deal with various rotor blade
configurations. One is a generalized version of Greenberg theory [4] for case I, and the other is a
source—doublet method [5] which can simulate more precise unsteady aerodynamics for case IL

Theoritical Modeling

Global frame and frame transformation

To apply the mixed variational formulation for dynamics of moving beams, it is necessary
to introduce a global frame which is shown in Figure 1. The global frame named a, with its axes
labeled ai, az and a3 is rotating with the rotor at the predefined angular velocity. The undeformed

Fig. 1. Framesets used in the formulation for dynamics of moving beams



112 KyungHwan Kim, SangjJoon Shin, Jaewon Lee, Kwanjung Yee and Sejong Oh

reference frame of blades is named b, with its axes labeled by b;, bz and bs. Its deformed
reference frame is named B, with its axes expressed by Bj, Bz and Bs.

Using the transformation matrices, transformation among the frames is enabled without
destroying its compactness. For example, an arbitrary vector Z can be expressed by its
components in frames of @, b or B, with their relations being

Z=0c%"7 , Z,=0%Z (1)

where C™ is the transformation matrix from a to b, and C® is that from a to B.
Structural model

For the blade structure modeling, mixed form of the variational equation is used [6]. The
formulation is derived using Hamilton's principle and it can be written as

t, pl N J—
f f [6(K—U)+6W |dx,dt =64 (2)
[T ]

where t, and ¢, are arbitrary fixed times, ! is the length of the beam, K and U are the kinetic

and potential energy densities per unit length, respectively. 0A is the virtual action at the ends of

the beam and at the ends of the time interval, and 6 W is the virtual work of applied loads per
unit length.

The variation of Kinetic energy and potential terms is with respect to the column vectors of
Vg,825,v and K, which are linear and angular velocity, force and momentum strain, respectively.

The internal force and moment vectors Fz and Mp and linear and angular momentum vectors Py

and Hp are defined as
T T
FB:(a—U) : M,;(ﬂ)

Ie oK
a;{ r oK \T~ @)
Pp= aVy ’HB_(aQB)

The generalized strain and force measure, and velocity and momentum measures are related
through the constitutive laws in the following form:

{2}:[51{2}’ {ffi}z [moﬂg{r[zfi} @)

where [S] is 6X6 stiffness matrix, m is the mass density per unit length, and 7 is the matrix of
moment of inertia.
With the above equations, equation (2) can be written as

t, pl . . . R t, Pl _
/ / [6V Pyt 82, Hy— 6y TFy— 6y TFy— 6s" "M + f / sWdt= 64 5)
(] Yo

where the superscript " means that the specific terms must satisfy the geometrically exact
equations in a frame. The geometrically exact equations are

Al
* a ab ’ * ba, 2 ’
vy :CB(CICI‘JFU”)_’CI " K .—_'C’ 707_0 0
L
~ (6)
Al
V= CP(v, +utou,) 2= eze 6+ CP,
1+
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where u, is the displacement vector measured in the a frame, 6 is the rotation vector expressed
in terms of Rodrigues parameters. The Rodrigues parameters are defined in terms of a rotation of
magnitude about a unit vector, e =e;b;, , as 8, =2etan(a/2). A is the 3X3 identity matrix, v,
and u, are the initial velocity and initial angular velocity of a generic point on the a frame, and
e, is the vector [1 00]7,

The rotation matrix, C= C®C?" is expressed in terms of the rotation parameter, 8, as
follows

1- 22 |A—6+

( 9T9) 007
2

C:

T,
1+ 22

where 6 operator converts 6 to its dual matrix.

The Lagrange multipliers are used to enforce the satisfaction of the kinematical equations.
The a frame version of the complete variational formulation, based on an exact intrinsic equation
for dynamics of moving beams is described in detail in Shang [7].

Generalized Greenberg’s aerodynamic model

Aerodynamic analysis for case I is based on the derivation of Dinyavari. This is a
generalized version of Greenberg’s theory [8] of the incompressible, finite-time, arbitrary motion
airfoil theories, suitable for coupled flap-lag-torsional aeroelastic analysis of the rotary blade.
The generalized aerodynamic loads consist of two parts: 1) circulatory loads that involve the
augmented states as well as the blade dynamics, and 2) noncirculatory loads that involve only the
blade dynamics.

|]

ZM:{ ~r bgcm l U (6+¢")- Uy —bR(z ,—1/2)(05 +6")+ U " (65+9)

Le = [pAa (bR )(s21)? ] 1/2+H(¢]U” @

MN(‘

NC ” _ _ - _
i OR)? ] lU Op+¢)—(z—1/2) U, +(z 1/2)TU

+(z 1/2 (eo+¢) bR(3/8+7%—7 )05 +¢))

z L= 41/2+HW) U, Q )

o <bR> ()? }

where z, is the location of typical section in spanwise direction of the deformed coordinate, e is
the hinge offset, u is the advance ratio, ¥ is an azimuth angle, ¢ is lag angle, 8 is flapping angle,
B, is precone angle, 8 is total geometric pitch angle from feathering angle, ¢ is torsional elastic
deformation of the blade, bR is half chord of the blade, =4 is the aerodynamic center offsets from
the elastic center, () means non-dimensionalized value, and () is o/ 8 . U” is the velocity at
the blade elastic center, and can be expressed as

=[(z,+e)+pRsiny +z,( + pRsiny(]
U, =[BA+z 8" +(uReosp+ o) (8, + )] 9)
Q =0/ (0s+¢)~ U +bR(1-7 )(0+4")]

H(y) is the lift deficiency function which is a function of the augmented states. The
augmented states are used to convey information regarding the unsteady wake. 3/4-span location
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is selected as the typical section for the augmented states because which represents good average
for the phase and amplitude of the lift deficiency function for the entire blade. The expression for
the lift deficiency function in terms of the augmented states is

H(/_Ymv}m»a:rs:w)

U )
bR

_@T.S'z Q evalulated at =1 ¢

0.006825

+10.10805

X g+ Xom (10)

Qs

where,

Up =7 pet e
H 78 (11)

X, 0 1 X, (t) 0
{};(t)}_ [—0.01365(_Uﬂ,/b}—2)2 —0.3455(_0'71,/@)}{}2(t)}+{?2T5}
Now consider a hovering flight assuming a constant inflow. Then the advance ratio
becomes w =0, cyclic pitch angle change also 9}=0, and thus the inflow ratio change will be
A" =0. When there exists a linear pretwist in the blade, the total geometrical pitch angle becomes
a function of z,, 04z ) =6, +xz,.
It is finally required to transform the airloads equations in the undeformed coordinate to the
global a coordinate system, f,, m,. Simple transformation matrix can be used for this as follows.

1 —< [3]
B 1 ¢ (12)
B—C —¢f—9¢ 1

Unsteady panel method

The aerodynamic model for case II is based on the unsteady source-doublet panel method
coupled with a free wake model. Its original model is developed to estimate the time-dependent
performance of the rotors, propellers, and general aerodynamic surfaces in various flight
conditions. One advantage of the source-doublet panel method is that it is capable of considering
the thickness of the rotor blade, while the lifting line method and vortex lattice are not. This
results in more exact representation of the blade geometry.

If the flow in the fluid region is considered to be incompressible and irrotational, then the
continuity equation reduces to Laplace’'s equation.

V=0 (13)

The general solution of Eq. (13) is given as a sum of source and doublet distribution over

the body's surface and its wakes.
= =1 Ih == 1 P
&(P)= [U(—)—un . )}ds—l———/ [;m . (—)]ds+¢m(P) (14)
471— body T wake T

However, Eq. (14) still does not uniquely describe a solution since a large number of source
and doublet distributions exist to satisfy a set of boundary conditions. To determine a unique
solution, the source distribution is set to be equal to the local kinematic velocity as in PMARC.
The source strength becomes

o=—ne (Vi+v, ,+02x7) (15)

In order to establish the boundary value problem, the local velocity at each panel on the
body has to satisfy the zero flow condition across the body surface.



Toward a More Complete Analysis for Fluid-Structure Interaction in Helicopters 115

Ve n—V, e n=0 (16)

Also, from the Kutta condition, the latest wake doublets are expressed in terms of the
unknown surface doublets.

Fopake = #T,Eupp(’r ~ KT Elower (17)
When specified at the body’s NV collocation points, Eq. (17) will have the form
[Aij](ﬂk) =(RHS,) = [Bi_j](ak) + [Ci./.](‘u”,k) (18)

This matrix has a nonzero diagonal and has a stable numerical solution. The resulting
pressures can be computed by Bernoulli equation, which yields

(VeF | 2 iGx) . voo 22 (19)

C=-— —
P VA y Vyef Ve Ot

The contribution of an element with an area of AS, to the aerodynamic loads AF), is given

as follows.

1 . —_

AR, =— pk'(?pufrf)kASkn k (20
To take the wake effects into consideration with accuracy, the present source-doublet panel
method is combined with the time-marching free wake model. For a better wake rollup
simulation, the wake doublet panel with constant strength is substituted with an equivalent vortex
ring [9]. The singularity problem in the vortex center is treated by Vatitas's vortex model [10].

T b T (cos&l—cosf)z)c_:' (21)

27 (7‘;2.1I+h2")

where n is integer (Fig. 2).

B -

Vortex filaments

Fig. 2. Schematic showing the velocity induced by a straight-line vortex element

Validation on the second aerodynamic model in itself is conducted by comparing with the
experimental data upon a full-scale propeller and a model helicopter rotor in hover [11, 12]. As in
Figs. 3 and 4, the numerical results from the present aerodynamic model are found to be in good
agreement with experimental data. The converged aerodynamic forces and moments are usually
obtained after 10 rotor revolutions including initial slow start (2 rotor rev.). The geometry of the
rotor and wake is illustrated in Fig. 5 after 10 revolutions. The lines represent the tip vortex and
the scattered points show the edge points of the inner wake panels. The trajectories of the tip
vortices are also shown in Fig. 6. The results of the present model show good agreement in terms
of the radial and downstream distance positions.
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Fig. 5. Wake geometry of the hovering rotor Fig. 6. Wake contraction/descent rate

Finite element discretization and the governing equations for CASE I model

By discretizing the blade into N elements, the structural and finite-time aerodynamic
equations can be rewritten in the following form: d

f oM, dt=0

i

(22)

where index i indicates an ith element with length Al;, and 0II; is the corresponding spatial

integration over the ith element. The simplest shape functions can be used in this form, and the
effective nodal airload vectors can be obtained using the following relations

f(l_f)fndi’?l ) ?i+1:/§fnd$1
_ _ - (23)
mi:fl(l"‘f)mndml v My =

i L

fi=

Once discretization is accomplished on the structural and aerodynamic part, the resulting
equations can be expressed in a simple form as follows.

FX,X) - F(X,X) =0 (24)

where Fj is the structural operator, Fj is the airload operator, and X is the unknown vector
consisting of structural variables in the following form:

X=FF M7 ol 67 FT M7 PT BT - uf 6% Fy MY Py HY uj 8 (25)

1

17\7]T
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Structural variables in (24) can be further expressed in the following form:
X=X+ X(t) (26)

where X is the steady component of the solution, which is independent of time, and X(t) is the
transient component of the solution, or, the perturbed motion, which has time dependency.

In the steady state, X(t) =0, therefore the governing equations can be simply written as

Since the pertinent operators have explicit expressions, the Jacobian matrix can then be
derived by differentiation:
oF, oF
[H]= [—_5— —_L] (28)
X 8X
whose detailed expressions for the structural part are listed in [6].
Equation (27) can be calculated by Newton-Raphson method, and this solution will be used
as a initial for time integration calculation.
To deal with time-derivative terms, a second-order backward Euler method is adopted. The
following finite difference discretization scheme is applied at each time step, n:

. 3,&”_41‘71_1"‘,&?_2

u

¢ 2At

(29)

where At is the time-step size. Superscripts indicate the time step and subscripts are the node
index.

Now Equation (24) can be solved using Newton's method. The Jacobian matrix can be
derived explicitly by differentiation:

oFg oF),

V=|—— —] : (30)

oX 8X

whose detailed expressions for the structural part are listed in [13], and those for the aerodynamics
can be developed in same way as that of steady case with unsteady aerodynamic terms.

Fluid-structure combination for CASE II model

The aerodynamic module of the source-double panel method is loosely coupled with the
structural module, which means that the data from each module are exchanged in an indirect
manner. Before the initial transfer of the aerodynamic data, the panel code is converged without
any consideration of structural deflection. And detailed coupling procedure is as follows.

1) In every 10 degree of azimuth angle, the forces and moments obtained from aerodynamic
analysis module are transferred to the structural analysis module. Because In general,
aerodynamic node points are not coincident with structural node points, the aerodynamic forces
must be interpolated before transfer. The viscous drag is not calculated in the panel method so
that its effects are included by table look—-up obtained from experiments.

2) Based on the forces and moments transferred from the aerodynamic module, the
structural module calculates the structural defections. The magnitude of deflection and rotation
angles are interpolated at each aerodynamic node point.

3) By using the deflection and rotation angles, the aerodynamic surface grid is newly
generated.

4) The procedure is repeated until the converged thrust is obtained.
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Fig. 7. The automation program of the combining procedure

To automatize this exchange process, a separate interface module is developed as shown in
Fig. 7. The interface module is coded based on MFC of Visual C++ so that the data exchange can
be easily accomplished. To this end, a unified data format is defined for the data transfer between
the analysis modules. The input parameters required for each analysis are directly modified in the
GUI module and the calculation results are also shown in the same window.

Results and Discussion

Numerical results of CASE I model

In spite of its model simplicity, the generalized Greenberg's theory has one advantage. By
relatively simple representation of the relevant lift deficiency function, it is implemented with ease
to incorporate it with structural model. Using the generalized Greenberg’s theory, time domain
analysis for the hovering flight condition is performed in this paper. The offset-hinged,
pre-twisted, articulated, small-scaled experimental rotor blade is examined. Uniform inflow is
assumed in the analysis, and it is evaluated from the following relation.

A= (0a,/16)[\/1+ (240 Joa,) —1] (31)

The resulting lift force when the rotating speed is linearly increases for the first 1 second,
and Fig. 8 shows blade spanwise load distribution. Comparing it with the result from CAMRAD
II, the present analysis appears larger by approximately 25%. This is due to the single blade
aerodynamic model adopted in this paper. The effects of the returning wake among the multiple
blades usually act as damping, and this may decrease overall forces and deformations.
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Fig. 8. Blade spanwise loading from case | Fig. 9. Blade spanwise loading from case |l
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Numerical results of CASE II model

Fig. 9 shows the comparative results for the spanwise load distributions of the same
small-scaled experimental rotor blade in hover. The present calculation is compared to CAMRAD
I and GENUVP [14]. Similar load distribution is observed up to r/R=0.85 but significant
discrepancies are found at the tip region, which results from the difference of wake geometry for
each analysis. It is seen that the present results are relatively in agreement with those of
CAMRAD 1II but are substantially different from those of GENUVP at the tip region. The
computed thrust is 208.006 N, which is about 4% smaller than 216.453 N from CAMRAD IL

Comparison between CASE I and II models

Fig. 10 shows the blade spanwise loading in the opposite direction of the flight. And Figs.
11 and 12 show the flap and lag angle distribution comparison of the two models respectively.
Through these two results about the blade deflection, it is possible to evaluate the effect of
airloads to blade behaviors.
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Fig. 10. Blade spanwise loading from case |
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Fig. 11. Blade spanwise flap angle distribution Fig. 12. Blade spanwise lag angle distribution

Conclusions

In this paper, two models which applied a sophisticated structural model using geometrically
nonlinear beam theory and different aerodynamics are examined for the calculation of the
interaction of the rotorcraft in hovering state. The generalized Greenberg’'s finite-time
aerodynamics is for used for CASE I model, it is explicitly coupled with structure part. The
unsteady source-doublet method which is coupled with a free wake model is used for CASE II
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model, and it is loosely coupled with structure model. Transient time responses about airloads and
blade behavior are examined, and comparison between two models is also conducted.

For the future work, forward flight analysis will be attempted, which includes a trim
analysis in both the finite-time aerodynamics and panel method. Also a new finite-time
aerodynamic model will be adopted, which considers multiple-blade effects.
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